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PREFACE

On May 7-9, 1980 a symposium was held at the Goddard Space Flight Center
to celebrate the first two years of operation of the International Ultra-
violet Explorer. This volume contains the papers presented at that meeting.
The broad range of topics represented by the subdivisions within the volume
attests to the versatility of the highly successful IUE mission.

The overall Symposium Chairperson was Albert Boggess, III; the
Scientific Program Chairperson was Anne B. Underhill; and, the Local
Arrangements Chairperson was Jaylee Mead. The Organizing Committee consisted
of Albert Boggess, Anne Underhill, Jaylee Mead, David S. Leckrone, Stephen P.
Maran and Robert D. Chapman.

We wish to express our thanks to the individuals who chaired the
sessions, and to the invited speakers who ably reviewed the contributions
of IUE to the many sub-disciplines of astronomy.

The papers are presented here as submitted by each speaker with a
minimum of editing.

Robert D. Chapman
Editor
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OUTLOOK FOR ULTRAVIOLET ASTRONOMY

Erika Bohm-Vitense

University of Washington

INTRODUCTION

When Anne asked me whether I would be willing to give this summary and

outlook, I was somewhat reluctant because I do not know much about galactic

and extragalactic astronomy. Anne replied "Erika, it's all the same physics."

This is of course the assumption on which we all base our studies, so I could

not object.

When I met Bob Wilson here in March and I mentioned this talk, he said

"Oh, that is always nice, because you can put in all your research that you
did not have a chance to talk about before."

So I will emphasize the common physics in all or at least most of the

IUE studies, and try to give an outlook based on what we have learned so far.
I will concentrate on those topics for which I feel I can contribute something

to the discussion rather than speculate freely on topics about which I do not

know much or to repeat what has been said already in the review talks.

I am sure my forecasts will be generally wrong because the most fascina-

ting research is always stimulated by discoveries that were not predicted.

COMMON PHYSICS OF IUE STUDIES

In our IUE observations we are dealing with wavelengths longward of

Ii00_, which means we are using photons corresponding to transitions with

energy differences up to lleV.

Energy differences AE enter into astrophysical problems generally by

means of a factor e-AE/kT which is most sensitive to changes in AE and AT for

AE/kT>>I. This, however, usually leads to small intensities. In most cases
the best choice is to observe effects for which AE/kT lies between i and I0

which gives good temperature discrimination and still measurable intensities.

For AE_IOeV this leads to temperatures between 104 and 105K, which is the

temperature range with which most of us are dealing.

The solar system observers do not have to worry about intensities and
therefore can deal with lower temperatures. Also investigations of inter-

stellar matter may deal with lower T since absorption of hot background radi-
ation is studied.

Most IUE studies deal with gases that are optically thin in the contin-

uum. Since we are dealing with AE_IOkT the energy loss of optically thick



gases would be too large for the gas to stay hot except if the energy source

is directly attached to the gas and increases with increasing temperature as

is the case for the stars. For most other objects the available energy is

fixed by external sources like stellar radiation, gravitational energies,

shockwaves, magnetohydrodynamic effects or possibly cosmic rays. Therefore,

generally only optically thin objects can stay hot.

This means nearly all our observations are dealing with non-thermodynam-
ic equilibrium conditions. For the interpretation of the observations we _

all have to solve statistical equilibrium equations. We should all struggle
with the radiative transfer equations. So far mainly stellar astronomers have

been brave enough to tackle the full problem. People studying gaseous nebulae

in the visual where most lines are optically thin have tried to circumvent the

radiative transfer problem by introducing Menzel's cases ABC, thus eliminati_,g

the optically thick lines. IUE now leads to the observation of those optical-
ly thick lines in the ultraviolet for instance in planetary nebulae or in the

bulges of Seyfert galaxies. So now astronomers working on these objects will
have to struggle with the radiative transfer problem also.

Every one of us, of course, has a special topic and aim of. his or her study,

but it seems that the problem of temperature determination, chemical abundance

determination, and, above all, the question about the energy sources for the

high temperature regions are important in most of the studies. In the follow-

ing discussion I will, therefore, concentrate on these questions.

After these general remarks let me go into the specific questions. I

apologize that I have to be selective and scanty because of time limits.

STELLAR ASTRONOMY

Since I consider myself to be a stellar astronomer I hope you will for-

give me if I emphasize this field even though it is by many colleagues con-

sidered to be old-fashioned. It is still the backbone of much galactic and
extragalactic research.

0 AND B STARS

Tef f Determinations

For 0 stars AE/kT reaches values of about 2 for % ~ II00_ as compared to

_0.5 in the visual region. The IUE spectral region therefore-offers a much

better opportunity to determine effective temperatures for 0 and B stars

(Underhill I 1980) though there is still some discussion with respect to the

cali6ration of the Tef f scale. With these UV studies we will now be able to i

distinguish much better between different Tef f and correspondingly between
different stellar masses and evolutionary time scales than before. This is, _f

course, quite important for a better understanding of the early.chemical evolu-

tion of our own and of other galaxies, which therefore in the future will

become more transparent.

4



Stellar Winds

The discovery of strong, highly ionized, high velocity winds in 0 and BO

stars (Morton 2 1967, Morton et al.3 1969) was a big surprise. These winds are

still a field of intensive study, especially their source of energy. If dur-

ing its lifetime on the main sequence a massive star loses about i0% of its

mass (Conti 4 1978) with roughly 3 times the escape velocity (Abbott 5 1978) we

find that the kinetic energy of the lost mass is comparable to the total gra-

vitational energy but to less than 1% of its total luminosity (see also McCray

and Snow 6 1979).

It seems that it is generally agreed upon that the winds are accelerated _

by radiation (Lucy and Solomon 7 1970, Castor, Abbott and Kleln 8 1975). Once

the high velocities are reached only about 1% of the kinetic energy has to _o
into turbulence (for a possible mechanism see for instance Nelson and Hearn _ O

1978) and then dissipated into heat to create temperatures around 3.105K,

which are necessary to ionize OV (Lamers and Snow I0 1978). Of course Anne

Underhill suggested magnetic fields to do the heating and Sreenlvasan discuss-

ed in London, Ontari%the possibility that differential rotation could cause

turbulence and heating. Joe Casslnelli discussed the possibility that X-rays
could cause the ionization and actual heating would not be necessary.

From the compilation of Lamers and Snow (1978) we see that at spectral

type BO a steep decrease of wind velocity is observed. Joe Cassinelll pointed

out that for temperatures less than 30,O00K the scattering or absorbing ions

may disappear. I would llke to suggest that at these temperatures also the

photons which can be absorbed or scattered disappear.

In Figure I the energy needed per cm2 for the strong winds, namely 0.1%

of the flux or 10-3 • o T_ff is plotted as a function of Tef f. In the same

figure we havealso plotted as a function of _ff the flux F% per 50_ at diff-
erent wavelengths according to Kurucz et al. 1 (1974).

O

Only for radiation shortward of the Lyman continuum edge at 912A do we

see a steep change in the flux for Tef f around 30,000K. It therefore appears
that the driving force for the wind must be sought for _<912_ possibly the

HeI lines. Unfortunately this wavelength region is almost impossible to ob-

serve, except perhaps with IUE if we think about wavelengths longward of 540_.

Continuing observations of massive stars with different ages will prob-

ably tell us how the winds and mass loss change when the stars evolve off the

main sequence, and what will bethe final mass of evolved massive stars. This
will determine the time scale for the final evolution and therefore the time-

scale for the expected enrichment of the interstellar medium by heavy elements
which determines the chemical evolution of galaxles.

5



STUDIES OF A STARS

Normal A Stars

Some really old-fashioned astronomers like me still study continuous

energy distributions in ordinary main sequence A stars. With AE/kT about 5

to i0 IUE observations offer an excellent opportunity to determineoeffective
temperatures in A and F stars. The observed discontinuity at 1700A enables

us to determine metal abundances as well (B_hm-Vitense 13 1980a, de Boerl2this
volume) bY comparison with available model energy distributions (Kurucz
1979).

Am and Ap Stars

As we saw earlier, some of the rapidly rotating stars show more energy

for %<1530A than the slowly rotating stars. I consider this observation im-

portant since it may hold the key to understanding the difference be-

tween Am stars and normal A stars. It may also hold the key to the

understanding of the heating of the outer layers of the 0 stars if it is due

to effects of differential rotation. Future studies will hopefully help to

understand the influence of rotation on convection, turbulence, and energy _

distributions of late A and early F stars.

Monitoring the Tef f of the Ap stars during their rotational cycle may
tell us about the influence of magnetic forces on the stratification of the

outer layers of these stars where magnetic forces could be important.

STARS OF SPECTRAL TYPE F AND LATER

Chromospheric and Transition Layer Emission

The study of classical stellar chromospheres, transition layers and cor,

onae in F,G,K and M stars and the relation to mass loss in late type stars ha_l

been an exciting field in the last years. We have confirmed that the boundary

line for classical chromospheres follows the Cepheid instability strip, and

marks the line where efficient hydrogen convection stops (B_hm-Vitense and

Dettman 14 1980). The exact position within the instability strip is still

being studied (Parsons 15 1980). We expect to learn a lot about the interac-

tion of pulsation and convection from these studies.

We have also learned where on the cool end of the HR diagram the hot

transition layer emission terminates (Linsky and Haisch 16 1979) presumably due
to deep reaching stellar winds (Mullan 17 1978), though we are still looking

for an energetic driving mechanism. The influence of Ly_ has been discussed

by Haisch et al. 18 (1980). X-ray studies of the cool giants and supergiants

will show whether these stars actually do not have a transition layer and cor-

ona or whether the temperature gradient in the transition layer is too steep

to give measurable emission. Vaiana 19 (1980) reports strong X-ray emission
of M stars, which may however only refer to very young M stars. The X-ray

observations will give us the coronal temperatures and thereby the boundary



condition with which we can determine the stratification of the transition

layer uniquely. Without it we do not know whether a low-emission llne flux

of high-excitation lines is due to the absence of high temperature regions,

to a steep temperature gradient or to a low electron density.

In any case the complicated structures of the Mg II k2 emission cores

with several shortward shifted absorption components indicate outstreaming

material in low temperature high luminosity stars (Stencel et al.20 1980).

Future studies of late type stars of all luminosity classes will clarify the

relation between the termination of the transition layer emission, the pres-

ence of the X-rays and the mass outflow visible in the Mg II lines.

The Energy Source for Heating the Transition Layer and Corona

The energy source for the heating of the transition layers and coronae

and the energy balance is still a topic of very active research. As pointed

out earlier, we feel that the weak or absent transition layer emission of old

stars tells us that other than acoustic wave heating must be important for the

high layers. Magnetic and magnetohydrodynamic effects will have to be con-

sidered. We shall then expect a correlation between rotation and transition

layer emission, since magnetic field strengths, due to dynamo generation, are

expected to decrease with decreasing rotation. Ayres and Linsky 21 (1980) find
a positive correlation between X-ray emission and rotation for G and K stars

in binaries. Our studies of the correlation between transition layer emission

and rotation shows different results for different spectral types. In Figure

2 we see that the F0 stars D Lep (vr sin i = 0 km/se_c), yDor vr sin i =

106 km/sec) and _ Hor (vr sin i = 190 km/sec) all show the same weak emission.
In order to understand this we must ask why do single stars rotate rapidly?

Either they are young and have not had time to slow down in spite of corona

and stellar wind, or they have evolved into a region with convection and cor-

ona only recently, as seems to be the case for _ Tri and 31 Com. In these

cases they will have strong transition layer emission. On the other hand,

they may also be rapid rotators because they do not have strong convection
and therefore do not have a hot corona and stellar wind and therefore have not

slowed down as may be the case for F0 stars right at the boundary for the on-

set of convection like y Dor, _ Hor and _ Cae. With this in mind our Figure 2

does perhaps not contradict a positive correlation between rotation and tran-

sition layer emission. Further studies are needed to improve the statistics

and decide whether we have a positive correlation or not.

The study of stars with known ages will be very helpful to follow the

evolution of chromospheric and transition layer emission with increasing age

of the stars. Unfortunately even main sequence F and G stars in clusters are

rather faint, except in the Hyades. Perhaps IUE II will help.

Energy Balance and Coronal Temperatures

There has been an extensive discussion in the literature whether the

minimum flux corona is indeed the stable form of spherically symmetric coro-
nae as proposed by Hearn 22 1975.



For any equilibrium stratification we must require that

=- d-R=o
div F = dlv Fra d + div Fmech + div Fcond + dlv Fwind dt

where Q is the enthalpy, Fra d = radiative flux, Fcond = conductive flux,
Fwind = energy flux of stellar wind, Fmech = sum of energy fluxes which heat
the transition layer and corona.

Hearn only considers the /div F r2 dr over the corona.

Let us use the following abbreviations:

Ft = I div F r2 dr = Fl + Fmwith (2)

corona
Q

FI = I (div Fra d + div Fcond + div Fwind) r2 dr (3)

corona

Fm = I (dlv Fmech) r2 dr, Fm < 0 means heat input (4)

corona F > 0 means heat loss
m

For equilibrium FI = -Fm.

Hearn s_owed that for a given ne the FI has a minimum for some T=Tml n.
He believes Tmi n to be the temperature of a stable corona.

dFt

For stability we must requlre--_> O, then a AT>O will lead to cooling
dF1

and vice versa. Now-_ < 0 for T < _m_n as Antiochos and Underwood 23 empha-

_ud_u>x _o_at_ _l_t_ro_y_r>a0p_t_m_pe_r_h_e_c_ h_

of the energy input for T<Tmin: For AT<0 we need to put in more energy in

order to make up for the increased losses in order to achieve some heating.
Figure 3 illustrates the situation.

Usually it is assumed that Fm is determined by the conditions in the

deeper layers. We therefore expect Fm to be independent of the coronal temp-

erature. In this case Tmin is not the temperature of a stable corona but
rather a lower limit for the coronal temperature.

If on the other hand the coronal heating is due to currents in the cor-

ona as suggested by Valana and Rossner 24 (1978) then the stability at

T = Tmi n will depend on the temperature dependence of such current heating.

In any case the actual temperature must be determined from Fm = _F I.
(See also Mangeney and Souffrin 25 1977).



Following Uns_id's 26 (1955) arguments Hearn's conclusion that the pres-
sure at the base of the corona is determined only by the amount of the mech-

anical energy input is confirmed in the sense that the energy input into the
upper chromosphere determines the pressure at the base of the transition re-
gion.

Future detailed studies of chromospheric, transition layer and coronal

X-ray emission will enable us to determine the stratification in--these layers

uniquely and thereby derive div Fmech = -div F1 as a function of height. We
will then better understand the details of the heating mechanisms. For a true

description of the corona we will have to take into account, though, the none
spherical geometry as was emphasized by Vaiana and Rossner 24 (1978).

THE WILSON BAPPU EFFECT

The discovery by Wilson and Bappu 27 (1957) of the increasing width of the

Ca II K2 emission with increasing luminosity has stimulated much research. A

similar effect is observed for the Mg II h2 and k2 emissions. The surprising

fact is that the widths of the lines appears to be independent of Tef f and Z.
Figure 4 shows a compilation of the available data from Stencel et al. 20 1980

and from our observations. A very slight decrease is found for lower metal
abundances.

This effect has caused a long-lasting debate concerning its origin. Wil-

son 28 1972 favored an explanation by an increasing Doppler width. Ayres 29 ex-

plains the increasing width by an increasing optical depth in the damping
wings of the lines.

For the Mg II lines we can now observe both the h2 and k2 lines. For
pure optically thin Doppler broadening the two lines should have the same

width. For optically thick Doppler broadened lines the k2 line should be wid-

er by a minute fraction. If the widths are determined by the damping wings
the ratio should be about 1.4. The total emission in the lines could also be

used in a similar way. Unfortunately on the IUE spectra the measurement of

the h2 line is rather inaccurate since it appears at the ends of the echelle

orders. There is a lot of scattering in the measurements but in the average
the h2 line is narrower by a factor 1.4±0o5. It is not quite clear whether
the ratio is intensity dependent.

Perhaps it will be possible in the future to get a more reliable calib-

ration even for the low counts at the ends of the echelle orders so that h2
could be measured more accurately. Then this debate could be settled.

OLD STARS

Chemical Abundances

In our opinion the detection of the radial velocity variations for all
Ba II stars (McClure 30 et al. 1980) and the actual observation of the white

dwarf companion of _ Cap (BShm-Vitense 31 1980b) is quite important since it



opens up the possibility that many abundance anomalies observed in old stars
could be due to mass exchange in binaries. McClure et al. pointed out that

in relatively open globular clusters like _ Cen might perhaps have binaries.

The strong emission lines in the _ Cap system probably indicate excess hot ga_l

in the system and the strong h3 and k3 Mg II absorption lines seem to show
excess clrcumstellar, cool, low-density gas. Future observations of stars

with peculiar abundances will help to clarify how many of these peculiarities

can be related to white dwarf companions. X-ray observations may decide whe-

ther mass exchange is taking place now and in which direction it is going.

X-ray Source in Sirius B

The UV studies of the Sirius system so far have not been able to solve

the problem of the X-ray source for Sirius B. Perhaps mass exchange could be

an explanation. The question remains, is there gas in the system that could

be accreted by the white dwarf? We have looked for signs of it. After the

_correction of the Sirius B spectrum for the IUE calibration error explained

by A. Holm32 (1979), we still find some humps in the light tail seen perpen-
dicular to the direction of dispersion, which we believe is mainly due to

scattered light of Sirius A. Figure 5 shows some of the cross sections

through the spectrum at different wavelengths. The points shown are averages

over 5 wavelengths. While for the long wavelengths the tail looks smooth

with little scatter, we see humps for pixels, ii or 12 at other wavelengths,
some of which are close to carbon lines. The profiles shown were all normal-

ized to FN = 2000 at pixel No. 8 where the Sirius A tail starts. The actual

counts in Figures 5b-d are lower by about a factor 2 as compared to Figure 5a.
Can we believe the hump at pixeis No. 9 and 12 for these wavelengths? Is
there emission in the carbon lines around Sirius B? Additional spectra can

perhaps answer this question.

Generally the study of mass exchange in close binaries especially in
connection with nova or nova-llke outbursts have been and probably will con-

tinue to be an active field of research. The flux in the ultraviolet emission

lines will tell us how much energy is liberated in the exchange process which

gives us a handle on the amount of mass transfer.

YOUNG STARS

With the detection of the bright ultraviolet continua in T Tauri stars

(Imhoff 33 1980) we have at least learned that we do not yet understand what

is happening during the birth of a star. The bright ultraviolet continuum of

Herbig Haro object No. I is, however an even more extreme case (Ortolani and

D'Odorico34). Figure 6 shows a short wavelength region 4_5 exposure of Herbig

Haro object No. i which was taken by Karl-Heinz B_hm and myself with the help
of Fred Bruhweiler. This object has a visual magnitude of about 16, with most

of the light coming from emission lines. Thereis also an estimated 2m ex-
tinction around 1500A.

Ortolani and D'Odorico find that the relative energy distribution corres-

ponds to a blackbody with T % 40,000K.
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We suspect that all Herbig Haro objects have strong ultraviolet continua.

This is not predicted by the currently favored hypothesis that the emission is
due to shock wave excitation.

In HH 24A the visual continuum was found to be strongly polarized (Schmi-
dt and Miller 35_ (1979), Strom et al. 36 (1974)). Is the UV continuum of HH

objects also strongly polarized? IUE will not be able to tell us. Could the

UV continuum be due to Rayleight scattering? If so, why do we never see the

original llghtsource? The main problem is, however, to get enough intensity
unless the light source is imbedded in the Herbig Haro object. In that case

the Herbig Haro object would be expected to be a strong infrared source, which
it is not.

Further studies will clarify whether all HH objects have strong UV con-

tinua, and how the energy distributions differ for different objects. The
relation between the UV energy distributions and the emission line intensities

may help to clarify the energy sources for these objects and their relation
to star births.

THE INTERSTELLAR MEDIUM

THE GALACTIC HALO

While the Copernicus satellite permitted to observe interstellar lines

in the IUE wavelength region even at higher resolution than IUE, IUE has in-

creased the distance range of observations considerably. The most exciting
observation in this field is in my mind the confirmation of the existence of

high-temperature gas in the galactic halo (Savage 37 1979) which had been sus-

pected a long time ago (Spitzer38 1956). Possibly hot halo gas was also seen

in the Magellanic Clouds, Savage37. Future observations of extragalactic
objects in the local group may show whether hot halos are present in all of

the systems or how the presence-or absence-is related to other properties
of the galaxies. - -

The most interesting problem is again the energy source for the heating.

Is the galactic halo being heated randomly by supernova explosions as already

discussed by Spitzer? This could explain the inhomogeneities of the halo gas.

Could the high temperature have survived from the collapse Of the galaxy?

Spitzer estimated that for T h 106 K the cooling times would be long enough.

The inhomogeneities would then be explained by the cooling instability of the
hot gas.

If current galactic models are correct (Tinsley and Larson 39 (1978))

which require continuous instreaming of material in order\to keep the metal

abundance Z of the galaxy from increasing, then it seems the inflowing halo

gas will have to be heated more or less continuously unless the intergalactic

gas is already hot. If so then due to the cooling instability clouds could

condense from the hot gas while cooling and could fall into the plane.
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If appropriate background objects can be found, the investigation of the

distribution of the hot gas within the halo, especially as a function of

galactic latitude and distance, will help us to identify the energy source.

SUPERNOVA REMNANTS

The possibility to study distant hot stars has permitted us to observe

galactic supernova remnants, thus giving us a chance to actually study their

chemical abundances and test directly our hypothesis of heavy element enrich-
ment of the interstellar gas by supernova explosions, which up to now was
difficult to observe.

EXTRAGALACTIC RESEARCH

GALAXIES IN THE LOCAL GROUP

Since I am not an expert in extragalactic research I am not sure whether

I should say anything about this field. I will be very brief. As Anne said,

basically the same kind of studies discussed so far can be and are being done

in extragalactic objects of our local group, except that we are_limited to the

study of the brightest objects. Since we can overlook the whole extragalacticl
systems, we are better off than fO r our own galaxy if we want to study, for
instance, variations of chemical abundances as a function of position within

the system. The distribution of stellar birthplaces and their properties

can also be studied better in extragalactic systems since we are not bothered
quite that much by interstellar dust. A simulation of the early stages of

chemical evolution of our own galaxy may be witnessed now in the LMC. As

stated above for the young massive objects UV observations permit much better
temperature and thereby mass and age discrimination. The dependence of mass

loss on Z can be studied by comparing the wlnds of the massive stars in the

LMC and SMC with those of stars in our own galaxy. The changes in stellar

evolution due to different degrees of mass loss can be observed directly.

Interstellar lines of hot, possibly halo gas have been detected in the
LMC (Savage 37 1980). The overall velocity field of this gas can be studied

better in the LMC than in our galaxy and may give us information about the

global infall or outstreaming of the hot gas.

ACTIVE GALAXIES

Theoretical studies of energetic shockwaves and the expected UV emission

spectra as well as studies of the interaction of relativistic particles with

interstellar gas and dust will probably bring us closer to the understanding

of the phenomena observed in the nuelel of active galaxies llke the Seyfert

galaxies. This may ultimately lead to an understanding of quasars and their

luminosity function and distances.
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Figure i: The kinetic energy fed per cm2 and second into the high velocityI

wind of 0 stars, i.e. about 10-3 _ T_ff, is shown as a function

of Tef f. For comparison we have also plotted for main sequence
stars the radiative energy contained in 50_ bands at different

wavelengths (according to Kurucz and Peytremann II 1972). Only for
<912_ does this radiative flux decrease rapidly for Tef f <

30,000 K. (For Tef f > 35,000 K no models with log g = 4. were
available, so models with log g = 4.5 were used instead).
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Figure 2: The ratios of the observed emission line flux in the C IV lines at

1549_ to the total flux fb are plotted as a function of B-V for the
stars observed by us. The numbers give the rotational velocities

vr sin i in Km/sec (Boyarchuck and Kopilov 40 1964). The rather
rapidly rotating stars _ Tri and 31 Com showmore emission than do

the slowly rotating stars 8 Vir, 8 Com and 31 Aql. However, the
rapidly rotating stars y Dor, _ Hor and _ Cae, show less emission

than the slowly rotating stars _ Cae and D Lep. The latter stars

all have B-V<0.40 and are therefore rather close to the boundary

line for the onset of convection and chromospheric emission.
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temperature-dependence of the energy input F1 = -Fm. For a steep
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Figure 4: The width at the base of the Mg II k2 emission lines is plotted as
a function of B-V for stars of different luminosity classes. Tri-

angles refer to data given by Stencel et el. 20 1980. Dots refer to
normal metal abundance stars observed by us, x refer to metal defi-

cient stars and open circles to Ba stars or the super metal-rich

star 31 Aql. It is obvious that the width is independe=t of B-V,

it decreases slightly with decreasing metal abundance.
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Figure 5: The intensity distribution in the spectrum of Sirius B perpendicu-
lar to the direction of dispersion is shown for different wave-

lengths _. All cross sections were normalized to the same flux

numbers at pixel No. 8. (The intensity maximum is always a pixel
No. 6). For wavelengths around 1950_ a smooth distribution is seen

attributed to scattered light from Sirius A. At shorter wave-

lengths humps may occur at pixels No. 9 and 12, shown here for the
wavelengths near the CI, CII, and CIV lines. We do not know how

to decide whether these humps are just accidental or whether there

is a glow in these and other lines in the region around Sirius B.

Figure 6: A 4_5 exposure of the short wavelength spectrum of Herbig Haro No.

1 (mv = 16_0). The geocoronal Lye Covers up Lye of the object. A
continuum is visible. In addition weak emission lines of CIII

(1909_); CIV (1549_), CII (1335_) and CI (1657_) can be seen.

Faint lines at 1945_, at 1818_ (SiII), 1751_ (NIII), 1640_ (HeII),
1400_ (SiIV) and 1302_ (0I) may be present.
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NEW INSIGHT INTO THE PHYSICAL STATE OF SOLAR SYSTEM OBJECTS*

P. D. Feldman
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ABSTRACT

The application of IUE to observations of solar system objects is

summarized and a brief survey of new discoveries made during the first two
years of IUE operation is given.

INTRODUCTION

The successful launch and operation of an earth-orbltlng ultraviolet

telescope facility such as IUE provides a new tool to the planetary astronomer
with many features not available in earlier satellite observatories. The use

of IUE for solar system observations in the first two years of operation has

been directed at a wide variety of problems concerning planets, satellites,
asteroids and comets. We present here a brief overview of some of the dis-

coveries in this area made to date, with particular emphasis on the utiliza-
tion of some of the unique capabilities of IUE. More detailed discussion of

some recent results can be found elsewhere in the symposium proceedings.

There are several advantages to using IUE for solar system observations.

Perhaps the most important is the ability to make synoptic observations over

a rather long baseline in time in order to determine the response of a plan-

etary atmosphere to the variability in the solar ultraviolet or particle

output or to study the large-scale weather pattern in the lower atmosphere of
a planet. This type of information is not obtained from the ultraviolet

"snapshot" taken by rocket experiments or planetary flybys_ and in the case

of HI L_ observations of Jupiter, discrepant brightness values obtained by a

variety of rocket and flyby experiments during a 10-year period were only

recently recognized as being indicative of a true temporal variability
(ref. i). IUE also allows for spatial imaging in the ultraviolet with =5"

resolution using the large spectrograph apertures, and larger scale spatial

features can be mapped by offsets of the apertures. The wide spectral range

of the IUE spectrographs and the dual dispersion capability allows for

comprehensive, simultaneous observations of a large number of related species
in a planetary atmosphere, and provide vital, correlative information to

complement ultraviolet instruments on planetary flybys and probes such as

Voyager or Pioneer Venus Orbiter, Finally, we note the opportunity to

increase our knowledge of the ultraviolet spectra of comets many-fold and in

a systematic manner to study their time evolution over a large range of

Work supported by NASA grant NSG-5393.
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heliocentric distance. Two moderately active comets have been observed to

date (Seargent, 1978m and Bradfleld, 1979_) and it is to be hoped that a giant

comet llke Bennett (197011) or West (1976VI) might make an apparition during
the lifetime of IUE.

There are observing dlfficultlesencountered when using IUE for solar

system objects due to the original design of the satellite to allow for
observations of the entire range of astronomical objects and these will be

mentioned briefly to indicate the problems faced in observing these targets.
These include saturation of the Fine Error Sensor (IRES)on nearly all of the

planets; the need for an accurate sPacecraft-centered ephemeris for moving

targets; long-wavelength scattered light in the short wavelength spectrograph
camera due to the use of a non-solar blind photocathode; and the 45° solar

avoidance cone which constrains observations of Venus and comets. Despite

these difficulties, the first two years of IUE have witnessed many new
discoveries that have made IUE a primary tool in solar system research.

BRIEF SURVEY OF RESULTS TO DATE

The results presented here are not meantto be a complete suu,nary of all

solar system observations but rather a sampling of highlights which illustrate

the utility of IUE for these studies. Reference is made only to work that

has been published or submitted for publication or is included in this

symposium.

Saturn

The traditional method of determining the composition of a planetary

atmosphere is illustrated by the detection of acetylene (C2H2) in absorption
in the spectrum of reflected sunlight near 1750 A from Saturn (ref. 2).

Acetylene was previously identified in the far-lnfrared spectrum of Jupiter

and also appears in IUE spectra of Jupiter (ref. 3). For both planets, the
relative abundance of C2H2 is determined and found to be consistent with

recent photochemica I models. Saturn also has been found to exhibit an

asymmetrical distribution of HI Lu emission similar to what is observed for

Jupiter (ref. 4).

Jupiter

The spatial imaging capability of IUE is beautifully illustrated by the

photowrlte images of aurora in the north and south polar regions of Jupiter

given by Clarke et al. in this volume (ref. 5). In this case three exposures

were takenwith the large aperture of the short-wavelength spectrograph on

the center of the planet and offset by "20" towards each of the poles.
Enhanced emission of HI L_ and strong emission in the Lyman bands of H2 near

1600 _ is seen in the polar regions but not near the equator or at mid-

latitudes. The spectrum of the Jovian aurora is very similar to that

observed by Voyager (ref. 6), and provides a means of remotely monitoring the

magnetospheric activity of Jupiter with time. Jupiter also exhibits an

asymmetry in HI L_ emission near the equator which has also been observed by

Voyager and by a rocket experiment (ref. _). The longltudlnal variation and
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temporal behavior of this bulge has been studied by IUE (ref. 4).

One of the most exciting discoveries of the Voyager flybys is the
intense volcanic activity of the satellite Io. Ultraviolet observations of

the plasma torus associated with Io (ref. 6) show it to Be composed of ions

of sulfur and oxygen and the ion temperature and density can be deduced from

the relative intensities of lines of different stages of ionization, such as

SII and SIII which are observable with the IUE short-wavelength spectrograph
(ref. 7). The surface of Io shows marked variation in ultraviolet albedo

with phase, presumably due to differences in SO2 frost on the surface in areas
of recent volcanic activity.

Mars

IUE observations of Mars have focussed on the seasonal variability of
atmospheric ozone first detected 5y the Marlner 9 orbiter (ref. 8).

Venus

Due to the constraint of a 45° solar avoidance cone, Venus can be ob-

served only during a short period around the time of greatest elongationat

which time the disk is roughly half illuminated. Because of its proximity to
earth, tracking of Venus by the satellite is extremely difficult and the FES

is hopelessly saturated. Orientation of the spectrograph slits on the

illuminated half of the disk is accomplished by minimizing the extent of

spill, over in the FES camera. High dispersion observations of the bright

side have been used to determine the abundance of S02 in the Cytheran atmo-
sphere (ref. 9) and to help identify Lu induced fluorescence of CO fourth

positive bands as an additional source of emlsslon in low resolution spectra
of the atomic oxygen multiplets at 1304 and 1356 _ (ref. i0).

By offsetting from the illuminated portion of the disk to the dark side,
low dispersion spectra of the nightglow, first observed by photometers on

Mariner 5 and more recently by the ultraviolet spectrometer on Pioneer Venus

Orbiter, were obtained. Although severely contaminated by scattered light

from the illuminated side of the disk, these spectra were used to identify

the nlghtglow emissions as the _-band system of nitric oxide produced by the

radiative attachment of nitrogen and oxygen atoms (ref. ii). This identifi-

cation was subsequently verified by the Pioneer Venus Orbiter UVS which was

then able to use these emissions to study the transport of atomic nitrogen

across the terminator to the night side (ref. 12).

Come ts

Two moderately active comets, Seargent (1978m) (ref. 13) and Bradfield

(1979E) (ref. 14), have been observed by IUE, the latter over an extended 7

week period in January and February 1980 during which time the comet's helio-

centric distance varied from 0.71 a.u. to 1.53 a.u. Spectra of Comet

Bradfleld taken over a period of several weeks are found to be very similar

to the spectra of Comet Seargent (ref. 13) and earlier rocket spectra of

Comet West (1976 VI) (ref. 15). This similarity suggests a common composi-
tion for these comets and although the sample of comets observed to date in

the ultraviolet is quite smalls future observations of comets by IUE and
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other orbiting observatories should provide a suitable statistical basis for

understanding the composition and origin of these objects.

Several new discoveries have emerged from preliminary analyses of the

Comet Bradfield spectra. These include the identification of CS as either a

parent molecule or as the daughter of an extremely short-lived parent based

on the point-like spatial distribution of the CS emission at 2576 _ (obtaine_
at a resolution of ~i000 km) (ref. 16); the identification of the [OI] IS-3P

transition at 2972 _, probably produced by direct photodissociation of H_O;
a still unexplainedanomalous distribution of band intensities in the CO_

first negative system; and a determination of the water production rate with

heliocentric distance that strongly disagrees with earlier such determina-
tions (ref. 17). High dispersion observations have been used to study the

fluorescent pumping of the very strong OH bands near 3090 _ (ref. 18)and the

spatial variation of various species observed at low dispersion provides a

comparison for photochemical models of the coma.

CONCLUSION

The success of IUE for solar system observations illustrates the benefits

obtained by complementing the direct exploration of the planets withearth-

orbit observations in the ultraviolet and points the way for strong consid-

eration of planetary and cometary spectroscopy in the requirements for the

next generation of orbiting observatories.
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ABSTRACT

The spectrum of the dayglow of Venus between 1250 and 1430 _ has been

measured in high-resolution with the International Ultraviolet Explorer.
Seven exposures which were made with the short wavelength camera in the

high-disperslon mode using the large aperture were combined to give a

total exposure time of 309 min. The atomic oxygen lines at 1302.2, 1304.9,

1306.0, and 1355.6 _ are present. In addition, the (14,3) and (14,4)_

bands of the carbon monoxide fourth positive system at 1317 and 1354

respectively are identified. These bands are compared with synthetic

spectra, showing the excitation mechanism to be fluorescent scattering of

solar Lyman alpha radiation.

INTRODUCTION

From April to August of 1979 the Pioneer Venus Orbiter Ultraviolet

pectrometer obtained spectra of the Venus dayglow at a resolution of 13

• Figure I shows a portion of a sum of 480 of these spectra which were

obtained at illumination, emission, and phase angles less than 60° . The
data are shown as the solid curve. The identification in these data of

carbon monoxide fourth positive bands (C04+) in the (14,v") progression
resolved some long-standing uncertainties in the interpretation of the

Venus dayglow (Durrance, et al., 1980). A synthetic spectrum of this

progression is shown as the dotted curve. A prominent unblendedfeature

in this spectrum was identified as the C04+ (14,5) band at 1392 _. The

(14,3) and (14,4) bands at 1317 and 1354 _ are blended with atomic oxygen

(OI) 1304 and 1356 _ lines, and were identified through inference.

We present here a high-resolution spectrum of the Venus dayglow in
which the atomic oxygen and carbon monoxide features are resolved. The

spectrum was obtained from observations made with the International Ultra-

violet Explorer satellite (IUE) at a resolution of about 0.4 _. It is
also shown that the theory of the excitation mechanism as scattering of

solar Lyman alpha is consistent with the shape of the observed C04+ bands.

27



OBSERVATIONS

Venus is a particularly difficult object to observe with IUE. It is

outside the restricted region around the sun only near its greatest

elongation when its visual magnitude is about -4. This extreme brightness
saturates the Fine Error Sensor (FES) tracking system so that it is not

possible to automatically track during an observation or to point precisely
at a location on the disk.

Tracking is accomplished by calculating the drift rate of the planet

with respect to the stars in spacecraft-centered coordinates and converting

these to spacecraft gyro rates. The precise location of the planet is

then determined by minimizing the figure of scattered light in the FES

image after the crescent of Venus is placed over the large entrance aper-
ture of the spectrometer. The image of Venus is only slightly larger than

the aperture so a substantial reduction in the reflected light for the FES

camera is seen. It is estimated that the center-of-light can be found
with this technique to an accuracy of about g2 arc sec.

On April 12, 1980, during the time of Eastern elongation, a series of

7 exposures were made with the short wavelength camera in the high-disper-

sion mode using the large aperture. Exposure times varied from 20 to 60

min. with a total exposure time of 309 min. To minimize the effects of

drift during each observation, the exposure was stopped periodically while

the scattered light figure in the FES image was recentered and then the

exposure was continued. Also for some of these observations the large

aperture was offset toward the bright limb in order to enhance the airglow

intensity relative to that of the disk.

A large background is present in these spectra as can be seen in

Figure 2 which shows a portion of the sum of the gross spectra for all 7

observations. Altogether 7 overlapping echelle orders are shown which
cover the region from 1280 to 1380 _. The data shown here have been

smoothed with a 9-point running average and are overplotted with the

estimated background which was determined as follows: Since the spectrum

is expected to have no continuum, or at most a very weak one, the spectra

are assumed to consist only of emission lines plus a large background.
Order 107 was assumed to consist of background only which was determined

as a 25-point smooth of the data, after the removal of any reseaux. This

background was then used to mask out the emission lines in order 106; that

is, the background for order 106 was then determined as a 25-point smooth

of the data excluding any points which were higher than the background of

order 107 by an amountthat was determined visually. This process was

then repeated for successive orders, each time using the background of the

adjacent order to form a mask.

THEORY AND DISCUSSION

Since carbon monoxide is present in the Venus upper atmosphere

(Niemann et al., 1979), fluorescent scattering of solar radiation is a

plausible excitation mechanism to explain its airglow emissions (Barth,

1969). In particular Kassal (1976) has shown that the scattering of solar

Lyman alpha by the C04+ (14,0) band is comparable to or greater than the

scattering by the rest of that system for CO column densities _i017cm-2.
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A high-resolution synthetic spectrum of the C04+ (14,v") progression which

assumes fluorescent scattering of solar Lyman alpha as the excitation

mechanism has been produced. The details of this spectral synthesis are

given in an earlier paper (Durrance etal., 1980) and will not be included
here.

The data minus the fitted background are shown in Figure 3. The Ol

1302.2, 1304.9, 1306.0, and 1355.6 lines are resolved and easily visible

in this spectrum. A reseau at the position of the 1302.2 line has been

removed so the relative intensity of this line is not accurately indicated

here. A synthetic spectrum of the C04+ (14,S) and (14,4) bands is shown

_lotted below the data and is offset for clarity. They are both resolved

although the (14,4) band is not completely separated from the Ol 1355.6

llne. The agreement in position, shape, and relative intensity is quite

good.

Agreement between theory and data is shown with more detail for the

(14,4) band in Figure 4. The high-resolutlon synthetic spectrum has been

degraded to 0.4 _ resolution using a rectangular slit function to agree

with the data. The atomic llne, uslng the same procedure for degrading
the resolution, is also included for comparison. In this figure the data

have been filtered with a low pass filter and the synthetic spectrum is

normalized to the data. It can be seen here that the agreement between

theory and data is quite good although there does appear to be a small

discrepancy in the intensities of the satellite branches.

CONCLUSIONS

With IUE it has been possible to obtain high-resolution spectra of

the Venus dayglow in the 1250-1430 _ range which resolve the C04+ (14,3)

and (14,4) bands from the Ol 1304 and 1356 _ lines. Comparison of these

CO bands with synthetic spectra confirms the conclusion that they arise as

a result of the fluorescent scattering of solar Lyman alpha.
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ABSTRACT

IUE has detected the Hartleybands of ozone in the spectrum of Mars.
Seasonal observations show a variation in the north consistent with the

measurements of Mariner 9. New observations during Martian late fall in
the south were made.

INTRODUCTION

Ozone was discovered on Mars by the ultraviolet spectrometer on board the

Mariner 7 spacecraft (Barth and Hord, 1971), and was subsequently measured

extensively from the Mariner 9 orbiter (Barth et al., 1973; Lane et al.,

1973; Barth and Dick, 1974; Wehrbein, 1979). Those measurements demonstra-

ted variations in both its vertical and global distribution. The total

ozone amount was found to be a maximum during winter over the north pole
but slowly decreased throughout the spring. In the south it was absent

during the Martian midsummer season but appeared again in late summer.

Daily variations were also observed and were occasionally associated with

the presence of clouds. The general conclusion of these observations was

that ozone is present when the Mars atmosphere is cold and dry. The photo-

chemical theory of ozone, which considers the role o_ water vapor, supports
this conclusion.

The Mariner measurements were restricted to northern winter-spring, and

southern summer. In this report we describe a technique of using the IUE

satellite to observe ozone on Mars, and present the results of a prelim-
inary analysis on some of the data acquired.

TECHNIQUE

Ozone is detected by observing its absorption of sunlight in the wavelength

region from 2100 to 2800 _ where the Hartley bands have a peak cross section

of i x lO-l?cm 2. Because of its restricted global distribution on Mars, a

successful detection with IUE depends on the ability to restrict the instru-

ment's field of view to that region of the planet where ozone is present.

As shown in Figure i, the angular diameter of the planet as seen from earth

has varied between 5 and 13.8 arc sec since April of 1979. The optimum

observing time is at opposition when the 3 arc see small aperture includes

only about 5% of the bright disk. Ideally the small aperture would be
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placed over the winter pole where Mariner found ozone to bemost abundant.

However Figure i shows that the aspect b_ M_rs also varies considerably,
withthe sub-Earth point moving between -25 v latitude. During the February

opposition the northern hemisphere faced the Earth and provided the opportu-

nity to observe the northern mid to late spring, Under these same condi-
tions Mariner observed between 5 and I0 _-atm. of ozone (l_-atm. = 2.68 x
I0-Is molecules cm-S).

The drift rate of Mars with respect to the stars and its position were

calculated in spacecraft-centered coordinates. Even though Mars had a

maximum magnitude of -0.3 it was possible to track using the center-of-

light lock after placing the planet in the large aperture. The pattern of

scattered light in the Fine-Error-Sensor (FES) image was monitored to

verify the tracking. During an observing session a pattern of five expo-
sures were made as shown in Figure 2. Displacements were made in ecliptic

coordinates by first slewing the spacecraft 4.5 aTc sec in the desired
direction from the center-of-llght point and then moving directly to the

small aperture. The orientation of Mars shown in Figure 2 is for March 15,

1980. In January, before the opposition, the terminator was to the west of

the planet and its north pole was 10 deg closer to ecliptic north. Between

January and April the phase angle varied between -30 and +30 deg.

Observations were made on September 25, 1979 and on January 23, March 15,

and April 8, 1980 with exposure times varying from 9 to 75 see. These
exposures were made with the long wavelength camera in low resolution using

both the large and small apertures. For the observations with the small

aperture a i0 sec exposure gave good signal without saturation.

OBSERVATIONS

From the set of observations made in the pattern shown in Figure 2, the
relative reflectance of the various regions of Mars was calculated as

follows. The center-of-llght observation from each session was taken to

represent the equatorial region and was used as the standard spectrum.
Each of the other four observations were divided by this spectrum and the

ratio was normalized to unity in the 3000 _ region. The extracted net

spectra computed by the IUE data processing operation were used.

Figures 3 and 4 show the relative reflectance spectra for the wavelength

region from 2400 to 3000 _. In each figure the ratio for the northern

region is on the right and that for the southern region is on the left.

The data were smoothed by an ll-point running average before the ratio was
calculated. In all of the southern ratios and in the northern ratio for

January, the smooth curve plotted over the data is the absorption spectrum
of ozone normalized to the data.

On the basis of this analysis, we conclude that these observations have
detected ozone in the Mars atmosphere. The observations of the northern

region in January and March occurred when the Martian seasons were mldand

late spring respectively. They show a positive detection in mldsprlng and
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the absence of ozone in late spring. This is the same behavior observed by

Mariner 9 over the north pole. The observations of the southern region are
for Martian mid to late fall. These IUE observations contain new information

since Mariner 9 did not oSserve the south during those seasons.
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SPATIAL IMAGING OF UV EMISSION FROM JUPITER AND SATURN

J. T. Clarke and H. W. Moos

Physics Department, The Johns Hopkins University, Baltimore, MD 21218

Spatial imaging with the IUE can be accomplished both by moving one of

the apertures in a series of exposures and within the large aperture in a

single exposure. The image of the field of view subtended by the large

aperture is focussed directly onto the detector camera face at each wavelength;

since the spatial resolution of the instrument is 5 - 6 arc sec and the

aperture extends 23.0 by 10.3 arc sec, imaging both parallel and perpendicular

to dispersion is possible in a single exposure. The correction for the

sensitivity variation along the slit at 1216 _ has been obtained from

exposures of diffuse geocoronal H Ly _ emission. Details of this technique

will be presented in a separate paper (ref. i) in the data reduction session

of this symposium. Fig. 1 shows the relative size of the aperture super-

imposed on the apparent discs of Jupiter and Saturn in typical observations.

By moving the planet image i0 - 20 arc sec aiong the major axis of the

aperture (which is constrained to point roughly north-south) maps of the discs

of these planets are obtained with 6 arc sec spatial resolution.

The spatial imaging properties of the telescope are illustrated in the

photowrite image of one exposure (SWP 5307) of Jupiter (Fig. 2); the aperture

was positioned half on and half off the south pole of the planet in this

exposure. The H Ly _ (1216 _) emission shows clearly the outline of that

portion of the aperture positioned on the Jovian disc; the remainder of the

aperture is dimly illuminated by geocoronal Ly _ emission, and the sharp drop

in planetary emission at the edge of the planet shows up clearly at Ly _.

Furthermore, it happens that longer wavelength grating-scattered light extends

along the dispersion line past the Ly _ image and drops off rapidly perpendi-

cular to dispersion at the edge of the planet, providing a check on the north-

south positioning of the aperture on the planet.

As an example of this north-south scanning at Ly _, Fig. 3 shows the

north-south distribution of the Ly_ emission from Jupiter derived from

three exposures taken on i0 December 19785 The apparent limb darkening and

equatorial bulge in emission have also been observed by the Voyager flybys

(ref. 2) and a recent sounding rocket (ref. 3). The limb darkening is real,

i.e. more than would be produced by the spatial resolution of the instrument

on a uniformly emitting disc. The equatorial hot spot is also localized

longitudinally: note that the second exposure (taken _ 40 ° longitude away from

the first) appears to match up to a lower equatorial level of emission.

Jupiter rotates with a i0 hour period, and these exposures can be repeated

approximately every 50 minutes, providing a longitudinal separation of about
30° between exposures.

A singl e large aperture SWP exposure of Saturn is shown in Fig. 4. The

long wavelength continuum is solar radiation Rayleigh-scattered by H2 in
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Saturn's upper atmosphere. The Rayleigh-scatterlng cross section increases
as _ toward shorter wavelengths, and some absorbers must be present in the

planet's upper atmosphere to produce the observed drop in emission. The

spectrum of the banded structure _ 1650 - 1850 _ is plotted in Fig. 5 and
shown to correspond to a series of absorption bands of C^H^. The presence oE

this molecular species in Saturn's atmosphere was discovered using the IUE.

Note also the north-south asymmetry in both continuum emission and the
gratlng-scattered light in Fig. 5. The northern half of Saturn was occulted

by the rings in this observation (as drawn in Fig. i). The north-south ratio

of emission (i.e. on the rings to off the rings) appears to be roughly

constant with wavelength, indicating simple extinction by ring particles

rather than scattering by gas around the rings.
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ABSTRACT

North-south spatial maps of Jupiter were obtained with the SWP camera in

IUE 9bservations on i0 December 1978, 19 May 1979, and 7 June 1979. Bright

auroral emissions were detected from the north and south polar regions at

ELy e (1216 _) and in the H2 Lyman bands (1250-1608 _) on 19 May 1979; yet
no enhanced polar emission was detected on the other days. The relationship

between the IUE observing geometry and the geometry of the Jovian
magnetosphere will be discussed.

The discovery more than a decade ago of radio emission from Jupiter,

which appeared to be modulated both by the rotation of the planet and the

orbital position of the moon Io, opened the door for speculation on the

distribution of charged particles in the probably Jovian magnetic field and
the possibility of polar aurora on Jupiter. Searches for visible and radio-

frequency auroral emissions have been hampered by poor sensitivity and spatial

resolution, respectively. Sounding rocket and Earth-satellite (Copernicus)

ultraviolet observations tentatively identified H2 Lyman band emission
(ref. 1,2) and an H Lye hot spot (ref. 3), each of which was expected to

result from charged particle excitation of H and H2 in Jupiter's upper
atmosphere. The Voyager flybys (ref. 4) positively identified polar auroral

emissions both in the visible and at H Lye and the H^ Lyman and Werner bandsz
in the ultraviolet. We will describe here a north-south mapping of Jupiter,

performed with the IUE SWP camera under low dispersion, which shows strong

polar brightening at H Ly _ (1216 _) and in the H2 Lyman and Werner bands
(i150 - 1608X).

The photo_it e images of three spectra of Jupiter's south pole, central
region, and north pole, taken 19 May 1979, are shown in Fig. i. North-south

imaging in this method of mapping has been described in the previous paper
(ref. 5). The central spectrum shows the expected bright Lye line and

progressively stronger Rayleigh-scattered continuum at longer wavelengths.
In addition, the polar spectra show marked emission features at 1608
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and around 1570 _. These emissions appear at the edge of the grating-

scattered light from the respective northern and southern edges of the plane_:,
and have been identified as_ 2 Lyman band emission. Fig. 2 shows the whole-
sllt spectra from the three exposures, and the Lyman-band emission appears

in the polar images well above the level of continuum seen in the equatorial
spectrum.

The north-south distribution of the Ly _ emission derived from these

three exposures is shown in Fig. 3, along with the positions of the aperture

on the planet. A pronounced brightening appears at both poles, trailing off

away from the planet to the level of background geocoronal emission (1-2 kR).
The north-south width of the 1216 _ and 1608 _ features is 5 - 7 arc sec at

both poles. This is comparable to the 6 arc sec instrumental resolution,
hence the north-south extent of the Jovian auroral oval is not measureable.

However, the polar Ly _ brightening in SWP 5309 of the north pole shows a

marked east-west asymmetry, indicating that the emitting region was smaller

than the i0 arc sec aperture width. This asymmetry may be explained either

by a point source aurora or by a diffuse source partially filling the
aperture. The south pole emission appears diffuse east-west.

It is estimated that emission 1/8 the measured brightness at 1608 _ in

these exposures could be detected with the IUE in a 15 min. exposure. The

potential thus exists for monitoring these aurora as a function of both the

orbital position of Io and the i0° tilt of Jupiter's magnetic pole toward

or away from the Earth.
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ABSTRACT

The short wavelength spectrograph on the IUE satellite has been used to

obtain spectra of the plasma torus near the orbit of Io about Jupiter. Three

exposures of about 8 hours each taken in March and May 1979 show emission
features due to SII, Sill, and 0111. The absence of features at other wave-

lengths permits upper limits to be set on other species in the torus.

INTRODUCTION

It is now known that ionic species are trapped in the orbital path of Io.
The basic picture is that atoms ejected from the satellite are ionized and

thus trapped on Jovian magnetic field lines. The field lines move with the

i0 hour planetary rotational period, spreading the ions into a toroidal-like

cloud along the orbital path. The only identified ionic emissions are those

of sulfur and oxygen. However, a number of species have strong lines in the

spectral region covered by the short wavelength spectrograph. For this
reason, three observations of the Io torus were made near the times of the

Voyager i and Voyager 2 flybys (5 March and i0 July 1979).

OBSERVATION DETAILS

Large aperture, low dispersion spectra of the torus were taken with

the SWP camera on i March 1979, 3 March 1979 and 19 May 1979 (SWP 4448, 4463,

5302). The aperture, aligned approximately perpendicular to the orbital

plane, was pointed between 3 and 6 Rj. The exposure times were 520, 445 and
440 minutes respectively.

Due to the long exposure times, the spectra contained in addition to

readout noise, noise spikes due to fast particle hits, radioactive spots or

blemishes on the camera face and geometry correcting reseaux marks. Running

a median filter perpendicular to the dispersion direction before adding the

line by line spectra was found to significantly reduce these noise spikes.
The photometric error in SWP data during this time period has been corrected

using the standard algorithim (IUE Newsletter #8). The three spectra were
then summed to produce Fig. i.
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To determine the baseline and noise signal, the averagesand standard

deviations were computed for the 1278 - 1376 _, 1426 - 1651 _, and 1776 -

1951 _ wavelength regions. The baseline varied (3121, 883 and 5030 FN

respectively). The standard deviation was approximately constant with an

average value of 3163 FN.

DISCUSSION

Fig. 1 shows the sum of the three observations. The features at _256 9
and 1198 X are identified as SII% 1257 and SIII% 1199. The 1729 _ feature

has not been identified. There is a persistent blemish which produces a hit

like feature near this wavelength in lengthy SWP exposures; however when this

is removed either by hand or by a median filter perpendicular to the
dispersion, the feature remains in the torus spectra. In addition, all three

photowrite images show a distinct image of the entrance aperture indicating
that the 1729 A feature is real. The feature at 1664 _ is identified as

OIII% 1664. However, the peak is only 10% above the 3_ noise level.

Therefore, although statistically significant the identification must be

considered marginal. Although the apparent peak at 1397 _ is close to the
expected SIV% 1406, it may be due to a shift in the background level near

this point. In any case, a statistically significant signal does not exist
at 1406 _.

Table 1 lists a series of ionic species, in order of decreasing cosmic

abundance, with strong emission lines in this spectral region. The measured

brightness of the three identified species are listed. For the other

species the upper limit to the brightness was determined from three times the

standard deviation and the spectrograph sensitivity.

To estimate the number densities, a simple homogenous torus model

similar to that used by Broadfoot et al (ref. i) was used. (In this case the

torus was centered on the orbit rather than the magnetic equator.) Although

it is likely that the emission structure was quite complex, these IUE spectr_

were averaged over most of a rotational period; thus, the simple model may be
appropriate_ The number densities were computed using an electron density of

2 x 103 cm-j (ref. 2) an electron temperature or i0 eV and an average path

length of 7.3 Rj. Also shown in Table 1 are the number densities reported
by the Voyager 1 UVS group. These values are based on short wavelength

transitions observed by the Voyager 1 extreme ultraviolet spectrograph and a
model similar to ours (ref. i). The most serious discrepancy is in the case

of OIII where the IUE value is one sixth the Voyager value. The uncertain-

ties in the number densities depend directly on those of the excitation
coefficients used. A more detailed discussion of the data analysis and the

sources of the excitation rates will be published at a later date.

We thank the IUE Observatory staff for their aid in the acquisition and

reduction of the data. This work has been supported by a grant from NASA.
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Tableol

OBSERVED IONIC SPECIES AND UPPER LIMITS

IUE Voyager I

Species X Brightness number number

(_) (Rayleighs) density density _
cm - (cm-3)

0 III * 1664 12 * 140 850

C II 1335 6.7 4.2

C III 1909 8.5 8.6

N III 1750 9.4 50

N IV 1485 i0 18

Si II 1264 6.7 2.0

Si III 1892 8.5 7.9

Si IV 1395 7.9 I i.i

S II * 1257 43 * 140

S III * 1199 30 - 60 * 160 - 320 95

S IV i406 8.2 49 55

AI II 1671 ii 0.22

A1 III 1856 8.4 0.72

Ca IX 1839 8.4 47

P II 1308 6.4 12

PIII 1344 6.7 17

t
Reference 1

* Observed: The brightness value is a measured one rather than an upper limit.
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ABSTRACT

The CS high-resolution and low-resolution IUE data obtained on Comet

Bradfield (1979 I) have been analyzed. The high resolution rotational band

profiles can be fitted with theoretical band profiles which are derived using
a Boltzmann temperature of 70 K. A very rapid variation with heliocentric

distance, for the CS brightness has been found. The implications of these

results for models of the coma along with the origin of the CS species are
discussed.

INTRODUCTION

The first sulfur containing radical discovered in comets was observed in

Comet West (1976 VI) during the rocket observations of Smith and Casswell

(ref. i). These initial results were later confirmed by IUE observations of

Comet Seargent (1978 m) (ref. 2) and Comet Bradfield (1979 i) (ref. 3). The

gas emission rate from Comet Bradfield (1979 i) was sufficient so that, con-

trary to the previous observations, high-resolution spectra of CS could be

measured. Low-resolution spectra of the comet were obtained with the large
aperture at different heliocentric distances and these spectra show that the
CS emission appears as a point source.

OBSERVATIONS

The details of the IUE satellite instrumentation have previously been
described (ref. 4) so that only the observational procedure will be outlined

in this section. Several long wavelength high-resolution spectra were taken

at various times using the large (i0" x 20") aperture of the spectrograph.

The comet was tracked on the center of its maximum brSghtness using the fine

error sensor of the IUE. In all of the high-resolution spectra the photo-
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write images showed a darkening in the region of the CS bands but only two

exposures were obtained which exhibit sufficient signal to noise ratios so

that useful data could be extracted from the tape. The CS bands actually

occur in two different orders in the spectrum, one of which occurs near the

center of the camera and the other near the edge. The quality of the CS im-

age near the edge of the camera is severely degraded by the variation in the

grating efficiency across its blaze. Nevertheless, some indication of the
presence of the CS band was obtained.

One of the two high-resolution spectra that were analyzed is shown in

Figure i. The data have been averaged using a five point running mean. The

spectrum clearly shows two peaks corresponding to the Q and R branches

of the XI_AI_ transition in CS. The overall width of both bands is greater
than 0.2nm which is a factor of two to three times greater than the quoted

instrumental bandwidth for an extended object. The actual instrumental band_.

width is probably less than the quoted value of 0.08nm since as Figure 2

shows the CS emission does not completely fill the large aperture of the spec:-
trograph. This increases the effective resolution of the instrument because
the CS emission serves as a narrower slit.

HIGH RESOLUTION THEORETICAL PROFILES

In order to interpret the observed band profiles, theoretical band pro-

files based upon the known CS spectrum and rotational line factors as given
in Herzber_ (ref. 5) were calculated. The observed CS spectrum at 257.5nm

is a XIE.AI_ transition and thus shows P, Q and R branches. Because of the

small rotational constant of CS, the lines are closely spaced, especially in

the Q branch, where many lines are bunched together near the origin. The R

and Q branches have heads at 257.60 and 257.77nm, respectively while the P
branch shows no head.

A perturbation exists in the CS spectrum at the J=15 level in the 0-0

band. This was neglected in the present calculations of the rotational line

factors (ref. 5) since it is unlikely to lead to a serious error in the fit-

ting of the rotational profile. Only one or two lines at relatively high

values of J, will be affected by this perturbation so that only one or two

lines in the total spectrum will be distorted.

It was assumed that the rotational energy could be described in terms of

a Boltzmann temperature. Spectral profiles were built up using a Lorentzian

form for each individual line, the width of which equalled the slit width of

the IUE spectrometer_ The actual profiles were constructed on a PDP-II/03

computer with a VT 55 graphic display terminal. Theoretical profiles were

calculated using a Lorentzian bandwidth varying from 0.001nm to O.08nm. The

best fit for the shape, wavelength and relative heights of the Q and R band-
heads occurred when a HWHM bandwidth of 0.02nm was used. This is in reason-

able agreement with the low-resolution results which show that HWHM of the imp-

tensity peak for the observed CS (0-0) band fills only ½ of the long side of
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the large aperture, corresponding to a true HWNM bandwidth of O.02nm.

Figure 3 illustrates the comparison between the computed and observed

spectra using a O.02nm HWHM bandwidth for the three Boltzmann temperatures

of 70, 80 and 90K. The points are the average value of the two runs and they
are plotted with error bars which represent the average error between the
runs. It is clear that the 80 K temperature gives the best fit to the obser-

ved data in terms of shape, peak wavelengths, and the relative heights of the
observed rotational band. The fact that the observed data fits a Boltzmann

temperature at 80 K implies that for the CS molecule there are enough colli-
sions to support a "temperature". Infra-red radiative decay is not fast

enough to allow the molecule to completely relax to its lowest rotational

level, which is in complete contrast to all other cometary molecules which

have allowed infra-red transitions. The "temperature" that is observed pro-
bably results from a competition between collisional pumping and radiative

decay and thus does not correspond to any physical temperature associated

with the nucleus or the coma. More detailed modeling which includes radia-

tive decay will be required if a physically meaningful temperature is to be
extracted.

LOW-RESOLUTION ANALYSIS

A preliminary analysis of the low dispersion exposures at three different

heliocentric distances is given in Table i. Here, the brightness of the CS

(0,0) band is averaged over a I0" x 15" aperture for comparison with model
calculations. As the image of this feature is nearly point-like, no median
filtering was applied. Also, no correction was made for the reseau mark that

appears in the image and so the results given may be slightly in error. The

production rate given in the table is derived by integrating the output of a

Haser model over the given aperture size, and since the image is point-like,
is extremely sensitive to the variation in geocentric distance. The model

assumes a CS parent with a lifetime of i00 sec (at 1 a.u.), an outflow velo-

city of 1 km sec -I and a g-factor for the (0,0) band of 7 x 10-4 photons
sec -I mol -I at 1 a.u. The variation of production rate with heliocentric di-

stance is very rapid, of the order of r-B-r -7, considerably faster than the

variation for OH over the same period (ref. 8). Although the difference may
well be real, one must use caution in applying a radial outflow model in this

case as the parent scale length is within the collision region around the
nucleus while the model is collisionless.

The most likely candidate as a parent for CS is the CS2 molecule. This
molecule is known to produce (ref. 6) CS via the following reactions

i. CS2 (X1_+g) + h_ . CS(XIE +) + S(3p)

2. . CS(XIE +) + S(ID)

in the 190nm region. Recent work (ref. 7) suggests that at 193nm the CS is
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produced vibrationally excited to v" < 7 and that the branching ratios for
reactions (i) and (2) are 20% and 80%,respectively. The absorption coeffi-
cient for this band has been measured (ref. 9). When it is combined with the

higher solar flux (ref. I0) in this region, one can compute a photochemical
lifetime at IAU of 103 sec. At the largest observed heliocentric distance

and with a ikm/sec outflow velocity this corresponds to a scale length of

88 km, well below the resolution of the present observations.

DISCUSSION

The CS molecule is the first diatomic molecule with an allowed infrared

transitions that shows any evidence that it has retained memory of the tem-

perature at which it was formed. In light of the fact that CS is produced

via photodissociation in high vibrational levels (ref. 7) it is likely that
the observed "temperatures" are the result of radiative cascade from these

higher levels. Thus one needs a detailed knowledge of the photodissociation

dynamics to include the effect of these cascade processes in any radiative

equilibrium model of the coma of the comet. Only when this is done will one
be able to evaluate how colli_ions can contribute to the observed temperatu-

res.

The photodissociation model of CS2 can also explain the presence of S
atoms in the comet since these atoms are the products of the photodissoci-

ation of both CS2 and CS. Most of the S atoms are produced in the *D state
which has a radiative lifetime (ref. Ii) of 25 sec. However, because of thi_

short lifetime and the relatively low sulfur abundance it is unlikely that 'I)

atoms can be detected directly as in the case of carbon (the ID-*P transitiot_

at 193.1nm) where the lifetime of the ID state is 3200 sec (ref. 12). It is

possible that resonance fluorescence mechanism may excite the (*S.*D) transl-.
tion at 7725_ since this transition has a lifetime of only 0.47 sec (ref. II>

and the analogous D atom transition has already been observed.

CONCLUSION

The detailed analysis of both the high- and low-resoluti0n CS data obtain-

ed during the observation of Comet Bradfield (1979 i) suggests that this rad-

ical is produced by photodissociation of CS2. The heliocentric variation of
the CS brightness is consistent with this conclusion along with the presence
of S atoms in comets. Further analysis of the data may reveal how important

collisions are in the inner part of the coma.
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TABLE 1

Heliocentric Variation of theAverage Brightness of

the CS (0.0) Band

Heliocentric Geocentric Average Derived CS Prod-

Distance, r (a.u.) Distance, _(a.u.) Brightness (kR) uction Rate (see-1)

0.71 0.615 2.1 lx1026

0.80 0.40 1.2 5x1025

0°925 0.20 2.6 1.6x1025
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High-resolution IUE Spectra of Comet Bradfield (1979 i) in_the CS region.
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ABSTRACT

IUE observations of Comet Bradfield (1979_) made from i0 January 1980 to

3 March 1980 permit a detailed study of water production for this comet.

Brightness measurements are presented for all three water dissociation

products, H, O, and OH, and comparisons are made with model predictions. The

heliocentric variation of the water production rate is derived.

INTRODUCTION

Recent observations of Comet Bradfield (1979_) have convincingly demon-

strated the advantages of the IUE for the study of comets. In particular,

these IUE observations allow an in-depth study of the production of water,

the presumed primary constituent of the cometary nucleus, as all three water

dissociation products, H, O, and OH, were observed simultaneously. The ex-

cellent pointing capability of the instrument and the ability to obtain

spatial imaging within the i0" x 20" aperture allowed us to map the bright-

ness across the coma for each species at a resolution of ~i000 km, thus

facilitating comparisons with model predictions. Comet Bradfield was observed

at least once a week from i0 January 1980 to 3 March 1980 enabling us to

follow the variation in the water production rate as the comet's heliocen-

tric distance increased from 0.71 a.u. to 1.53 a.u. This provided another

important insight into the nature of cometary phenomena.

MODEL

A radial outflow model (ref. I) was used to interpret the data and to

calculate water production rates. This is a spherically symmetric model

which assumes that all species flow radially outward from the nucleus with a

constant speed. The outflow velocities and characteristic lifetimes against

destruction for the given atoms or molecules are the input parameters and the

model then gives the density of the species as a function of distance from

*Work supported by NASA grant NSG-5393.
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the nucleus. Densities are converted to column densities which are then

related to surface brightness, assuming resonant scattering or resonance

fluorescence to be the only important excitation mechanism for ultraviolet
emission.

Figure 1 shows a comparison of model and observation for OH. The labe]s-

A and B refer to the same model but using different input parameters for

and TOH. A more exact model (ref. 2), taking into account the spatial vH=O

distribution of the dissociation fragments, gives essentially the same fit to

the data. The derived OH production rate, Q H depends on the chosen inputO'
parameters; It was obtained from the absolute OH brightness measurement

using an excitation factor for resonance fluorescence (g-factor) calculated

by A'Hearn et al. (ref. 3). Unfortunately, brightness data at projected
distances >10 5 km are needed to choose between the two curves shown.

DISCUSSION

The study of the OH (and presemably H20) production rate vs. heliocen-

tric distance shown in Fig. 2 produced some interesting and rather surprising

results. It is usually assumed that this variation has an r-2 dependence,

based on the concept that the comet's absorption of solar radiation control_

the vaporization of gas from the nucleus. Our result that the production

rate decreases as r-3.? is in disagreement with this assumption and is also

quite different from the results derived from OAO-2 observations of Comets

Bennett (1970 II) and Tago-Sato-Kosaka (1969 IX) (refs. 4, 5).

While the OH emission is optically thin, this is not the case for the I,=

emission of atomic hydrogen. An approximate radiative transfer calculation
is used (ref. 6) to relate the measured surface brightness to column density

for comparison with the model. Since our measurements are confined to

regions relatively close to the nucleus we neglect radiation pressure. The

data, shown in Fig. 3, are in reasonably good agreement with predictions

based on the derived QOH values.

In principle we can use oxygen to distinguish between models A and B

because 0 will be twice as abundant:when TOH is half as large. However, the
oxygen problem is complicated by other factors. First, it is difficult to

calculate an accurate g-factor as the cometary absorption wavelength is

doppler-shifted into a steeply-sloped portion of the corresponding solar

line (ref. 7). Also, since the absorption takes place from a 3p term, it i_l

necessary to know the relative populations of the:fine structure levels of

the ground state. Finally, it appears that the oxygen emission is barely

optically thick.

Nevertheless, some qualitative information about the source of the

oxygen may be obtained from an examination of the spatial variation of the

oxygen, both from offset exposures and from variation within the aperture

itself. Oxygen produced from a second dissociation:
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H20 + h9 . OH + H

OH + h9 . 0 + H

leads to an integrated column density which is independent of projected

distance near the nucleus. The data, however, show a variation in brightness

near the nucleus indicating a direct dissociation source of oxygen. Two

possibilities immediately come to mind. Oxygen in the ground state may be

produced from direct photodissociation of H20 via the reactions:

H20 + h_ . O[(ID) or (Is)] + H2

O[(ID) or (Is)] . O(3p) + h_.

The presence in our spectra of the "trans-auroral" oxygen llne at 2972

suggests that such a process may play a role in oxygen production. If this

photodissociation channel operates at a 10% efficiency level (ref. 2) (with

90% of the H20 dissociating into OH + H) then the agreement between model

predictions and the data is much better than for the case when only a second
dissociation is considered (see Fig. 4). The other possibility is a source

of 0 which is not water. Likely candidates are CO and CO 2. An estimate of

their importance may be obtained by reference to the carbon emission lines

also present in the spectrum.

CONCLUSION

The data presented here represent a small sub-set of all the Comet

Bradfield observations containing spatial information about the water dis-

sociation products. Continuationof this analysis with the remaining data

should serve to place further constraints on water production models for
comets.
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FLUORESCENCE EQUILIBRIUM IN THE ULTRAVIOLET SPECTRA

OF COMETS SEARGENT (1978m) AND BRADFIELD (1979_)

Michael F. A'Hearn and David G. Schleicher

University of Maryland

Bertram Donn, Goddard Space Flight Center

William M. Jackson, Howard University

ABSTRACT

We have carried out detailed fluorescence calculations for OH including

the Swings effect. These calculations have been used to reproduce the high

resolution spectra of Comets Searg_It and Bradfield taken with IUE. There

does not seem to be any evidence of a need for an additional population of

thermalized OH radicals as suggested by some other investigators. The calcu-

lations also provide the OH fluorescence efficiencies (g factors), as a

function of heliocentric radial velocity, which are needed to derive OH

abundances from measured fluxes. A close examination of the spectra shows no

sign of the corresponding emission bands of OD allowing us to place upper

limits on the ratio N(OD)/N(OH). Preliminary attempts to reproduce the CO+

band structure by fluorescence will also be discussed.

INTRODUCTION

As remarked by the previous speakers, derivation of abundances and

production rates in comets usually assumes that the species being studied is

in fluorescent equilibrium. With the exception of a few cases, this assump-

tion h_s been studied and found to be true for most species observed in the

optical. The assumption is much less well tested in the ultraviolet. In

order to validate the assumption of fluorescent equilibrium, one must be able
to reproduce all aspects of the observed spectrum. In this talk, we will

consider two species, both of which have been studied to some extent previously,

OH and CO+. The observational data consist of several post-perihelion spectra

of Comet Seargent (1978m) taken at rH _ .9 AU and rH = +34 km/sec plus very

many spectra of Comet Bradfield (1979_) taken at 0.7 AU _<rH ! 1.5 AU and

24 km/s < rH < 28 km/s. _he spectra of Comet Seargent have been described
briefly by Jackson et al. and those of Comet Bradfield by Feldman et al. 2

The OH radical has been studied at both high and low resolution. Three
bands have been observed: the O-0 band at %% 3080-90, the i-i band at

%% 3130-3150, and the i-0 band at %% 2800-2850. From ground-based observa-
tions of the 0-0 band, it has long been known that these bands exhibit a

large Swings effect. This alone proves that fluorescence plays an important

role in the equilibrium of OH but not necessarily that fluorescence is the

only important mechanism.
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We have carried out an extensive calculation of the fluorescence equili-

brium of OH, includSng the Swings effect. For the calculations we have

included 3 vibrational levels and 5 rotational levels in each electronic state,

as well as the A-doubling of the levels. For the solar flux we have used the

atlas of Kohl, Parkinson, and Kurucz 3 while the oscillator strengths for the
various transitions have been taken from a variety of sources. The calcula-

tions predict both the integrated intensities of the bands and their detailed
structure as a function of heliocentric distance and heliocentric radial velo-

city. (Details of the calculations will be presented elsewhere.)

The relative intensities of the i-0, i-i, and 0-0 bands are predicted to
be i:i:8:50 atthe radial velocities of the Bradfield observations. This is i_

good agreement (10%) with the observed low-dispersion spectra. The O-0 and
i-0 bands have also been examined at high resolution. Figure 1 shows the O-(!

band of Comet Bradfield at rH = 0.71 AU and rH = 24.0 km/sec. The dashed

vertical lines represent the strengths of the lines as calculated for pure

fluorescence equilibrium and then multiplied by the wavelength dependence of

the long wave low dispersion camera. Because this band is near the edge of

the camera response, there is almost 40% variation in sensitivity across the

band. Clearly the agreement between theory and observation is excellent in

this case. The fact that the longest wavelength theoretical lines are too

strong by i0 to 15% may be due to either the use of the low dispersion sensi-

tivity curve in the high-dispersion mode or to errors in the ripple-correcti_z_

of the observed spectrum. This particular discrepancy does not appear to be

due to a defect in the theory. Four lines are marked A through D since the

ratios A/B and C/D exhibit the Swings effect most strikingly.

To investigate optical depth effects, we have used the column densities

of OH derived from the low dispersion spectra combined with the theoretical

calculation which predicts that, for this radial velocity, nearly all of the

OH radicals are approximately evenly split between the 2 A-doubled components

of the ground state (2_3/2, J = 3/2, K = i). The effective cross-section at
the llne center also depends on the velocity dispersion of the OH radicals.

If we assume a velocity dispersion of i km/sec, we derive an optical depth at

the llne center of order unity for either of the strong lines arising from the

ground state. These lines are the ones labelled A and B in Figure i. The

optical depth in any other lines should be significantly lower. Because the

theoretical predictions (which assume negligible optical depth) agree so well

with the observations we conclude that the velocity dispersio n is sufficiently
higher than the 1 km/sec assumed above that the llne center optical depth is
much less than unity.

The dramatic Swings effect is shown by comparing Figure 1 with Figure 2,

which is the spectrum of Comet Seargent obtained at rH = 0.93 AU and rH =
+34.0 km/sec. According to theory, the change in heliocentric distance

should have only very small effects on the spectrum so that the large differ-

ences are due to the change in radial velocity from +24 to +34 km/s. Note

particularly the ratios A/B and C/D in the two figures. The theoretical

calculations for Comet Seargent do not agree with observation as well as in

the case of Comet Bradfield although we still have agreement within about 25%
on all lines. Differences between the two cases include: i. somewhat

different IUE data processing, 2. Comet Seargent was somewhat brighter and at
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greater heliocentric distance so that optical depth effects may be noticeable,
3. the difference in the relative populations of the 2 A-doubled levels of

the ground state may allow collisional effects to appear. At present, how-

ever 9 we feel that the agreement is good enough that further processes,

although possibly significant, can not be justified on the basis of this data
alone.

To further test the fluorescence predictions we have examined the i-O

band in Comet Bradfield as shown in Figure 3 which is taken from the same

spectrum as Figure i. Because the i'O band has only .02 the intensity of the

0-0 band, the signal-to-noise ratio in Figure 2 is considerably worse than in

Figure i. Nevertheless, the agreement between theory and observation is

excellent. Furthermore, we have extracted one emission line.from 2 adjacent

orders, as shown in the figure, and it tends to confirm our hypothesis that

the echelle ripple correction is the cause of the discrepancy at the long-

wavelength end of Figure i. Note that in Figure 3, there has been no correc-

tion for the spectral sensitivity of the IUE spectrograph system because the

low-disperion system varies in sensitivity by only 2% across Figure 3.

Another aspect of the OH spectrum is the study of the isotopically

shifted bands expected from O2H. A careful examination of the spectrum of

Comet Seargent shows no trace of the O2H bands and, assuming that both forms
are in fluorescent equilibrium, this allowsus to set anupper limit on the

column density ratio N(O2H)/N(OIH) ! .01. Much longer exposures on Comet

Bradfield, not yet analyzed, will provide us greatly improved sensitivity for
this determination. _

Summarizing our work on OH, we feel that pure fluorescence equilibrium

adequately describes the data thus far obtained. We now move to another

species for which we will derive exactly the opposite conclusion.

CO+ The First Negative system of CO+ (B2 E+ - X2 E+) was identified in

roc-----ketspectra of Comet West by Feldman and Brune 3 and by Smith et al. (pri-
vate communication). The spectra showed the AV = +i, O, -i, and -2 sequences.

The IUE spectra of both Comets Seargent and Bradfield, however, show a com-

pletely different structure for the CO+bands. Because these bands are weak

compared to those of OH, we have studied them only in low resolution spectra.

Figure 4 shows the relevant portion of a low resolution spectrum of Comet Brad-

field. The origins of mmly of the CO+ bands are also shown.

Krishna-Swamy 4 has carried out a fluorescence calcuation for CO+ to

predict the relative intensities of the different bands and according to his

predictions the AV = 0 sequence should be the strongest sequence. This is

what was observed in Comet West but appears not to be true for Comets

Seargent and Bradfield, in both of which the AV = 0 sequence is entirely
absent. Because Krishna-Swamy gave only relative band strengths with no
calibration to absolute number of molecules and because he used a solar atlas

which, at these wavelengths, seems to have serious systematic errors, we have

begun our own calculations of CO+ fluorescence in an attempt to explain our

anomalous data. For a preliminary calculation we have omitted the Swings

effect (as did Krishna-Swamy) because the rapid acceleration of CO+ ions
should smear out the heliocentric radial velocities enough that the Swings
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effect is negli_gible. Also for our preliminary calculations, which serve

mainly to provide an absolute scale for the fluorescence efficiency, we have

omitted B-A (Baldet Johnson) and A-X (Comet Tail) Systems. We derive some-

what different intensity ratios than did Krishna-Swamy, but we still find

that the AV = 0 sequence should be as strong as the AV =-l sequence.

In order to investigate the possibility of optical depth effects,

suggested as a po_slbillty in our paper describing the original Bradfleld
results (Feldman et al. 1980), we have assumed that the feature at % 2310 is

indeed the AV =-i sequence of CO+ and that it is fluorescently pumped. This

yields a column density of CO+ only 1% of that of OH in Comet Bradfield. Thi_

in turn implies that the optical depth in the AV = 0 sequence of CO+ is less

than that of OH, probably a few tenths. If the velocity dispersion of CO+ i_

significantly greater than i km/sec, as one would expect, the_ the optical

depth is negligible. Optical depths, therefore, can not explain the anomalous
intensities.

One other significant difference between these observations and those o5

Comet West is that IUE observes only a small region near the nucleus while the

rocket spectra of Comet West sampled most of the coma. If these spectral

features are indeed CO+, then possibly we are seeing highly vibratlonally
excited bands (e.g., 4-4 and 5-5) which might be due either to collisions or

to direct production of CO+ in excited states. Even these hypotheses are
difficult to accept because they must completely overwhelm the fluorescence

mechanism. In any case, it is clear that these emission features are not due

to CO+ in fluorescent equilibrium.

NOTE ADDED IN PRESS

Further analysis by A'Hearn and Feldman suggests that the "CO+,, bands

are, in fact, not due to CO+ . The feature at % 2310 is due to the Mulliken

bands of singlet C2, while the feature at _ 2430 is due to Lyman alpha in
second order.
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Fig. 2: High-dispersion spectrum of 0-0 band of OH in Comet Seargent. 
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ABSTRACT

Published reports of infrared spectrophotometry of Uranus (ref. I)

disagree concerning the presence or absence of a high altitude (strato-

spheric) haze layer in the atmosphere of Uranus. An analysis of broadband

ultraviolet photometry from the ANS by Savage, Cochran and Wesselius 1980,

favors a stratospherlc haze, and further suggests a decrease in albedo from

2200 _ to 1800_. The latter phenomenon is important because many molecules^
of planetary interest have strong, broad, electronic transitions below 2000 _,
and observations here could provide an important means of studying trace
constituents. IUE observations of Uranus are not inconsistent with a strato-

Spheric haze, but would equally well match a clear stratosphere model if a

plausible modification of standard solar photometric properties is allowed.
Exposures of up to 5 hours of the SWP on board IUE indicate that the reflec-

tivity of Uranus is flat from 2200 to 1800 _, in conflict with Savage et al.

The observations from the two satellites were made 5 years apart, and Uranus

is known to be changing in other spectral regions (ref. 2). However, we

conclude there is no basis for modelling trace constituents of the Uranian

stratosphere at this season. This research is supported in part by NASA
grant NSG 5250 at Stony Brook.
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Observation of Outer Planets at Lyman Alpha

Jon Darius
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DARIUS : In your SWP spectra, did you make any attempt to rescue Uranian
photons from geocoronal and interplanetarY Lyman alpha?

CALDWELL: We haven't tried that.

DARIUS : In that case you may be interested to learn

Three weeks ago at the IUE ground station near Madrid we carried out

a triple planetary observation in one IUE shift to measure the Ly-a reflect-
ivity of Jupiter, Saturn, and Uranus. The exposures were planned to take
account of the light travel times, Sun to planet and planet to Earth, in
order to assess the response of the three atmospheres to essentially the same
incident solar flux. Automatically eliminated are all additional uncertain-

ties introduced when different instruments are used for such a comparative
measurement.

Jupiter and Saturn were observed at the centres of their discs in the
large aperture of the SWP camera at low resolution. With an angular diameter
of 38V7, Jupiter completely filled the large aperture and tracking was
checked using an ephemeris for Ganymede (J3) in the (x,y) co-ordinate system
of the Fine Error Sensor (FES). Saturn (17V4) effectively filled 70% of the
large aperture, and any deviation from the apptied drift rate could be
checked by the FES counts. The disc of Uranus (3?8) was centered in the small
aperture and a simultaneous exposure carried out in the SWP large aperture
to facilitate correction for non-planetary Lyman a emissions.

Integrated flux numbers IFNdX were obtained from the line-by-line
spectrum by fitting a Gaussian bell curve with a low order polynomial as
background estimate. This method effectively removes isolated hot spots and

the scattered light in the dispersion direction. Interpolation in the m_an
_e_sitSvity table of Bohlin et al., (1980) yield 1.82 x 10- photons cm-
_-IFN-± at Lyman a. If we apply this calibration and combine the photon
statistical error with the error in IFNdX, we obtain the first line in
Table l.

Now the contaminating sky signal at Lyman e (large aperture) can be
subtracted from the Uranus+sky signal (small aperture) by scaling up by the
ratio of the exposure times and scaling down by the ratio of solid angles
subtended by the two aperatures. The former is uncontroversial; but whereas

the official value of the latter, _LA/_SA, is 26.5 ± 3.7 based on pre-flight
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measurements (Bohlin et al. 1980), independent in-flight evidence from six

images of geocoronal Lyman e (Ojanguren 1979), lend credence to a ratio of

51.7 ± 1.5 for the energy received in the two apertures. The succeeding

argument will be invalidated should this contention prove incorrect.

For the sake of a preliminary analysis, without prejudice to applicatioz_

of a better model for the interplanetary and geocoronal hydrogen in due
course, we take the ratio of interplanetary to geocoronal Lyman _ emissions

to be 7:5 (IUE being near apogee) and assume that we shall have overestimatec_

the contaminating interplanetary emission by 20% at Uranus, by 40% at Saturn,

and by 70% at Jupiter - granted that the geocoronal contribution remains

constant in each case. These figures include a geometric correction for

planetary position with respect to the upwind direction. The configurations

of the outer planets, the brightest satellites, and the large-aperture

orientation on April 14 does not compel us to correct for additional non-

planetary signal.

The column emission rates at the planets (in kiloRayleighs) in Table 1

are derived in the usual fashion after dividing the corrected fluxes by the

size of the aperture and the length of exposure. An upward adjustment has

been applied for the estimated line-of-sight absorption by neutral hydrogen
and for the center-to-llmb variation on the planet. Allowing for the invers(_-

square sun-planet distance falloff of the illuminating solar flux and
normalizing to Jupiter, we obtain the relative Ly-e reflectivities in the laser
line of Table i. (We draw attention also to the apparent drop in the Ly-e

brightness of Jupiter from its March 1979 (Broadfoot et al., 1979) value bac_

to the 1978 Copernicus level (Cochran and Barker 1979), and shall comment
elsewhere.)

Within the errors, it could not be claimed on the basis of these recent

IUE observations that the albedos of Jupiter and S_turn at Ly-_ substantially
differ; indeed, prior studies support a normal I/r dependence (Weiser et al.

1977). On the other hand, the relative albedo of Uranus is so high as to

disarm though not quell suspicion that it can be explained by errors inherent

in our presently naive model. (.One issue to be satisfactorily resqlved, of

course, is the disagreement over the correct aperture ratio. Bohlin (1980)
has commented that the official large-aperture area may have been over-

estimated, in which case we contend that the small aperture must be further

diminished.) Assuming the high reflectivity to be real, one may be able to

account for it in several ways. The possibility that it reflects a

fluctuation in incoming solar flux is fortunately excluded by the way the

present observations were conducted.

The observational geometry was such, that at Jupiter and Saturn the

centre of IUE field of view lies in the planets' equatorial, but for Uranus

in high northern latitudes. As the phase angle are small, the same is

essentially true for the solar illumination direction. Production of neutral

hydrogen atoms will proceed via solar EUV ionization with follow up ion
molecule reactions. The total production rates at the planets will scale wilh

the inverse squared distance from the Sun. For the rapidly rotating planets

the global average is one fourth of the total production rate. This implies
that with the present viewing geometry for Uranus the average production rate
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on the sunlit hemisphere will be relatively enhanced over the scaled average
productionrates of Jupiter and Saturn, unless rapid interhemispherical
convection exists. Additionally, the eddy diffusion coefficient, which
controls the downflow of the dissociated H-atoms to the recombination
altitude, (Wallace and Hunten, 1973) may vary with latitude as it is known to
do in the terrestrial atmosphere. Both processes may lead to a greater
reservoir of H scatterers above the absor_oing methane layer, and correspond-
ingly contribute to the observed high Ly-a albedo. Brown (1975) has reported
radio emissions, which possibly originated at Uranus. If the direction was
indeed correctly identified, this observation would imply the existence of a
magnetic field and hence magnetosphere at Uranus, from which particles may
precipitate and cause greatly enhanced Ly-a emissions in the auroral zones
(see e.g. Figure 5 of Broadfoot et al., 1979). If the Uranian dipole is
approximately aligned with the spin axis, one complete auroral zone was in
the central part of the IUE field of view during our observation. Such
additional emissions besides resonantly scattered solar photons would greatly
help to explain the large observed Uranian Ly-a albedo.

Albedo measurements of Uranus by Savage et al. (1980) using ANS reveal a
suspected decline below 2000 _ which may require the presence of both aerosol
particles and an additional absorbing agent (micron-size particles or gaseous
compounds like CS_ of PHx). In the far ultraviolet, however, the potential
depressive effect_of the_former becomes negligible.

In any case, new IUE measurements (Caldwell et al. 1980) do not support
the 20% shortward albedo drop inferred from the uncertain ANS measurement at
1800 _ and moreover do not necessarily require an absorption stratospheric
haze. Further study of relative brightness among the outer planets is in
progress.
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Table 1

Lyman Alpha Measurements of Jupiter, Saturn, and Uranus

Jupiter Saturn Uranus

Observed signal (photons cm-2) 1072 ± 44 1792 ± 58 148 ± 12

Contaminating emission (photons cm-2) 85 740 94

column emission rate at planet (kR) 9.3 3.6 1.9

Relative reflectivity for Ly-_ 1.0 1.2 2.7

DISCUSSION

CALDWELL: I am not too surprised by your results; they may be explicable in
terms of the presence of methane vapour in the upper atmospheres
of Jupiter and Saturn suspected to be absent in Uranus.
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DISCUSSION - PART I

Michalitsianos: What are the strongest bands of OH molecular emission,

and at what wavelengths do they occur? What references are appropriate
for molecular data?

P. Feldman: The (0,0) band at 3065-3090_ is the strongest feature in a
cometary spectrum. The molecular spectrum at high resolution was measured

at Johns Hopkins in 1947 by Dicke and Crosswhite and published in 1961
in J. Mol. Spectroscopy.

Maran: Is there any thermodynamic problem with CS as a parent molecule '
in the cometary nucleus?

P. Feldman: I don't believe so.

P. Feldman: Why is the other line in the 0 I 1356 doublet not apparent
in the spectrum shown?

Dur@ance: The transition probability for the other member of the doublet

at 1358.5 _ is almost an order of magnitude smaller than this one.

Maran: If Mariner 9 were still operating, would IUE tell you anything
about ozone on Mars that Mariner 9 could not?

Conway: The contribution of IUE is to observe the variation of ozone

during seasons, especially in the south, not observed by Mariner 9.

P. Feldman: Is the Lyman_ bulge on Saturn associated with the rings?

Clarke: This feature may be associated with either the rings, the

atmosphere of Titan, or the atmosphere of Saturn. _owever, the rings

appear to present the most likely source.

Maran: What was the limit on the L_ surface brightness when you didn't
detect polar aurora?

Clarke: The central L_ brightness on December i0, 1980 was 14 kR,

including ~2 kR of geocoronal background.

Roman: Do the discrepancies between the densities derived from IUEand
from Voyager indicate a variation in the short time between the observa-
tions or inaccuracies in the measurements?

Moos: The reason for the difference is not clear at the present time.

I do not believe that it is due to temporal variations in the torus.

Maran: Is CS2 stable in the solid state in the cometary nucleus'?

W. Jackson: Yes.
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W. Jackson: Did you put a variable OH photochemical lifetime in your
model7

Weaver: No_ we assume the same lifetime for all values of heliocenturi
distance. This should be adequate since the variation in heliocenturi

velocity was not large.

Benvenuti: How long was the exposure you used to observe the 0 I profile?

Did you check the stability of the Comet nucleus within the large aperture?

Weaver: Two hours. The drift during the exposure appeared to be only a

few arc seconds. The S I image appears nearly pointlike and this argues
for a small drift.

Dubin: Festou derived a lifetime of OH from the radial distribution of

DH f_om the nucleus while you indicated a lifetime between I x I0 and 5
x I0 sec. Can you state a more precise value for the lifetime?

Weaver: The derived lifetime depends on the choice of H20 o_tflow

velocity _hich is not well known. Fo E a velocity of 1 k_ s- 5the lifetime
is 5 x I0 sec, while for =0.5 km s- the lifetimesis I x I0 sec.
Observations at projected distances greater than I0 km should allow us
to choose between these two.
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ABSTRACT

The insight into the physics of atmospheres of early type stars

obtained from IUE observations is discussed. The paper is concentrated on

the phenomenon of mass loss and stellar winds from hot stars, since many

of the IUE observations of early type stars were directed to that problem.

The mass loss rate of early type stars increases by about a factor of 102

to 103 during their evolution. This seems incompatible with the radiation-

driven wind models and may require another explanation for the mass loss

from early type stars. The winds of early type stars are strongly variable

and the stars may go through active phases. Eclipses in binary systems by

the stellar winds can be used to probe the winds. A few highly interesting

future IUE studies are suggested.

I. INTRODUCTION

Ultraviolet astronomy has changed our ideas about early type stars

(O,B,A) rather drastically. About fifteen years ago there was a general

tendency to believe that the atmospheres of these stars were reasonably

well understood. Although there were still quantitative discrepancies

between observed and predicted spectral features, the physical processes

in the atmospheres were considered to be well known. In a way, the atmos-

pheres of hot stars were very simple: a they were in hydrostatic equili-

brium, b and in radiative equilibrium, convection not being important

the opacities are mainly due to simple atoms.

Although these physical assumptions were simple, the actual calculation

of stellar atmospheres was still difficult, because of two complicating

factors: firstly, the large radiative intensities and the small particle
densities made it necessary to consider deviations from thermodynamic

equilibrium (non-LTE) in the calculation of the continuum and line opaci-

ties. And secondly, the effect of line-blanketing in the ultraviolet

could change the temperature stratification of the atmospheres by back-

warming. At about that time Mihalas and colleagues started the calculation

of non-LTE models, while Morton and co-workers calculated the first line-

blanketed model atmospheres for hot stars. It would be just a matter of

time and bigger computers to bring the theory and observations into agree-
ment.

There were a few stars (and very few astronomers) that did not f_t

this general scheme: e.g. the Wolf-Rayet stars with their strong emission

lines and large outflow velocities; the star P Cygni with its characteris-

tic line profiles (P Cygni profiles) indicating mass ejection; the shell

stars with their narrow shortward shifted absorption lines; the magnetic

Ap-stars and the metallic Am-stars with their peculiar abundances. It was

obvious that for these stars additional physical processes had to be
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taken into account, such as mass-ejection or magnetic fields. However, as

these kinds of stars were rather extreme, their existence did not shake

the general belief that the atmospheres of early type stars are in principle
very simple and not very exciting.

The physical reason for this was, of course, the fact that the visual

spectrum only shows us the tail of the energy distribution curves for the

early type stars. Since the radiation in this tail is not very sensitive

to the physical processes in the atmospheres, most of the interesting

properties of early type stars remained hidden for the ground-based

astronomers by the Earth's atmosphere. It is in this respect not surprising

that UV astronomy in general and the Copernicus and IUE observations in

particular have changed our insight into the structure and evolution of
early type stars.

In this paper I will concentrate on the new knowledge obtained by

IUE, extending the many interesting results obtained by the Copernicus

satellite, on the structure and stability of early type stellar atmospheres.

II. MASS LOSS IN THE HR-DIAGRAM

The first hlgh-resolution UV observations of Morton and his colleagues

(e.g. Morton, 1967) showed that early type supergiants are ejecting mass

with a velocity of about 2000 km/s at a rate of about 10-6 Me/yr. The

Copernicus satellite has extended these observations to a large number of

stars (Snow and Morton, 1976; Lamers and Snow, 1978), indicating that all

early type stars with _ _ < -6 (L > 2 104 Le) are losing mass at a rate
DO _ i0-_0high enough to be observable (M > 10-9 Me/yr). Stars with lower

luminosity only lose mass if their rotational velocity is large enough

(v sin i > 200 km/s) (Snow and Marlborough, 1976; Lamers and Snow, 1978).
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Figure i

The distribution of stars with and without observable mass loss in

the HR diagram. Circles: Snow and Morton (1976) Copernicus; Triangles:
Lamers et al. (1980a); IUE.

The Copernicus observations left a gap in the hot part of the HR

diagram unobserved; the region of Tel f < 20 000 K and _o I > -6 occupied
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by stars of types B3 and later, and luminosity classes III, II and lb.

Lamers et al. (1980a) have filled in this gap with IUE observations of 22

stars of spectral types B5 to FO. The search for mass loss indicators in

the UV resonance lines (P Cygni profiles or extended violet absorption

wings) is summarized in Figure i. This figure shows that the limit of

observable mass loss occurs at _ _ = -6 over the entire range of 7500 < Tef f
< 40 000 K. If we remember thatD_e evolutionary tracks of massive stars

are approximately horizontal in the HR diagram, this implies that stars

which do not lose mass at the main sequence (MboI > -6) will not lose
mass in the hydrogen shell-burnin_ nhase either. Stars which do suffer

mass loss on the main sequence will continue to do so in the hydrogen

shell-burning phase.

The fate of rapidly rotating stars of I_ _ > -6 at the main sequence
.DOI

is still uncertain. They may lose mass during the hydrogen core burning,

but when the star expands with conservation of angular momentum in each

layer, the rotation-induced mass loss may stop. IUE observations of

slightly evolved B-stars are required to answer this question.

Apart from the region in the HR diagram shown in Figure I, mass loss

also occurs in very hot highly evolved stars like some O-subdwarfs and

central stars of planetary nebulae. These will be discussed by Heap

(these proceedings).

III. MASS LOSS RATES

The most extended set of mass loss rates for early type stars prior
to IUE was from Barlow and Cohen (1977) based on the infrared excess of 44

luminous O, B and A stars, ranging in temperature from 8500 to 50000 K.

The rates derived by these authors show a correlation with luminosity:
M = L1"_s. These observations provided a very strong argument in favor of

the radiation-driven wind theory from Castor et al. (1975) which predicted
M = L with _ = 0.80 and a very weak dependence on gravity. However,

the stars studied by Barlow and Cohen were only supergiants and there was

some indication that at least one main sequence star (T Sco, BO V) had a
much smaller rate.

Recent IUE observations of main sequence O-stars have changed this

picture drastically. A combination of the mass loss rates from evolved 0

and Of stars (Lamers et al., 1980b) with those of unevolved 0 V stars

(Conti and Garmany, 1980) shows very clearly that the mass loss rate is

not a simple function of luminosity, but that it increases drastically
from O V, through 0 III or O(f) to O f stars (Figure 2). The rates for O

(f) and O f stars are about a factor 30 and I00 respectively, larger than

those for O V stars of the same luminosity. The rates for WR-star of the

same luminosity are about a factor i0 larger than for the 0 f stars.

Remembering that the evolutionary tracks are approximately horizontal in
the HR diagram, we can express this behavior in terms of evolution. The

stars with initial mass M > 15 M@ (_ I < -6) have a small mass loss rate_DOI .
near the main sequence. The mass ±oss rate increases very strongly by

about a factor i00 during the hydrogen core-burning phase to the hydrogen

shell-burning phase. The Wolf-Rayet stars, which supposedly represent an

even later stage of evolution, (Conti, 1976) have again higher rates. So

the mass loss rate increases during the stellar evolution by as much as a

factor 102 or 103 , whereas the luminosity hardly changes.
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Figure 2

Mass loss rates from O-stars. Notice the large range of M for constant

luminosity (Conti and Garmany, 1980).

Obviously, the luminosity is not the main parameter which determines

the mass loss rate, contrary to the predictions of the radiation-driven

models. This suggests very strongly that we may have to look for an

alternative mass loss mechanism which should be closely connected to the

evolution stage of the star and thus its interior structure.

IV. THE ACCELERATION OF THE STELLAR WIND

Whatever the mechanism may be that determines the mass loss rate from

a star, the large outflow velocities which have been observed in the UV

resonance lines are most likely due to radiative acceleration (e.g.

Cassinelli et al., 1978). One way to determine the acceleration is to

measure the terminal velocity, v , reached in the wind at a large distance
from the star. (This should not be confused, as is often done, with the

edge velocity, Ve. e' measured from the extension of the violet wings of i

the UV resonance _nes: for stars with a small mass loss rate Vedg e can
be much smaller than v ).

The most extensive study of terminal velocities, prior to IUE, was

made by Abbott (1978) who found v = 3 x v . This agreed very well
' _ sca 1/

with the radiation-driven wind models, whic_ predict v = (_/I-_) _v escape
if e _ 0.90. The IUE observations of late-B and -A type supergiants snow

that the ratio v /v decreases towards the cooler stars, and reaches a
^_ _SC

value of about u._ zor A type supergiants (Lamers et al., 1980a, Figure

3). This indicates that the radiation pressure is much smaller in the

winds of A-stars than in O-stars, as might have been expected. In this

respect it is interesting to notice that the mass loss rates of A-supergiants

are also much less than those of O-stars of the same luminosity (Praderie
et al., 1980).

Radiation pressure may not be the only mechanism which accelerates

stellar winds, as it may be insufficient to explain the large velocities
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of the _ stars. For example, Willis et al. (1979) derived a mass loss

rate of i.I x 10-4 M@/yr and _ = 1600 km/s for the _ star y Velorum
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Figure 3
The ratio between the terminal velocity and the escape velocity

decreases with decreasing effective temperature. Dots: Abbott (1978),

Circles: Lamers et al. (1980a).

(WC8 + 09I) from IUE observations. The momentum of the wind is Mv =
I.i x 103o erg/cm s. The total momentum of the radiation is L/c = 1.3 x

i02s erg/cm s. So the momentum of the wind is about 90 times as large as
the momentum of the radiation. Unless each photon can be scattered a

large number of times in opposite parts of the stellar winds (bouncing
back and forward between the front and rear end of the wind) the radiation

pressure is largely insufficient to explain the large wind velocity.

This suggests that not only do we have to look for another mass loss
mechanism £or hot stars (see III), but also for an additional mechanism to

accelerate the winds, at least in WR stars.

V. THE HEATING OF STELLAR ENVELOPES

The Copernicus observations have shown that the stellar winds are

superionized, i.e. the degree of ionization is higher than can be accounted

for by a wind in radiative equilibrium with the photospheric flux. In

particular Snow and Morton (1976) and Lamers and Snow (1978) have shown
that there is a one-to-one correlation between superionization and mass

• loss (including the Be-stars), suggesting that the two phenomena are in

some way connected to each other. The origin of this superionization is
unknown, but its presence indicates that somewhere above the photosphere,

the stellar gas is heated considerably. The heating may occur in the

subsonic part of the envelope, giving rise to a thin hot corona (AR

0.i R,, T = 5 x 106; Cassinelli et al., 1978); in the trans-sonic region
of the wind (Cannon and Thomas, 1977); or in the extended supersonic part

of the wind, producing either a homogeneous warm wind (T = 2 x 10S K;

Lamers and Morton, 1976) or an inhomogeneous wind with hot bow shocks of
high density and high velocity blobs (T = 106 K; Lucy and White, 1980).
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The recent observations of x-ray fluxes from hot stars by the Einstein

Observatory (Long and White, 1980) suggests that the temperatureshould be

in the range of l0s - I0 ? K and that the hot region is not located deep in
the wind, as predicted by the thin coronal model.

The IUE observations have given two very interesting results in this

respect. Firstly, Underhill (1980) found two narrow emission peaks in the

spectrum of the AO supergiant HR 1040 at the wavelength of the two C IV

°,----T_V----_--,T_-_ l 1 L I -T_V--_ °Ori B8Ia I $WP_I I

HR 1_5 B9 N SWP 4400

HR 1_ A0 _ SWP _

0 0

: 1_ 1_ 1_

Figure 4

The C IV resonance lines (_ 1548.19, 1550.76) in the IUE spectra of
four supergia_ts. Notice the C IV emission peaks in the spectrum of
HR I040 (AO la) (Underhill, 1980).

lines. These were not found in the IUE spectrum of the same star observed

by Praderie et el. (1980). If the two peaks are real (and not due to
particle noise) their presence indicates the existence of a variable

chromospheric activity in the winds of supergiants of types as late as AO.

Secondly, the IUE observations of the two extreme superglants P Cyg (Bl
Is) and _ISco(Bl la - 0) which have a mass loss rate of about 2 x i0-s

Me/yr show the presence of narrow absorption features or P Cygni profiles
o_ low ions (Fe II, AI II, Mg II) in the wind (Hutchings, 1979; Cassatella

et el., 1979; Wolf and Appenzeller, 1979). Although the winds of early

type superglants are generally superionized, the winds of extreme supergiant$
with very large mass loss rates have a low de_ree of ionization. This

behavior might be explained by assuming that the dissipation or nonthermal

energy in the stellar envelopes is not sufficient to heat the very dense

winds of extreme supergiantsbecause of the high radiative cooling rate.

This situation resembles the presence of low ionization stages such as
Fe II in the spectra of early type shell stars.

VZ. VARIABLE STELLAR WINDS

The envelopes o2 early type stars are variable on timescales of

hours-to-years. The best tracer of variability in the visual spectrum is

the H^ llne and variations in the H profiles have been reported for

various kinds of early type stars, _uch as supergiants and Be-stars (Snow

et el., 1980; Stalio et el., 1979; Doazan et el., 1980). Apart from the
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Be-stars the changes in the profiles are usually not very drastic, but the
timescale of about one hour is surprisingly short. The UV resonance llne

profiles observed by Copernicus and BUSS also showed large variations on
tlmescales of hours-to-months (York et al., 1977; Snow et al., 1980;

Lamers et ai., 1978). On the basis of these observations I proposed that

mass loss is not a stationary process in early type stars, but that it

occurs in "puffs": sudden ejections of gas from the star (not necessarily

spherically symmetric) which are accelerated by radiation pressure. A

similar process may occur in variable Be-stars during their active phases,

in which case the puffs might be spherically or rotationally symmetric.
The IUE observations have provided a few very interesting examples

which demonstrate how strong the variations can be. Heck et al. (1980)

have identified six components in a number of UV resonance lines in _ISco

on June 21, 1979, which they attribute to the occurrence of a large number

of puffs. On September 13, 1979, most of the components had disappeared.

yCas (B 0.5 tv e) May 7, 1978

= i = , , i = i i' J -'_

20 _ 20

X
,-I
_" 10

i i I i I i I . i =

-2000 -1000 0 1000 2000 3000

VELOCITY (KMIS)

Figure 5
The UV resonance lines of C IV, N V and Si IV in the IUE spectrum of

7 Cas (BO.I IV e). Notice the narrow absorption components at -1500 km/s
(Henrlchs etal., 1980).

It is interesting to note that the time of highest puff-activity coincides

with a sharp drop in visual brightness of about O. 15 magnitude.

A different, but possibly correlated, type of variatlon has been

observed in the IUE spectrum of 7 Cas (B0.5 IVe). In six out of ten IUE

spectra obtained from this star the lines of N V, C IV and Si IV have

sharp absorption components at about -1500 km/s (Doazan et al., 1980;
Henrlchs etal., 19SO, Figure 5). The appearance and disappearance of

these components suggest that puffs or shells are ejected very frequently

from this star. Because of their large outflow velocities (possibly due

to radiative acceleration) the narrow components can only be,observed for

about one week. (For an alternative explanation see Thomas etal., these

proceedings. )
These kind of observations show that mass loss may be a hlghly

nonstationary phenomenon in early type stars and that at least several
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kinds of stars go through active phases. This again suggests that mass

loss cannot be due to radiation pressure only.

VII. PROBING THE STELLAR WINDS IN BINARIES

A few late type giants and supergiants, such as _ Aur, have an early

type comparison which can be used to probe the envelope of the late type
star, by studying the spectrum of the B-star when it moves behind the

extended envelope. The same approach can be used for the study of a few
early type binary systems.

Willis et al. (1979) has obtained IUE spectra of the Wolf-Rayet

binary y Velorum (WC8 + 091) in six different phases of the binary period.

Although this system is not an eclipsing binary in the visual spectrum,
the winds of both stars are so extended that eclipse effects can be seen

in many UV lines_ A_ an exampleo we show in Figure 6 the ratio of two IUE
spectra at 1500 _ % 1900 A, between phase 0.51 (when the O-star was

behind the envelope of the WR star) and phase 0.i. The many absorption

features in this ratio-spectrum show thepresence of the corresponding

absorbing ions in the wind of the WR star. By studying the phase dependent
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Figure 6

The ratio of two IUE spectra of the WRblnary y Velorum (WC8 + 09 I).

The absorption lines are due to eclipse of the O-star by the wind of the

WR star at phase 0.51 (Willis et al., 1979).

behavior of lines o_ high and low excitation and ionization Willis et al.

demonstrated that the wind of cbe WC star is highly ionized but that the

degree of excitation is low (T = I0 000K). This may be due to the

same mechanism which cools thee_6ds of the high mass loss supergiants
_ISco and P Cyg.

A careful study of the UV-line eclipses in a few early type binaries
with a wind would be extremely useful in determining the variation of

density, velocity and ionization in the stellar winds.

VIII. EARLY TYPE STARS IN OTHER GALAXIES

The brightest early type stars in the LMC and SMC can be observed
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with IUE. Since the metal abundance in both galaxies is smaller than in

our galaxy, a differential study of stars in the LMC/SMC compared to

galactic stars of the sametemperature and luminosity will demonstrate the
effect of metal abundances onstellar winds. The radiation pressure

forces which presumably accelerate the winds of luminous OB stars are

largely due to line opacities of CNO ions (Lamers and Morton, 1976). If
the mass loss were due to radiation pressure, stars with smaller CNO

abundances are expectedto have smaller mass loss rates. If the mass loss
is due to some other mechanism (see III) and the radiation pressure only

acts in accelerating the wind, we might expect that the mass loss rates

are the same in LMC/SMC stars and galactic stars, but that the wind

velocities of the SMC/LMC stars are smaller than those of similar galactic
stars.

Hutchings (1980) has studied the IUE low resolution spectra of 7 LMC

supergiants and hefound evidence that the radial velocities at minimum

intensity in the lines are about 0.7 times as large as those in corres-

ponding galactic stars. This, however, does not necessarily imply that
the wind velocities in the LMCstars are smaller. The theoretical P Cygni

profiles calculated by Castor and Lamers (1979) showed that a decrease in

line opacity (e.g. due to a smaller abundance of the observed ion) will

reduce the velocity at the line minimum, even if the wind velocity does

not change at all. Nevertheless, these first IUE observations of the

LMC/SMC stars are interesting since they demonstrate that differences with

galactic stars do exist. A_careful study of the UV lines combined with a

study of H to estimate the mass loss rates independently, might turn out

to be very valuable for our understanding of the mass loss phenomenon.

IX. CONCLUSIONS

I have concentrated on the subject of mass loss and stellar winds

from early type stars. There are two reasons for this: firstly, I think
that this is the most important problem in the study of early type stars

as it may change our concepts on the structure of stellar atmospheres and

evolution of massive stars, and secondly, this is a subject to which many
IUE studies were directed and where IUE observations have made a very _

important contribution.
Let me summarize the new insights which we have gained from the IUE

observations:

a The mass loss rate of an early type star with L > 2 x !0_L0

increa--sesdrastically during its evolution. It may increase by about a

factor 30 from the zero age main sequence to the hydrogen shell burning

phase, and another factor of 10 when it becomes a WR star. This rapid

increase seems to be incompatible with the radlation-driven wind theory

and may require another mass lossmechanlsm which should be closely related
to the stellar evolution phase.

b The terminal velocities in late-B and -A supergiants are consider-

ably smaller than those of O-stars, indicating a less efficient acceleration
mechanism. The momentum of the stellar winds of WR stars is about 102

times larger than the momentum of the radiation. This suggests that, at
least in WR stars, the acceleration is produced by a mechanism much more

efficient than radiation pressure.
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The presence of hot gas in the stellar winds as first suggested by

the UV lines from high ionizatlon stages such as N V and 0 VI, is confirmed

_y the observed x-ray fluxes. The winds of the extreme B-supergiants with

M = 2 x l0s Me/yr and the dense shells of shell stars, however, have low

ionization and exeltationtemperatures.

Thewinds of early type stars are variable on a time scale of

hours-to'years. The observations of a few early supergiants and of Be-

stars show that stars may go through active phases in which puffs or

shells are ejected frequently. For one star, _iSco, the active phase was

found to coincide with a decrease in visual magnitude.

Theexamples which I have given are in a way extremes in terms of variabil-

ity or mass loss. It is possible that we can explain the physics of the

more normal mass losing stars by ignoring these extremes. I am afraid,

however, that this is not very likely.

P.S. Based on our present knowledge, I can suggest a few IUE studies

which wouldbe most valuable in providing insight into the physics of mass

loss from hot stars: _: the study of few binary systems in which the

wind can be probed by eclipses in the UV lines; 2: the study of the

variability of a few stars in detail in UV, visual and x-rays; 3: the

study of mass loss and wind velocities of similar stars (same L and Teff)
with different abundances.
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IUE OBSERVATIONS OF YOUNG VARIABLES
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Sweden

ABSTRACT

New insight to the physics and behavior of young variables have been

provided by observations with the IUE satellite. These results are briefly
reviewed.

INTRODUCTION

A number of far-UV spectrograms of young variable stars have become

available through observations with the IUE satellite. Several T Tauri stars

and Herbig type Be- and Ae-stars in dark nebulae have been observed and to my

knowledge spectrograms of a total of 17 stars, which have been considered to

be very young pre-main-sequence stars, are now collected. In many of these

cases only part of the spectral region available at the IUE is covered and

there are examples where large spectral regions are severely underexposed.

With a few exceptions the stars have been observed with the low resolution

cameras, providing spectral resolutions of 6 to 7 A.

Most of the observations lack simultaneous photoelectric and/or spectro-

scopic observations over the visible and infrared spectral regions. Further-

more, at the initial period of IUE observations, the observers selected

primarily objects with very intensive emission line spectra in the visible

region. For these stars it is usually extremely difficult to make any precise

statements on the dimensions and energy distribution of the star itself and
also to derive the value of interstellar extinction and to discuss the in-

fluence of possible circumstellar extinction. It is therefore clear that we

need much more observations of young variables before their physical proper-
ties can be overviewed in more detail.

Nevertheless, the IUE observations have given a completely new insight

to £he physics and behavior ofvery young stars, and in the following I will

try to extract some of the new information obtained. This review is based
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on the observations of RU Lup by Gahm et al. (1979), S CrA by Appenzeller and

Wolf (1979), T Tau, GW Ori and V 380 Ori by Gondhalekar et el. (1979), RW Auz
by Imhoff and Giampapa _980) and by Cram et al. (1980), DR Tau, CoD-3_

and AS 205 by Appenzeller et al. (1980) in addition to our unpubl_-'s_ed_
vations of RU Lup and DICe (G. Gahm, R. Liseau) and of HR 5999 (A. Casa-
tella, G. Gahm, R. Vio_ •

MAIN OBSERVED CHARACTERISTICB

The far-UV spectrograms have revealed the presence of very hot and in-

tensive regions around the stars. The ion of highest ionization stage obser-
ved in emission is N V at %1238 A, requiring some 200 000 K to form. This

line is present on DR Tau, CoD - 35510525 and RU Lup. For this latter star

we (Gahm, Liseau and Fredga, unpublished) have 9et an upper _imit to the
absolute flux of coronal lines (forming at ~ 10°K) of < 3xi0 ° the solar value

All T Tauri stars show C IV at 11548, 1550 A in emission and in addition

the Spectral region from %1150 A to %1900 A is as a rule rich in emission

lines of Si IV, Si III, Si II, C III, C II, C I, 0 1 and a number of Fe II

lines. Hence, the emitting_regions around T Tauri stars cover a large range
in temperatures - from 7000 K to at least 200 000 K.

The spectral region from _1900 A to %3300 A is in some cases dominated

by emission lines and in others by absorption lines although the Dig II lines

at _2796, 2803 as a rule are in very strong emission. The particular wave-

length at which a transition from essentially an absorption line spectrum to

essentially an emission line spectrum occurs is very different from star to

star. V 380 Ori of spectral type A I is the star of earliest spectral type
observed and has an absorption line spectrum all the way down to at least
_1200 A. RW Aur on the other hand start to show emission lines shortward of

3300 A (Gahm, 1970). Of course, the critlcal wavelength of the transition
may very well be variable with time.

The emission lines or absorption lines are seen against a continuous

emission extending over the entire spectrum. With the exceptions of the
stars of earliest spectral type V 380 Ori and HE 5999 (AT IIl:e) this contl =

nuum is a strong excess continuum over the expected photospheric contribution.

So far, there has been no reason to call upon any other emitting process than
Balmer continuous emission in the emitting volume around the stars in order

to explain the far-UV excess (Gahm et el., 1979; Appenzeller et el., 1980).
In the case of RU Lup one has to consider Balmer emission from the hottest

as well as the coolest regions.

THE PHYSICS OF INDIVIDUAL STARS

So far, rather little of detailed analysis of the far-UV spectra of the

young variables has appeered. The IUE spectra provide information on
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emission line fluxes and equivalent widths of relatively strong lines only and

no information on line profiles, with the exception of the Mg II lines of RW

Aur (Imhoff, private communication).

Observations over the visible spectral regions have been obtained simul-

taneously with the IUE observations for DI Cep (Gahm and Malmort, under pre-

paration); CoD - 35o10525 and AS 205 (Appenzeller et el. 1980) and HR 5999

(Co-operative project organized by P.S. The). We therefore have information

on the observed energy distribution from %1150 _ to %5500 A (for HR 5999 up to

4.7 B) for several stars. In the near future we therefore expect presentations

of the separate energy distributions of the stars and their emitting envelopes

as well as discussions on the separate contributions of circumstellar and in-

terstellar extinction. It is premature at this point to make any statements
on these results.

The emission lines can be used as probes into the physical state of the

emitting volumes. The diagnostic procedure was developed by Pottasch (1963)

and-has been used by Cram et el. (1980) to model the emitting volumes around

RW Aur and RU Lup. The basic assumption is that both the ionization and the

excitation equilibrium of the radiating ionsare controled by local conditions.

In short, the ionization equilibrium of different ions provides an estimate

of the average temperature and also interval in temperaturewhere the emission

originates. From the observed fluxes of different lines of different ions

the total surface flux is determined after corrections for _istance, extinc-
tion and dimensions of the star. The emission measure, fN -dh, is then

• e

plotted against electron temperature, Te, and the resultlng relation can be
compared to solar values.

In the following we will proceed in a similar but somewhat different way
for line fluxes observed for RU Lup during June, 19_9 when the far-UV flux of

the star was large. According to Gahm et el. (1974) and Gahm et al. (1979)

the total visual absorption to RU Lup is 0.3 < A < 1.0. The observed fluxes
0 , • , Vo •

of dlfferent llnes formlng at dlfferent characterlstlc temperatures (Tm ),are
given in Table I where the total line luminoslty L., has been compute_Xwlth

n = . . o £ nea E(B-V) 0.2 with an average normal reddenlng _aw according to Savage and

Mathis (1979). The last column gives the volume emission measure VNe2 computed
with the same numerical figures as used by Cram et el. (1980).

The results are given in Fig. I where th_ curve represents the correspon-
din E solar values increased by a factor of 10 . Also given as crosses are the

corresponding volume emission measures of RW Aur from Cram et al. (|980).

The general result_ then, is that when treated in this way, the line emis-

sion on T Tauri stars behaves very similarly to what is seen on the sun, only
that the total emission on these [rather extremeS) T Tauri stars are several

orders of magnitude larger than on the sun. Whether this is an indication

that the T Tauri envelopes are maintained by similar physical processes that

operate on the sun is a question which remains to be explored.
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If we had information on N for the different temperature zones it would
• • e

be possible to obtaln some idea of the geometrical extent of these zones. For

RU Lup Gahm et al. (1974) derived Ne = 3xi0" cm-3 for lines forming at 104 K

and lower. For higher temperatures, between 5xi04 to 105 K, the density'sen-
sitive ratios Si III %1892/C III %1980 and Si IV %1403/C III %1908 can be

used [Cook and Nicolas, 1979; Doschek et al., 1978). For Ru Lup we obtain

Ne = 2x10 I0 for this temperature zone. These simple tools lead to relatively
extensive emitting volumeq arour4 the stars.

A very important result realized by Cram et al. (1980) from considera-

tions like these is that the suggestion that the 105 K plasma in the solar

chromosphere-corona transition zone is not directly heated by the local

deposition of mechanical energy, but rather indirectly heated by thermal con-
duction from the 2xi06 K solar corona, does not apply to T Taurl stars and

that "dlrect_ in situ_ heating of the 105 K plasma must occur".

STATISTICAL RELATIONS

As a complement to the efforts of modelling the physical structure of
individualstars we could try to find statistical relations between different

observed properties of the 11 stars for which far-UV information exists and

in this way hopefully learn something'about the nature of young objects. We

are presently treating released IUE spectra of such stars in a homogenous way

but in the following presentation we must rely also on published or in-print
flux-calibrated spectrograms that have been reduced according to somewhat
different schemes. Since more accurate comparisons must await a full treat-

ment, I will only give the general results as follows.

I. It is very difficult to find any relation between the appearance of the
visible spectrum and any property of the far-UV spectrum. For instance, the
absolute C IV flux, as corrected for interstellar extinction and distance

(which are uncertain in many cases) does not correlate in any particular way

with degree of emission in the visible spectral region, nor does it correlate
with degree of ultraviolet or infrared excess.

2. The critical wavelength, %crit' at which the spectrum changes from an
absorption line spectrum to an emlssion line spectrum was taken by Appenzeller

et al. (1980) to be related to the envelope density. This seems to be a

reasonable suggestion but I have not been able to find any relation between

%¢rit and the denslty-sensitive Si III to C III ratios discussed above. No
ocher relation is apparent such as to the degree of self-absorption in the
hydrogen lines or to emission line profiles in general.

3. The character of the light variations and the corresponding amplitudes

as given by Herbig and Rao (1972) do not relate in any obvious way to observed
characteristics in the far-UV spectrum.

Quite clearly, it will be easier to demonstrate possible relations when
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more stars are observed. In particular, we need a larger sample of stars for
which distances and interstellar extinction can be treated accurately. How-

ever, line ratios in thefar-UV are relatively independent of these parameters

and I find it rather alarming that ratios of lines_of for instance C IV, III,

II and I do not relate to any other observed property of the star. The inten -.

sity ratios of C IV %1550 A to Si IV %1403 A is very similar from star to star

and they fall in the same range as given by Doschek et al. (1978) for coronal

hole, quiet sun, solar flares and several late-type stars. Their suggestion
that the differential emission measure as derived from the ions in these

temperature zones is independent of atmospheric conditions and dependent only

on atomic properties of the plasma will then include the rather extreme
emitters considered here.

The ratio of Si III %_892/C III %1908 is sensitive to density and is

plotted as ordinate in Fig. 2. Estimates of the corresponding electron den-

sities are also given. In the left part of the diagram this ratio is plotted

against emission class as defined by Herbig (1962). With the notable excep-

tion of DI Cep there seems to be a trend such that stars with weak emission

line spectra in the visible region have envelope zones at 4xi04 to 105 K of
lower densities than those with strong emission line spectra. The relation

holds also when the ratios are plotted against equivalent widths of the Fe II

emission at %4924 A (as taken from Cohen and Kuhi, 1980 and this work), again

with the embarrasing exception of D I Cep.

However, the important result is not whether this trend exists or not but

rather that in spite of the fact that the objects show such an enormous range
in observed parameters like in the degree of emission (the luminosity of the

C IV lines ranges over a factor of 100), in emission line widths and profiles,

in degree of excess emission and type of variability, the density in the

region producing line emission at 5xi04 to 105 K does not differ by more than

a factor of 2 or so from the averase values, provided that the density scale
as given by Cook and Nicolas (197'9) is applicable to the T Tauri stars.

If this is true one could start to outline some very interesting impli-

cations. However, I find the small range in implied densities Very alarming

because this is exactly what could happen if the lines wer_ optically thicko

In this case the Si III/C ili ratio does not provide a useful tool for the

physics of T Tauri stars.

THE CAUSE OF THE LIGHT VARIATIONS

The far-UV spectrograms of young variables may provide important infor _

marion on the cause of the brightness variations with time. The only star

that has been followed by repeated far-UV observations with the IUE and ground-

based observations over the visible spectral region is HR 5999 (Th_ et al. in

preparation). The star stayed, however, close to maximum brightness during
all IUE observations. This demonstrates the difficulty in having a simul-

taneous infrared, visible and far-UV coverage of a single star at different

brightness levels. Another attempt directed to follow the variations of
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DI Cep failed due to bad weather conditions at the ground-based station (Gahm
and Malmort in 1978).

We have observed RU Lup on three occasions using the Short Wavelength

Prime Camera with an entrance sllt of I0x20 sec. on May 18, 1978 and June 17
and 19, 1979. Large variations have occured in the far-UV flux of the star. l_

spite of this the general appearance of the three spectrograms is very much

the same on all three occasions. In fact, if one plots the peak line inten-

sities of lines of different ions divided by the smoothed intensity level of
the background continuum as done in Fig. 3 one finds that the line-to-continuam

fluxes (%Lc) have not changed at all, while the total flux level have changed

by a factor 3.5 fromMav 18 to June 19. In Fig. 3 I/<I> represents E/c and
for the continuum flux the May 18 spectrogram is set to 1.0.

Now, if the variations are due to violent structural or physical changes

inthe emitting envelope one needs a rather delicate balance in VNe 2 through-
out the whole region with the different temperature zones. It would mean

that the source depths of the different temperature zones change in a rather

delicate way as to maintain the general form of the curve presented in Fig. I

and also to effect strong and weak lines in similar ways. We note that the

Si III _1892 line increased "its _/c significantly on June 17, 1979 when the

star had intermediate brightness.

A very simple and direct way of explaining this type of variations

results if we assume that the dominant cause of the variations is opacity

changes in a circumstellar dust layer in the line-of-sight to the star. _hisin-

:re,predation for the variations of RU Lup was also favoured by Gahm et al.
(1974) based on photometric and spectroscopic observations at visible wave-

lengths.

On other stars the dominant cause of the light variations may obviously

be intrinsic and all efforts to follow the stars repeatedly, preferably also
over visible and infrared wavelengths, should be encouraged.
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TABLE I. VOLUME EMISSION MEASURES OF RU LUP

Line _ T Observed
max Lline VN 2

; flux 2 e
(A) (OK) (er_/cm s) (erg_s)

C II 1335 20 000 2.0x10 -12 2.6x1031 5.9x1055

C IV 1549 !10 000 5.5x10 -12 6.6x1031 7.2x1054

Si II 1526 15 000 9.2x10 -13 1.1x1031 8.4x1057

Si IV 1400 79 000 2.2x10 -12 2.7x1031 4.3x1055

N V 1240 200 000 7.0x10 -13 1.1x1031 9.4x1054
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MASS-LOSS RATES FROM EARLY-TYPE STARS*

Peter S. Conti and Catharine D. Garmany
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ABSTRACT

We have derived mass loss rates for a number of unevolved O-type stars

and a few WN stars from high dispersion IUE spectra of their P Cygni pro-

files. When combined with other published mass loss rates, we find that the

relationship between log m and MBO L is a broad band rather than a linear re-
lation , suggesting that the line radiation driven wind theory may not be

sufficient to explain mass loss. The mass loss rates for the WN stars,

while more uncertain, confirm that these stars lose mass about I00 times
faster than O-stars.

INTRODUCTION

It has been known for many years that early-type stars are losing mass.

The first evidence came from rocket UV observations of P Cygni profiles of
resonance lines (i), and later determinations of mass loss have come from

infrared studies (2), emission lines in the visible (3) and radio observa-

tions (4). The observed mass loss has been attributed to UV line radiation

pressure (5). In this theory, the mass loss should be proportional to the

stellar luminosity, and indeed, observations of O supergiants and Of stars

support this. However, our initial IUE observations of five main sequence

stars resulted in mass loss rates much lower than the predicted values (6).

It is important to find the reason for such a difference, not only for its

bearing on theories of mass loss from these stars, but also because stellar

evolutionary calculations are affected (7). Our understanding of the atmo-

sphere of early-type stars has been further complicated by the recent

Einstein Observatory observations that many of these stars are X-ray sources

(8). We have observed an additional 16 main sequence O-stars during the

second year of IUE, and have confirmed our earlier finding: at a given

luminosity stars are observed to have mass loss rates which differ by a
factor of 30.

APPEARANCE OF THE SPECTRA

In the O-type stars, the P Cygni profile of the C IV A1548 and N V
A1232 resonance doublets are the most consistent indicators of mass loss.

Among the earliest spectral types the C IV line is characterized by a sharp
blue absorption edge and a terminal velocity greater than 3400 km s-I. At

*This work supported by NASA under grant number NAS5-22833.
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later spectral types, the blue edge of the profile becomes less steep and

the terminal velocity decreases. However, as illustrated in Figure I, the

degree of line saturation is not related to the bolometric magnitude of the
star.

In general, the same description that applies to C IV also applies to

the N V line, although blending with Lyman e makes the determination of a

terminal velocity uncertain. Both of these lines are fully saturated in th_
WN stars.

The appearance of the N IV I1718 line is strongly temperature dependent.
In the latest O-type stars it is photospheric, but with increasing effectiw_

temperature it develops a blue wing and eventually appears as a P Cygni pro-
file, although the blue edge never reaches the terminal velocity of the

strong resonance lines. All of the WN stars show an unsaturated P Cygni

profile whose blue edge reaches the same terminal velocity as the other
lines.

The Si IV I1393 resonance doublet is photospheric in all of the main

sequence O-stars, but it becomes a saturated F Cygni profile in the 0 super-

giants and late WN7 and WN8 stars. See Figure 2.

MODEL FITTING

We have found mass loss rates for the stars by comparing their P Cygni

lines with the model profiles computed by Castor and Lamers (9) and modified

by Olson (unpublished) to include nonlocal radiative coupling for doublet

profiles. The line profile in an expanding atmosphere is determined by the
mass loss rate, the velocity law, the ion abundance, the stellar radius, and

atomic parameters. Castor and Lamers have parameterized their models ac-

cording to the total optical depth and the assumed velocity law, and each
observed line profile is then fit by these parameters. The mass loss rate

is then derivable from the profile parameters, the terminal velocity, the
stellar radius, and the fractional abundance of the absorbing ion. We have

used this approach, which is also discussed by Conti and Garmany (6) and

applied to a few stars observed during the first year of IUE. One of the

most difficult assumptions in this method is the ionization fraction. When
two or more nonsaturated P Cygni profiles are seen in the same star, the

relative ionization fractions can be computed, and compared with calculated

fractions for a given temperature and density, which has been our approach.
All of the O-stars are cluster members with well-established bolometric mag--

nitudes. We have adopted Conti's (I0) temperature scale in our determina-
tion of ionization balance and stellar radii.

RESULTS

We have derived mass loss rates for 16 O-type stars of luminosity class

V or III. The rates range from 10-6 M® yr-I to 2 × 10-9 Me yr-I, and the

rates are not linearly related to stellar luminosity as pred¼cted by the
line radiation driven wind theory. In Figure 3 we show log m vs. MBO L for
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the stars we observed, as well as stars with mass loss rates derived by

other methods. For a given MBOL, the rates differ by as much as a factor of
30. The higher rates may be associated with stars which have left the ZAMS

but are still burning hydrogen in their core.

We have also calculated mass loss rates for several WN stars, which

are shown in Figure 3. The method used was the same as for the O-stars,

although the greater uncertainty in the temperatures, ionization fractions,
and luminosities make an error estimate difficult. However, we note that

our values are similar to those found from observations by Willis (private
communication).

These results will be reported elsewhere in more detail.
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IUE OBSERVATIONSOF VARIABILITYIN
WINDS FROMHOT STARS

C.A.Gradyand TheodoreP. Snow, Jr.
LASP,Universitgof Coloradoat Boulder

ABSTRACT

Observationsof variabilityin stellarwinds or envelopesprovidean
important probe of their dynamics. For this purposea number of O, B,
Be, and Wolf-Rayetstars have been repeatedlyobservedwith the IUE
satellitein high-resolutionmode. In the course of analysis,instru-
mental and data handlingeffectswere found to introducespuriousvari-
ability in many of our spectra. Software has thereforebeen developed
to partiallycompensatefor these effects, but limitationsremain on
the type of variabilitythat can be identifiedfrom IUE spectra. With
these contraints,preliminaryresultsof multipleobservationsof two
OB stars, one Wolf-Rayetstar, and a Be star are discussed.

TEXT

_]5"servationsof variability in stellar winds or envelopes provide an
importantprobe of their dynamics. IUE, with its ability to simultaneously
sample large portions of the ultravioletspectrum,can potentiallyenable
one to relate temporal variations in one spectralfeatureto other lines.
Ultimatelythis may yield a spatialas well as spectralprobe of the outer
atmospheres of hot stars. Before any such analysis can be undertaken,
however, it is essentialtodetermine the type and amplitudeof variability
which can be measuredfrom IUE high-resolutionspectra.

Reductionand analysis of IUE high-resolutiondata for temporalvariability
is complicatedby a number of instrumentaland data handlingeffectswhich
can introducesufficientspuriousvariabilityinto the spectrato swamp any
real stellar variability. These effects and programmlng to partially
compensate for them developedon the PDP 11/34of LASP/UniversityofColorado
using the InteractiveData Languageare discussedbyGrady (1). Limitations
do remain on the amplitude of line profilevariationsthat IUE is capable
of detecting in high resolution. For example, in order to compensatefor
differingexposuretimes and positioningof the target star in the spectro-
graph slit, all of our data has been normalizedto the continuum= 1. As a
result, it is impossibleto monitorchanges in continuumlevel. Thus, our
effort has been concentratedon changes in profile shape and relative
intensityin a numberof lines known to indicatemass loss. (2)

It is then necessaryto determinethe changes in relativeflux which can be
confidentlyattributedto the star, ratherthan the instrumentand subsequent
data handling. One of the stars in our variabilitysearch,_ Cam (HD 30614,
09.5Iab) showed no evidence of any change in its P Cygni profiles to the
limits imposedby noise in the data when observednearly continuouslyfor
three days in September,1978, for a total of 75 exposures,when reobserved
once a month later, and again in January of 1979. For this reason,this
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star has been chosen to determinethe noise limits in differentparts of
the SWP spectrum. Only SWP spectraare consideredin this paper, as we are
still awaiting our reprocessedLWR spectra. Table I gives the limits on
change in relative flux level as a percentage of the zero to continuum
level. To be confidentthat the change in flux level is stellar,rather
than instrumentalor processing-induced,the furtherconstraint has beeR
imposed that the change in the flux level must be sustainedover a O.1A
interval. Changes over smaller intervals may be real, but a detailed
examinationof grossand backgroundrecordsfor each imagewould be essentia'l
in order to determinewhetherornot this is the case.

OBSERVATIONS

Even with these conditions,,threestars surveyedto date show clear evi
dence of temporalvariationsin their P Cygnl profiles. Analysis is stili
in the preliminarystages for all three. They are K Cas (Blla, HD 2905)_
59 Cygni (Be,HD 200120)and y_ vel (WC8+ 09I, HD 68273}.

K Cas was observedas part of a cooperativeprogramwith H.J.G.L.M.Lamers,
C. deJaeger,and F. Machetto. It was observedfor 29 hours in alternation
with e Cam on Sept. 9-10, 1978. A total of 26 SWP high-resolutionexposures
were made duringthis timewith exposuretimesof 6-10 minutes. All profile_
were constantto within the limits of detection. On Oct. 12, 1978 a single
exposure of K Cas was obtained. The fully-saturatedP Cygni profiles
showed no changes in shape or relativeintensitybeyond the noise limits.
The two unsaturatedprofiles,CIIL1335, and AIIII L1854, L1862 did show
noticeable changes. The CIIP Cygni profile appears slightly broader in
the October spectrumthan in the Sept. data. It was not possibleto measure
the edge velocityfor this line as the profilelacksa sharp shortwavelength
absorptionedge. The changes in the AIIII profileare much larger. In the
Septemberobservationsonly the AIIII L1854 line has a well developedType
I P Cygni profile (see Fig. 1). A saturatedemissionfeature is present at
the wavelengthexpected for the L1862 emission. Weak absorptionis present
shortwardof this feature. In the OctoberobservationbothAIIII components
are clearly present,althoughthe L1862 line suffersfrom an instrumentally
saturatedemissionpeak. The emissionpart of the L1854 profile appearsto
be about the same as in September. Likewise,the edge velocity,as measured
from the L1854 line, appears to be constant. The strikingchanges in the
absorption component occurs at the red side of the absorptionfeature,i_
the velocityrange -(410-710)_20km/sec.

59 Cygni was observed in cooperationwith V. Doazan,R.N. Thomas, L. Kuhi,
and J.M. Marlborough. Data has been processedat LASP only for observa-
tions made in June and September of 1979. Data handling problems have
preventedanalysisof all ionswith the exceptionof CIV _1548.188,_1550.762.
(See Fig. 2) In June, 1979 the doublet is blendedtogether in absorption.
The profileappears to be saturated. By September,however,both components
are clearly visible. How this correlateswith changes in other orders is
not yet known. A cursory examinationof SiIV L1400 indicatesthat no such
drasticchangesoccurredfor that ion.
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_A vel was observed as part of a coilaborativeprogram involving• van derHucht,A. Willis,F. Machetto,R. Wilson,and D. Stickland
with some of the data analysistakingplaceat C.U. We have processed
CIII hI176,$1111h1206,NV h1240,Cll h1335,SiIV h1400 (Fig.3), CIV
h1550(Fig.4), and NIVL1718. All of theions surveyedshow somechanges
in the shapeof the absorptionpartof the'PCygniprofile:Mored_amati-
cally,all show decreasedemssion at phase0.53of the blnaryorbit. At
this phasethe Wolf-Rayetstar Is in frontas seen.fromEarth• With data
coveringonly one orbitalperiodit is impossibleto be certainthatthis
decreaseIsrelated,butthedataarerathersuggestive.

CONCLUSIONS

•limitson the amplitudeand type.oftemporalvariabilitythat
can be confldentlydetectedusing IUE in .hlgh_resolutionmode, It is
posslbleto observesignificanttimevariatlonsIn the P Cygm profilesof
hotstars.
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TABLE1
i,, i i i

Ion Wavelength Noisg_as.%of cqntiDuum!evel.)

CIII 1175.67 _100

SiIIl 1206.51 _ 60

NV 1240 35±4

SiIV 1398 20_3

CIV 1549 19_2

NIV 1718.551 15±2

Percentage change in flux level which must be exceededina given P Cygni
profile to be confident that any variations are stellar rather than instru-
mental. In a11 cases the data has been normalized to continuum=1.
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ANOMALOUS IONIZATION SEEN IN THE SPECTRA OF B SUPERGIANTS

Joseuh P. Cassinelll and David C. Abbott

Washburn Observatory

Madison, Wl 53706

ABSTRACT

An IUE survey of B supergiants has been conducted to study the persis-

tence with spectral type of the ultraviolet resonance lines of N V, C IV,

and Si IV. N V is seen as late as B2.5Ia, C IV until B6Ia and Si IV through-

out the range from B1.5 to B9. This is in fairly good agreement with the

Auger ionization model of Cassinelli and Olson (1979). The terminal veloc-
ities are derived for the 20 stars in the sample and it is found that the

ratio VT/Ves c decreases monotonically with spectral type from the value of
3.0 that it has in the O spectral range to the value 1.0 at B9Ia.

INTRODUCTION

Unexpectedly high ionization stages such as 0 VI were seen in the

Copernicus spectra of 0 stars (Snow and Morton, 1976). Several possible

explanations were considered by Cassinelli, Lamers and Castor (1978). X-ray

emission has now been discovered from 0 stars by observations from the

Einstein satellite (Harnden et el. 1979, Seward et al. 1979, Long and White

1980), and it is now clear that there is some very hot gas in the outer at-

mospheres of the stars. The x-ray emission is sufficient to produce the

ionization anamolies in the cool outflow by the Auger mechanism as had been

proposed by Cassinelli and Olson (1979)o In this process, a total of two
electrons are ejected from C, N or O following the K shell absorption of an

x-ray photon. (Weisheit 1974). Thus if the dominant stage of ionization in
the outflow is O IV a trace amount (~ l0-_ ) of O VI is produced, which is

sufficient to explain the P Cygni lines seen in the UV spectra. As O IV

should be an abundant ion stage (>10%) for stars as late as B0.bIa (Teff =

29000) 0 VI should persist to that spectral type and no further. Morton

(1979) carried out a careful study of Copernicu s spectra of early B super-

giants and found that O VI does persist to B0.5 and is absent at Blla.

In a similar fashion N V should persist aslong as N III iS a dominant

ion stage and C IV as long as C II is _ dominant ion stage in the cool parts

Jf the wind. To give further test of the Augerionizatlon model we have

carried out a survey of 20 B supergiants in every spectral class from BI.5
to B91a.

OBSERVATIONAL RESULTS

Figure i shows the spectra at N V 1239, 1243_ for ii of the B super-

giants from BI.5 to B5. The llne is clearly present from BI.5 to B21a but
disappears at later spectral types. At the bottom of thearray of spectra is

shown the results of theoretical calculations of absorption llnestrengths

expected in a 20,000 K star at Ne = 1011 cm-3 • These were calculated using
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f values from Kurucz and Peytremann (1975) supplemented by more recent work

by Abbott (1978), Morton (1978) and others. LTE populations were used in tLe

calculation of the line strength,: and the plotted line segments are propor-
tional to the logarithm of the strength. After accounting for these back-

ground lines, we concluded that N V is present only as far as B2.51a where,

using the calibration of Underhill et_ial. 1979, Teff = 20400. As usual ter-

mlnal velocities of the winds, VT, can be derived for each llne from the

maximal shortward displacement of the absorption feature.

Figure 2 shows the spectra of al_ 20 supergiants in our survey in the
region of the C IV doublet 1548, 1551A. For the earlier stars the llne dis-

plays thebroad strong P Cygni profile familiar in O stellar spectra. The

llne becomes progressively weaker for the later spectral types. After con-

sideration of the calculated strengths of the photospheric lines, we concluded
that C IV in the wind could be traced as far as B61a at which the effective

temperature is about 12000_. In an earlier IUE survey Underhill (1979) noted

the presence of C IV as late as BSla. The theoretical photospheric llne

strengths at the bottom of the figure were calculated as before, but nowus±r_g

15000 K for the left panel and i0000 K for the right panel. Again terminal
velocities are derived from each llne.

Figure 3 shows the Si IV doublet 1394, 1403_ region of the spectrum.

The llne clearly persists beyond either N V or C IV and continues throughout
t_e sequence to Bgla. (If the wind were in radiative equilibrium and not sub-

ject tO x-radiatlon it would disappear at B31a.)

The spectrum of 0 Ara shows distinctive structures in the resonance

lines of N V, C IV and Si IV. There is an apparent contribution from the

lines at zero velocity displacement. This roughly symmetric contribution

could perhaps have been produced in a "transition region" between the photo-

sphere and x-ray forming region.

DISCUSSION

The run of "terminal" velocities, derived for the three ions, versus

spectral type is shown in Figure 4. For Si IV the velocity is determined

from the stronger component at 1393_. Indicated in this Figure is the re-

sult that NV persists to B2.51a and C IV to B61a. These are in rather good

agreement with what is expected if N V is produced from N III and C IV is

produced from C II by the Auger mechanism. (Casslnelli and Olson 1979). The

persistence of Si IV can also be explained by the Auger mechanism but as the

ion Si II has more than I0 electrons the analysis is more complicated
(Weisheit 1976). The ion could eject from 2 to 4 electrons following L or

K shell absorption of x-radiation. In any case it is not surprising that it

should persist to later spectral types than does C IV.

Also shown in Figure 4 is the escape speed at the photosphere versus
spectral type. These were derived from the data on cluster membership dis-

tances, effective temperatures (Barlow and Cohen 1977_ and masses derived

from theoretical evolutionary tracks (Chiosi et el. [978), in the manner de-
scribed in the terminal velocity survey of Abbott (1978). In that paper

Abbott derived the ratios of VT/Vesc for 36 stars, all but one of spectral
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type B1 or earlier plus some Wolf Rayet stars. He found VT/Ves c = 3.0. IUE

spectra of other O-type stars also show a VT/Ves c = 3.0 scaling (Garmany ....
1980). This relation does not hold for B supergiants as is seen from Figure

4. The terminal velocity decreases monotonically from _ 2.7 Vesc at BI.bIa

to 1.0 Yes c at B9Ia. The A2Ia star, _ Cyg, also has VT = 1.0 Yes c.

Thus , there is a continuous relation between vT and Yes c extending from
the earliest 0 stars to the latest B supergiants. The reason for the de-

creasing value of VT/Ves c in the later type stars is not clear. The effec-

tive temperature, gravity and rotational velocity are all properties which
decreas_monotonically from early O-stars to late B supergiants.

The decrease in VT/ves c does not conflict with the llne driven wind
theory of Castor, Abbott and Klein (1975). As discussed by Abbott (1978),

that theory predict s vT = [_/(i-_)] I/2 Vesc where _ is a numerical constant

which is determined:by the mixture of optically thick and optically thin
lines. If all the lines are optically thick @=i, and if all the lin_s are

thin _=0.0. In this model _ = 0.9 gives VT/Ves c = 3.0, and e=0.5 gives VT/
Vesc = 1.0. The result of Figure 4 therefore may indicate that the ioniza-

tion balance changes in B supergiants from a radiation force dominated by a

few very strong lines to a force produced from lines which are more numerous
but weaker.

The x-ray emission of early type supergiants also changes in character

at around Bi.bIa. Vaiana et al. (1980) notes that essentially every O star

observed by Einstein is an x-ray source. However in the Einstein survey of

O and B supergiants Cassinelli et al. (1980) have found that there is a

change at BI.5. All objects at BI.5I and earlier were detected with Lx

10-7.:5 L_o _ whereas limits on x-ray luminosities beyond Bi.bIa were lower

than 10-_.u LBo I. Thus there is reason for pursuing further studies of the
anomalous ionization in B supergiants. It may be the best diagnostic for

studyingthe coronae or hot flow instabilities now available.
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ABSOLUTE ENERGY CURVES FROM LATE B-TYPE SUPERGIANTS

Anne B. Underhill

Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

ABSTRACT

Absolute energy curves for six late B and earlyA-type supergiants have

been determined from IUE data and from other ultraviolet and ground-based

photometry. Effective temperatures and angular diameters are presented as

well as estimates of the outflow velocity of the wind. All six stars show

a strong Balmer continuum in emission; the la superglants also show an

infrared excess which reaches into the visible range. Evidence is found

for the presence of a warm mantle as well as for wind from the la stars.

INTRODUCTION

From ultraviolet spectra it has become clear that O stars and early B

stars have an outer atmosphere or mantle _n which at least some of the gas is
hea_ed to temperatures of the order of 10-K _and where a rapidly flowing wind

is generated. The purpose of this investigation is to see what the evidence
is for a mantle for the late B supergiants. The material in the mantle of an

O or early B star is seen best by means of the ultraviolet absorption and
emission resonance lines.

There is evidence that the mantles of late B and early A stars are seen

most easily by means of the continuous spectrum. For instance, Berger et al.

(i) showed that the continua of supergiant A stars longward of 5000 _ are

usually red, relative to what is seen for main-sequence A stars of the same

subtype, and Barlow and Cohen (2) have found that the late B and early A la
superglants tend to have a small infrared excess.

The continuous spectrum from the photosphere of an early-type star,

that is from the boundary layer of the interior model of the star, can

usually be well represented by the predicted spectrum from one of the LTE
line-blanketed model atmospheres of Kurucz (3), see Underhill et al. (4).

Therefore, comparing the energy distributions of supergiants with the

predicted continuous spectra of Kurucz will show whether additional continuous

radiation, generated in the mantle of the star, is present or not. Figures

i, 2 and 3 present such comparisons for six B/A superglants. Solutions for

effective temperature and angular diameter have been made for these stars

using the methods of Underhill et al. (4) and of Underhill (5) and the results

are given in Table i. The absolute fluxes plotted in the figures have been

corrected for interstellar extinction. The adopted values of E(B-V) can be
seen to be about correct because no residual effect of the broad interstellar

absorption ban centered at 2175 _ is evident in the plotted energy distrib-
utions. The relatively sharp dip near 2250 _ is due to blended absorption
lines of Cr III formed in the mantle.
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DISCUSSION

All of the supergiants studied here show excess emission in the Balmer

continuum. In some eases this emission is strong; its presence is the reaso1_

why Underhill et al. (4) found that for supergiants the Chalonge and Divan

values of D were smaller than the values predicted by means of model atmos-

pheres. All of the la supergiants show an infrared excess extending into the

visible range. The observations of Barlow and Cohen (2) permit one to trace

thisexcess to longer wavelengths. The wavelength of the "turn-over point"
of the infrared excess emission of HD 21291 and 21389 indicates that the

electron temperature in the part of the mantle from which the infrared exces_

originates is near 23000 K.

The effective temperatures given in Table i are about correct because

the intensity of the stellar light at wavelengths shortward of 1500
relative to that at wavelengths near 4100 A is correctly represented by
models having effective temperatures similar to the values given in Table i.

The amount of far ultraviolet light relative to that in the visible is a

sensitive indicator of effective temperature for these stars. Near 4100

there should be no distortion of the continuum by excess emission due to the

gas in the mantle and the Balmer continuous emission from the mantle should

be very weak at 1500 _

The winds of these six B and A supergiants are easily visible only in the

Mg II resonance lines. The terminal velocity estimated from the position of

the shortward edge of the Mg II absorption profiles is given in Table 1.

These stars do not show P-Cygni-type emission in Mg II.

The mantles of the B/A supergiants appear to be cool, T _23000 K,

but hotter than the effective temperature of the star, and t_ contain gas
flowing at about 250 km s . The star HD 21389 sporadically shows sharp C IV
resonance lines in emission (Underhill (6)). None of these stars shows

obvious absorption in the resonance lines of S± IV and C IV, but all show the
resonance lines of Al III and C II as well as those of AI II and Si II.

The IUE observations used in this work were obtained with the skilled and

gracious assistance of the IUE Resident Astronomers and Telescope Operators at

the Goddard Space Flight Center.
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Table i

Effective Temperatures, Radii, Luminosities

and Terminal Velocities of B/A Supergia_ts

Name Spectral E(B-V) Tef f O
Type mag K

10-4 arc sec

53 Cas B8 Ib 0.41 11600 3.62

Ori B8 la 0.04 11800 26.67

HD 21291 B9 la 0.41 i0300 a 7.27

q Leo AO Ib 0.02 9400 6.90

HD 21389 AO la 0.54 9900a 8.05

Cyg A2 la 0.03 860_ a 21.07

Name db

R log L v_(Mg II)
kpc _

• -i
km s

53 Cas 0.93 36 4.33 0c

B Ori 0.228 65 4.87 262

HD 21291 1.03 80 4.87 235,

n Leo 0.54 40 4.05 >70 a

HD 21389 1.00 87 4.82 240

Cyg 0.45 102 4.71 278

aAllowance has been made for an infrared excess.

bFrom an adopted _.

CNo sign of a wind in Mg II.

dDisplacement of the deepest point of the Mg II resonance lines.
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ABSTRACT

Ground-based and IUE observations of hot stars in the Large and Small

Magellanic Clouds have been carried out to investigate the mass-loss process

in these objects and to search for differences with galactic hot stars. Pre-

liminary results show that in a large proportion of the stars observed the

mass-loss process is taking place. A mechanism for acceleration of the wind

in OB stars is proposed.

INTRODUCTION

This study of hot stars in the Large and Small Magellanic Clouds was
carried out in order to:

(a) investigate in detail the mass-loss process in hot stars;

(b) investigate possible differences in the mass-loss characteristics due to

chemical composition differences;

(c) investigate whether there exist broad differences between the mass-loss

process as:it occurs in the three galaxies, namely the two Magellanic
Clouds and our own.

This paper presents some general results of the study. In particular a
mechanism that accounts naturally for the acceleration of winds in hot stars

is proposed.

OBSERVATIONS

Photometric observations were carried out with the ESO 50 cm photometric

telescope in La Sillar, in September 1979. The diaphragm used was 15 arc sec

in diameter. The U, B, V and H8 photometric results shown in Table 1 are the
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average of three or four nights of observations. Night-to-nlght deviations

were at most one or two tenths of a magnitude in V. The photometric standards

used were taken from theE-region standards for U, B, V and H8 photometric
list of Crawford and Mander i. The values shown in brackets are not our own

data. Spectroscopic observations were carried out in September 1979 (indi-

cated S) and January 1980 (J) with the ESO 1.52 m telescope and Boiler &
Chivens spectrograph. In September the dispersion used was 114 _/mm.

Recording was with a two-stage EMI intensifier tube and III a-J baked plates.
In January the dispersion was 60 _/mm. Recording was with a three-stage EMI

intensifier tube and III a-J baked plates. The spectrum was widened in both
cases.

While only two spectra per star could be obtained in September, at least

three sets of spectra, each with three different exposure times, were obtained

in January. This will allow us to establish if spectral variability occurs

with a period of four months and also with a shorter period of about one week.

Observations were carried out with IUE in January (J) of those stars

that had notalready been studied by other investigators. These were obtained

at the same time as the ground-based observations from La Silla. Use of the
archived IUE observations will be made as this material becomes available.

An additional set of stars was observed at the end of March with IUE.

The IUE observations were made in the low dispersion mode in all cases.

RESULTS

Although the analysis of the data is still in a preliminary phase, some

general results can already be indicated.

A significant fraction of the stars observed show mass-loss, as indicated

for example by broad H_ emission or by P Cygni type profiles in the UV lines.
These stars have been identified with an asterisk in the column "mass-loss"

of Table I.

As an illustration of the results obtained, Figures I, 2, 3 and 4 show

the spectrum of the star HD 35343 (SK 94). This star is classified as Bep in

the Sanduleak catalogue and shows a large number of emission and absorption
lines.

The most prominent emission lines in the visible part of the spectrum axe
those of the Balmer series of Hydrogen of which Ha, H_ and H7 are shown in

Figures i, 2 and 3 respectively. The profiles of the three lines appear to be

asymmetric. .It is not clear if this is due to the contamination by absorption
lines of other atoms in the blue side of each of the lines or if these are real

P Cygni-like profiles. The halfwidth at zero intensity measured towards the red

wing is 40 _ for Ha corresponding to an expansion velocity for the wind of Vexp =

2057 Km/s. The equivalent values for H_ are 24 _ corresponding to 1580 Km/s and
for H_ the width is 12_ corresponding to 830 Km/s. Other emission lines in the

visible are those of SII 6521 and 6386, Sill 6371 and 5915, Felll 6323, Hell

6310 (weak) 4686 (strong) and 4200 (strong), [O111] 50006 and 4958, Silll 4532
and 4567 and Sill 4478.
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In the ultraviolet region the following lines are found in emission:
Nil 1758 and 1748, Hell 1640, CIV 1550 and 1549, SilV 1394 and 1403 and NV 1239

and 1243. The wind velocity as measured from both the Hell and CIV profiles

turns out to be 1550 Km/s which is significantly lower than that measured from

Ha. This may be due to the depletion of hard-ionizing photons Which restrict

the presence of CIV to regions closer to the star.

DISCUSSION

It appears that in a broad sense the properties of the mass-loss process

in the hot stars of the Magellanic Clouds and those of our own galaxy are very

similar, although differences of detail, as already shown by Hutchins 2, dan be

seen and will be further investigated.

Of particular interest is the confirmation of weak correlation found for
galactic OB stars (Panagia and Macchetto ) between the terminal velocity and

the effective temperature (Figure 4). A similar correlation between termina±

velocity and excitation class has been found by Willis 4 for WN stars. In both

cases the higher the effective temperauure the higher is the terminal velocity.

In a@dition for all high temperature (or excitation) stars the momentum
carried by the mass-loss (MV_) exceeds the momentum that the stellar radiation

can release to the wind through single scattering, _ Lc (where _ is some

effective efficiency factor, usually of the order of O.i). Clearly a more effi-
cient process is needed to account for the wind acceleration - this can be

provided by multiple scattering of hard NV photons in the range - 200 to 500

(Panagia and Macchetto3). The process can be descrihed qualitatively as

follows. In the interval 200-500 _ the number of expected atomic and ionic

lines is very large (a hundred or so) so that the average separation between

subsequent lines is of the order of cA%/% = i000 Km/s. Therefore, when a

photon in this range is re-emitted in the backward direction (after being
absorbed at a given position of the envelope) it can be absorbed at the

opposite side of the envelope by a line transition wNich is shifted to the red

by about c6%/% _ 2v relative to the transition which had produced the first

absorption. This process can be repeated several times (typically 5 to 20)

until the photon eventually either excapes in the outward direction or hits

the star and is thermalised. Therefore, the efficiency of this process is

mainly determined by geometry and only marginally by both mass-loss rate and

chemical abundances. With this mechanism the momentum given to the wind can

amount to several times (5-20) L (200-500 _/c, which is just what is needed to

explain the acceleration of the wind in OB stars, and possibly in WR stars too
(Panagia and Macchetto3).

In addition, since the acceleration due to multiple scattering is most

efficient at some distance from the stellar surface (typically 2 to 4 stellar
radii) the wind velocity is expected to present a gradual rise with radius and

to approach the terminal value quite far from the star° This also agrees well
with observations°
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Table I

Spectral Spectrum Mass-

Star type V B -V U -B H8 [islble IUE loss

Large Magellanic Cloud

HI) 32228 09.5 + W 10.789 -0.170 -0.906 2.679 S/J J
38282 WN6 11.177 -0.144 -0.872 2.256 S

HDE 268605 09.7 IB 11.355 -0.137 -0.964 2.644 S
268743 06 11.643 -0.172 -0.906 2.331 S
269090 BO I 11.682 -0.075 -0.929 2.558 S
269333 BI 11.260 -0.158 -0.825 2.467 S/J
269357 06 12.123 -0.249 -I.024 2.269 S
269445 OBf 11.459 0.242 -0.805 2.163 S/J
269546 B4 9.921 -0.064 -0.751 2.548 J
269676 04-5 11.510 -0.193 ,0.908 2.516 S/J
269698 04 II 11.877 -0.156 -0.932 2.579 S/J #
269810 03IF 12.269 -0.232 -I.004 2.643 S/J
269828 08 "_4.181 0.007 -0.791 2.557 S/J
269858 OI 11.094 -0.067 -0.900 2.212 8
269891 BO.7 11.449 0.149 -0.701 2.450 S
269896 ON 9.7 11.363 -0.018 -0.866 2.475 S

269936 BO.7 11.202 -0.041 -0.829 2.524 S
270952 06 IAF 12.018 -0.192 -0.998 2.443 S/J
271213 B3 IA 12.261 -0. I05 -0.708 2.737 S

No photometry

HI) 34664 BEP (11.83) - - - J J
35343 PEC (9.8) - - - J J

HED 269748 WR (12.8) - - - J J

Small Ma_ellanic Cloud

RD 4862 OB 10.768 1.099 0.917 2.624
5045 OB 11.077 -0.047 -0.872 2.487 S/J
5030 B6 1 11.229 0.080 -0.473 2.513 S/J

BBBBI, SK31 OB II.146 -0.020 -0.740 2.549 S
liD 5291 OB 10.858 0.062 0.618 2.511 S

5980 OB+W N3 11.967 -0.231 -1.004 2.458 S/J
46531 OB 11.798 -0.164 -0.863 2.565 S/J

S = September 1979
J = January 1980
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ABSTRACT : FarUV observations of the behavior of (wind-velocity, superioniz-

ation) values as a function of the phase of the (Be, B-shell, B-normal) pattern
established by visual observations for y Cas and 59 Cyg are translated into a

crude atmospheric model for the Be phase and several kinds of mass-flux vari-
ability across the three phases.

I. INTRODUCTION :

In the visual spectral region, one _finds it possible to establish quite
homogeneous classes of normal stars, based on their continuum, the overall
strengths of some lines, and the wings of most lines. Such features character-

ize a photosphere, defined as an atmospheric region which can be modeled from

values of (gravity, total radiative-flux _ effective temperature) under those

thermodynamic constraints accompanying the condition that the star be a closed,
thermal system. Those anomalous features, and those stars in which such anom-

alous features are strong, which cannot be modeled under the preceeding two-
dimensional, (closed, thermal) description are labeled peculiar ; and their

origins are attributed to the existence of atmospheric regions lying above the

photosphere, within which the thermodynamic constraints accompanying the
(closed, thermal) description are not imposed. Prior to observations made in

the farUV,x-ray, farlR, and radio spectral regions,our knowledge of such outer

atmospheric regions came almost wholly from such peculiar stars, including the
Sun because of its peculiarly-close location, which enables detection of anom-

alous features with only small amplitudes.Indeed, there has been strong confu-
sion as to whether many normal stars do not have such outer atmospheric re-

gions, or whether they are simply too small to be detected under present ob-
servational techniques in such stars.

In the farUV and x-ray spectral regions, such homogeneity within visually-
defined (luminosity, spectrum) class is very often replaced, among both normal

and peculiar stars, by strong individuality and variability in the observed

spectral features ; which implies that such two-dimensional specification of

a star is insufficient, observationally and thermodynamically. These same fea-

tures of individuality and variability are shown in the visual spectral regions

of most peculiar stars, as is the additional feature of gradualness, or the

existence of all degrees of peculiarity between very large and very small. Such

_radualness should be contrasted to any belief that peculiarity is an abruptly-

occuring characteristic. All this suggests that _eculiar stars differ from
normal stars only in having larger amplitudes of those parameters which must
be adToined to the "normal", two-dimensional, set in order to describe the

"anomalous" phenomena in the visual, and the "normal" phenomena in the farUV,

x-ray, farlR, and radio regions, and to model those outer atmospheric regions

j,
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where such phenomena arise. This suggests that a combination of visual spec-

tral features of peculiar stars and pan-spectral features of both peculiara_d

normal stars can be used, em__!_ : first, to map out the structure of

those exo-photospheric regions ; then, to identify those additional, indepen-
dent parameters and modified thermodynamic constraints that are necessary and
sufficient to model such structure.

The present paper summarizes such a combination of recent farUV observa-
tions with visual observations extending over almost a century for one type of

peculiar star : the Be/shell. We find that the apparently different "objects"

--- Be, B-shell, B-normal __L are actually just three different temporal pha_es
of one kind of object, with passage between phases occuring in time incompar-

ably shorter than evolutionary. By linking such phase-changes, and implied

atmospheric structure, to different levels of mass-flux occuring at different

times in a given star, while noting that the maximum superionization level in

the farUV region does not appear to change, we identify both additional par_-

meters and modified thermodynamic restraints and character. We note that 30 %

of main-sequence B stars show, at a given epoch, either the Be or B-shell

phase spectra. Some portion of the remaining B-normal stars must correspond to
the third, B-normal, phase, with temporarily-low mass-flux amplitudes, even

though some B-normal stars may have too small potential-amplitudes to ever

show such phase-changes. Thus, peculiarity and variability seem essential

aspects of main-sequence B stars ; and their existence is evidently important
in understanding stellar structure and evolution. We suggest the same situ-

ation holds throughout the HR diagram, for other ("peculiar", "normal") pairs;

and that such investigations as the present should be extended to them.

II. OBSERVATIONS :

I. Visual evidence for 3-phase representation :

Many astronomers regard Be and B-shell spectra as characterizing similar,
but not identical, objects ; it is not always accepted that they may well be

only different time-phases of the same kind of object, corresponding to differ-

ent phase-values of those thermodynamic parameters needed to describe exo-

photospheric structure. However, there are sufficient examples in the litera-
ture of stars passing variously between Be, B-shell, and B-normal spectra i_

all directions (Ref. I). In the stars 59 Cyg (BI.SVe) and y Cas (BO.51Ve),
each of which has been studied over almost a century, we find a remarkable

similarity in pattern of such change,over the last 70 years,differing only in

epoch. Each has been characterized by long,relatively-quiet periods, with rela-

tively--short periods of spectacular change (about 7 years, for each). During
these latter, each star showed two short B-shell phases, which occur between

two strong Be phases, with the whole episode ending in a phase which would be

B-normal under low resolution, and is at most a ve___weak Be phase under high

resolution,with any emission limited very feebly to Ha. Fig. ! exhibits this

history.

Thus the visual spectrum shows in each of two stars : (I) Balmer emission

lines that can be produced on__y_by atmospheres extended several radii,with dis-

placements of emission lines, or of absorption cores, corresponding to les_
than 100 kms-l.Conclusions from line-widths are uncertain because of diffi¢:ulty
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in separating electron-scattering, rotation,expansion effects ; (2) Sub-ionized

Fell, etc lines, in both emission and absorption, again showing velocities

100 kms-I ; (3)Both these features appearing and disappearing in times ranging
from weeks to years. We have collected other examples of such behavior, some

similar, some different, in passage between different phases (Ref. I). The

important point is that this behavior of 59 Cyg and y Cas is not exceptional.

2. FarUV characteristics in various phases of Fig. I :

a) 59 Cyg (BI.5Ve) : Snow and Marlborough (Ref. 2) made farUV observa-

tions with Copernicus in 1972, apparently just at the end of a long Be phase
or just before a shell-phase ; and in 1975, just after a shell-phase and ,the

beginning of a rise to a strong emission phase. In 1972, the strongest NV ab-

sorption component is violet displaced _ 50 kms -I, with a faint component at

about -300 kms -I. In 1975, they report only one component, at about -180 kms -I.

SilV echoes this behavior ; and the lines are highly asymmetric.

We (Ref. 3) obtained IUE results in December 1978 and June 1979,during

a feeble, but rising Be phase ;Rogerson, Snow, Marlborough and ourselves ob-

taiged Copernicus observations monthly between July and October 1979. In De-

cember 1978, the deepest portion of the NV resonance line is shifted by

-750 kms -I ; in June, it is shifted by -400 kms-lo The following monthly obser-

vations show shifts varying with no pattern, but always in the range -400 to

-800 kms-;. Fig. 2 shows all these data for NV. In December 1978 and June 1979,
the CIV resonance lines follow the velocity shifts of NV ; while the SilV res-

onance lines show no shifts larger than -100 kms -I and are quasi-symmetric.

The striking thing is the absence, for NV and CIV, of the small velocity shifts;

and for SilV, of the large, during 1978-79 ; by contrast to the 1972 behavior.

b) % C&s (BO.51Ve) : Hammershlag-Hensberge (Ref. 4), on the basis of IUE

observations showing narrow, violet-displaced, additional (to an almost undis-

placed component) components in the NV, CIV, SilV lines in March 1979, as con-

trasted to April-May 1978, alerted that y Cas might be entering a new shell

phase. It is clear, from Fig. I, that when these stars enter a "shell-phase",
events happen quickly.

We obtained IUE observations at VlLSPA-Madrid in October 1979, as well

as visual spectra in October, November, December 1979 and February and April

1980, at the Haute-Provence Observatory. A comparison of these visual spectra

with those taken regularly over the last 20 years shows no change, other than

the well-known V/R variation of the Ha and HB emission peaks, and small changes

in the emission intensity. Thus we conclude that the narrow absorption compo-
nents observed in the farUV by Hammerschlag-Hensberge do not correspond to a

new shell phase at this moment ; they correspond simply to the double-compo-
nent mass-flow pattern in a well-defined Be-phase (Ref. 5).

Our IUE observations confirm the existence of the narrow, violet-dis-

placed components observed in NV, CIV, SilV by Hammerschlag-Hensberge (Ref.9)

In conjunction with the 59 Cyg results, these data are very interesting, as

regards conditions on the long-term variabilify cycle. These y Cas data, taken

at "quiet and moderately strong" Be phase, show two velocity components (Fig. 3)
-- or two concentrations of absorbing atoms -- for each of SilV, CIV, NV ; one,
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the largest, at about -I00, -200 kms -I ; the smaller, at about -1400 kms -I. By

contrast to 59 Cyg, observed at increasing emission phase, we observe no ioni:_-

ation-velocity correlation : just this apparent ionization-height gradient.

These results should be compared with the cited 1972 observations of 59 Cyg,

at the end of a long emission phase or at the beginning of the second shell

phase. There,also, no ionization-velocity correlation was noted ;but there,

also,one observed a faint,high velocity component in the NV and SilV lines al:

about -300 kms -I ;while the strong absorption component lay at about -50 kms "'I
or less.

Ill. CONCLUSIONS :

We suggest the following tentative model :

I. From _ Cas in 1978-79 and 59 Cyg in 1972 : reasonably strong Be emission

: The two absorption components in all highly-ionized lines refer to
chromosphere-coronal transition,and postcoronal, atmospheric regions. The la(_
of such ions at intermediate velocities corresponds to the presence of a corona

sufficiently-hot to suppress such ions. The coronal-level x-ray emission froll

y Cas substantiates this picture.

Thus, in the well developed Be phase, we have evidence for an atmospheric

structure in which : (i) a radiative flux under quasi-thermal conditions provides

a photosphere ; (ii) a nonradiative flux provides a heating supplemental to r_tdi-

ative, resulting in an outward increase, then decrease, of Te ; (iii) a matte_:-

flux provides a flow accelerating outward through sub-thermal, trans-thermal,

and superthermal ranges, and an associated density decrease much flatter thalt

photospheric. These are the characteristics of the atmosphere of an (open, non-

thermal) system (Ref. 6). The Te, flow-velocity, and density distributions are

given in Fig. 4 : adopting the Mihalas photospheric model (Ref. 7) of aBO.51Ve

star as starting point for Te, density ; a mass-flux of I0-8 M@y -I to locate
starting point for trans-thermal flow, and maximum beginning height of chro_:_-

sphere ; an x-ray indication of 106 K corona ;and the observed (V,ionization)
values of y Cas for pre- and post-corona. We have only relative locations in

height, no absolute scales. Note that a mass-flux range from I0-7 to 10-9

corresponds to 3.10 II - 3.109 range in particle concentrations at beginning
of trans-thermic flow.

2. From the Balmer and metal-shell observations : From the Te values in

Fig. 4, we see that Balmer emission can be produced in the photosphere-chromo-

sphere, and in those postcoronal regions cooler than where the farUV lines
arise. The sub-ionized metals, such as Fell, can arise only in the latter re--

tion. The velocities associated with the Balmer and sub-ionized emission re-

quire, then, a deceleration in the far post-coronal regions ; these are indi-

cated by dotted lines in Fig. 4. Such deceleration must come from interaction

with the ISM, apparently closer than the ~ O. Ipsc distances associated with
such interactions in the usual literature (Ref. 8) ;but the problem is open.

3. Variability in mass-flux : IF we associate variability in mass-flux vel--
ocities with that in mass-flux its---elf,we identify three kinds of such variabil-

ity ; (a) That corresponding to small fluctuations in the developed Be phase,

where the velocity of the two maximum concentrations of absorbing superionized
species does not change significantly, only the size of the concentration

(ie density of the wind) ; (h) That corresponding to variations in the phase of
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increasing from small to large Be emission, where both velocity of maximum

superionization concentration and its size change significantly ; (c) That

corresponding to different phases, where the velocity changes _ strongly ;
for example, between the 1972 and 1978-79 phases of 59 Cyg. These aspects of

variability are evidently critical in understanding the variability of atmo-

spheric structure between the B-normal, Be, and B-shell phases. The size of

the mass-flux evidently plays a crucial role ;but the interactions between

mass-flux size, the ability of the nonradiative flux to heat a particular atmo-

spheric region, and of the radiative flux to provide further acceleration to

whatever maximum velocity is reached are equally important. To clarify these
problems, empirically, we clearly need observations in farUV, x-ray, farlR

and radio, very frequently during such rapidly-changing epochs as the 7-year
ones shown by y Cas and 59 Cyg.

4. The densities in Fig. 4 are too small to produce the observed Ha emission

during a strong Be phase. Since densities increase as FM : either we increase
FM _ 10-6 in the strong Be phase ; or we abandon a density fixed by a continuous

flow in the postcoronal regions, su-bstituting for part of that region a reser-

voir, with boundaries fixed by interaction with the ISM, filled by a variable

mass-flux, enhanced during the beginning and increasing Be phases.
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OBSERVATIONS OF THE GAS STREAM

IN THE MASS TRANSFER BINARY HR 21421

Geraldine J. Peters
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Los Angeles, CA 90007

ABSTRACT

The mass transfer binary system HR 2142 has been observed at selected

phases with the high resolution spectrograph on IUE. The observations were

scheduled throughout the interval 0.91 < _ < 0.00 in order to permit us to

view the light of the primary star through the gas stream as it presents dif-
ferent orientations to our line of sight. Numerous UV lines formed in the gas

stream have been identified. The strengths and velocity variations displayed

by these lines are compared with those observed in the ground-based spectral

region. As part of a preliminary analysis of the IUE data, column densities
and velocities from Si III (4), Si IV (I), and Ti III (1) are used to deduce

electron densities in the gas stream as well as its thickness. Possible
evidence for stratification in the gas stream is presented.

INTRODUCTION

HR 2142 (HD 41335) is a 5th magnitude Be star which is also a mass trans-

fer binary system (references 1 and 2). With a period of 80.86 days and a

systemic mass of about 15 M®, it is a high mass counterpart of the familiar
Algol type binary system.

In order to investigate the physical properties of the gas stream, a ser-

ies of high resolution IUE observations were completed throughout the phase

interval 0.91 < _ < 0.00, when we view the light of the primary star through

the gas stream. The journal of the observations is presented in table I. The

phase, _, which is listed for each observation, is obtained from a recent

orbit solution for this single lined spectroscopic binary system (reference

2). According to this solution, if the period is fixed at 80_86, K = 9.4 km

s-i, Vo = 24.1 km s-l, and conjunction occurred on JD 2441990.6. Also incl-
uded in table I is a list of phases based solely upon spectroscopic observ-

ations (reference I) in which _s = 0.0 when the Balmer gas stream lines peak
in strength.

In this paper, a preliminary analysisof the IUE data is presented. Phase de-

pendent observations of features in the spectral region %%1295 - 1310 [which

contains Si III (4), Si II (3), and Ti III (i)] and the Si IV resonance lines

are analyzed and compared with earlier ground-based and Copernicus ultraviolet
observations.

IThis project is being supported, in part, by NASA grant NSG 5422.
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ABOUT THE MODEL

Details about the model for HR 2142 can be found in references I - 4.

In figure i, we show the model whidh has been developed over the past seven

years from both ground-based and Copernicus ultraviolet observations. The
phase interval over which the IUE observations were made is indicated. Some

features of the model which are shown in figure i are: I) the presence of a

well-defined gas stream and counter stream which apparently have large inclin-

ations with respect to the line of centers in the system; 2) the existence of

an extended, rotating, low-density (Ne = I0I0 cm-3) accretion disk positioned
about the primary star; and 3) the existence of an overall stellar wind from

the primary star and/or the disk which appears to be enhanced at _ = 0.5.

Since the system does not undergo an eclipse and the projected rotational vel-

ocity of the primary is high (about 400 km s-l, reference 5), we assume that

the inclination of the system is about 70° . Therefore, the physical para-

meters we deduce for the gas stream pertain to relatively high latitudes.

Since the spectral type for the primary is BIIV, the total mass in the system

is about 15 M0.

DESCRIPTION OF THE OBSERVATIONS

In figures 2 and 3, we show the phase dependent spectral variations ob-

served in two selected regions. Between %X1295 and 1310 we observe lines of

Si III (4), Si II (3), Ti III (i), and 0 1 (2). The O I line is entirely an

interstellar feature and is used as an aid in calibrating the wavelength
scale. Si II 1304 is a blend of interstellar and gas stream lines. Superi=_-

posed on broader photospheric features are sharper lines of Si III (4) and

Ti III (i) which are formed in the gas stream. In figure 3, it can be seen
that the SilV resonance lines have gas stream components which are redshifted

by about I00 km s-I relative to the centers of the photospheric lines.

From an inspection of figures 2 and 3, it can be seen that the sharp,

shell-type absorption lines which are formed in the gas stream are already

present in the earliest spectrum taken at _ = 0.91. In fact, the strongest
members of Si III (4), as well as other gas stream features seen in other

spectral regions, are saturated at this phase! The gas stream lines peak i_

strength between 0.95 < _ < 0.96. However, the intensities of the gas stream

lines decline rapidly after _ = 0.96. It should be noted, though, that the
intrinsically stronger features persist at conjunction.

From _ = 0.91 through 0.96, the gas stream lines show a positive velocity
shift (50 - i00 km s-I) relative to the photosphere of the primary star. How-

ever, at conjunction, the gas stream lines which remain appear to be at rest
relative to the photosphere.

The ultraviolet observations described above are compatible with earlier

ground-based and Copernicus UV observations of this star. In the visible

spectrum, the Balmer gas stream features reach maximum strength at _ = 0.96

but disappear completely at conjunction. Furthermore, the Balmer features

show a large velocity shift (80 km s-I, reference I) relative to the photo-

sphere at _ = 0.92 but this shift decreases to zero by conjunction. Coper-
nicus observations (references 3 and 4) revealed that gas stream lines of
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C II, N II, Si III, S III, and Fe III were present at conjunction whereas
weaker lines of Si II and S II were absent. The latter study did show that

all of the gas stream lines in the ultraviolet were weaker at conjunction but
it also revealed that the profiles of the lines are complex and contain multi-

ple components. One of these components is a highly saturated feature which

remains relatively fixed in velocity from _ = 0.90 through _ = 0.96. The
other components are unsaturated and show more positive velocities. The total

equivalent width for the unsaturated components is comparable to that of the

main component. At conjunction, the strengths of the higher velocity compon-

ents are much reduced. We now believe that the velocity variations displayed

by the gas stream lines can'be understood in terms of the variable multiple
components.

The most numerous gas stream features in the UV spectrum of HR 2142 are

lines of Fe III. Lines of C I, C III, N I, N III, 0 I, 0 III, and Fe II are

not observed. Ultimately, all of the gas stream lines which can be identified

and reliably measured will be analyzed to refine the model for the gas stream.

However, in view of the complexity already observed in the gas stream lines

(reference 4), the preliminary analysis of the IUE data presented in this

paper is restricted to lines which are unsaturated and presumably unblended
with other features.

ANALYSIS

The fact that Fe II gas stream lines are not observed suggests that the

temperature in the gas stream is above 18,000°K. From the ratio of Fe III
1032/1130 (reference 4), we conclude that the temperature in the gas stream is

close to 19,000°K. Therefore, in the analysis presented below, we adopt a gas

stream temperature of 19,000°K.

As stated in the last section, the complex nature of the gas stream lines

renders any analysis of saturated features highly uncertain. Although the
Fe III lines are the most numerous gas stream lines, all of these features

which have reliable f-values are quite saturated. Upon inspection of the

data, it was determined that Ti III (i) 1296 was especially suitable for ana-

lysis.

As seen in figure 2, Ti III %1295.88 begins to show at _ = 0.92. By _ =

0.96, it has reached a maximum strength of 0.2 A. Other stronger members of

this multiplet are blended with Si III (4) _1295 and 1299. The Ti III fea-

tures appear to have disappeared completely by _ = 0.98, For the analysis of

the line strength, the f-value was obtained from Wiese and Fuhr (reference 6)
while the partition functions for Ti were computed from data in Drawin and

Felenbok (reference 7). The column density from Ti III 1296 observed at _ =

0.96 is 1.8 x 1014 cm-2. _%e column density for Ti III becomes 1015 cm-2. If

_ ~ 19,000OK and Ne = 1012 cm-3, then Ti lll/Ti = 5 x 10-3 . Since hydrogen is07 times more abundant than Ti, the Ti III 1296 observation implies a hydro-

gen column density of 2 x 1024 cm-2 at a phase of 0.96. Therefore, with a

density about 1012 cm-3, a path length of i0 to 20 RQ (or I - 2 R_) is im-
plied. This result is compatible with the theoretical calculations for the

structures of gas streams by Lubow and Shu (reference 8). Finally, it should

be emphasized that such large column densities persist for a very short inter-
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val of time ( 0.93 < _ < 0.96). Densities are at least ten times lower out-

side of the above stated phase interval.

The Si IV gas stream lines (figure 3) are also unsaturated and, there-

fore, suitable for analysis. The column density of Si IV is 3 x 1013 cm-2 at

a phase of 0.96. At _ = 0.91, it is half of this value while at conjunctioll

the column density is reduced by two-thirds. If the temperature in the Si IV

region is about 19,000OK and the electron density is between i0II - 1013 c_ "3,

then most of the silicon must be trlplv ionized, Since the abundance ratio

between hydrogen and silicon is 3 x i0_, a hydrogen column density of about

1018 cm-_ is implied. Therefore, either a low electron density or a small

path length is implied. Neither are compatible with analyses of other,spec-.

tral features formed in the gas stream. The low column density from the Si IV

lines suggests that these features are formed in a different portion of the
gas stream than are the lines of Ti III, Fe III, and the Balmer lines. Per-

haps it should be noted that the Si IV lines show a larger velocity shift
(about 120km s-I) relative to the photosphere than do the above mentioned

lines as well as the gas stream lines of Si III.

The weaker, unblended members of Si III (4) were also analyzed. These

llnes suggested a Si III column density of 5 x 1014 cm-2. If the path length

is about I0 RQ, an electron density of I0II cm-3 is implied for the Si III ze-

gion. Some of the Si III lines remain saturated throughout the interval of

the observations. The velocities from the Si III lines are compatible with
those from the Balmer lines.

In this paper, a preliminary analysis of the I_UEobservations has bee_

presented. Ultimately, the analysis of the saturated llnesas well as the ac-

qulsltlon of additional observations should allow us to develop a detailed

model for the mass flow in the system.

REFERENCES

i. Peters, G. J.: Evidence for the Existence of Mass-Exchange Binary Be Stars
from Periodic Spectral Variations. Be and Shell Stars, ed. A Slettebak

(Holland: Reidel), 1976, pp. 417-428.

2. Peters, G. J.: Mass Flow in the Binary System HR 2142: I. Analysis of

Ground Based Spectrograms. Astrophys. Journ., 1980, submitted.

3. Polldan, R. S., and Peters, G. J.: Ultraviolet Observations of Close

Binary Stars. Close Binary Stars, ed. M. Plavec and R. K. Ulrich,

1980, in press.

4. Peters, G. J., and Polldan, R. S. Mass Flow in the Binary System HR 2142:

II. nalysis of the Ultraviolet Fe III Features. Astrophys. Journ.,

1980, submitted.

5. Slettebak, A.: Be Stars as Rotating Stars: Observations. Be and Shell

Stars, ed. A. Slettebak (Holland: Reldel), 1976, pp. 123-136.

160



6. Wiese, W. L., and Fuhr, . Atomic Transition Probabilities for Scandium

and Titanium. Journ. Phys. and Chem. Ref. Data, vol. 4, p. 263.

7. Drawln, H. W., and Felenbok, P.: Data for Plasmas in Local Thermodynamic

Equilibrium (Paris:Gauthier-Villars), 1965.
/
!

8. Lubow, S. H., and Shu, F. H.: Gas Dynamics of Semidetached Binaries. J

Astrophys.Journ., vol. 198, pp. 383-406

161
o



TABLE I - JOURNAL OF !UE OBSERVATIONS OF HR 2142

Image No. Date (U.T.) Julian Date Phase (_) Phase (#s)
(244+ )

SWP 8596 1980 March 30 4328.51 0.91 0.95

SWP 8597 1980 March 30 4328.55 0.91 0.95

SWP 8604 1980 March 30 4329.21 0.92 0.96

SWP 8616 1980 March 31 4330.14 0.93 0.97

SWP 6962 1979 October 23 4169.99 0.95 0.99

SWP 8637 1980 April 2 4332.50 0.96 0.00

SWP 6996 1979 October 25 4172.03 0.98 0.,02

SWP 7007 1979 October 27 4173.78 0.00 0.04
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Figure i: A model for the binary HR 2142. The interval in phase during which
the IUE observations were obtained is indicated.
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Figure 2: Phase dependent spectral variations in the strengths of the gas stream
lines observed between 0.91 < _ < 0.00. The major features are labeled

and the vertical lines indicate the locations of the corresponding
photospheric lines.
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Figure 3: Phase dependent spectral variations in Si IV (i). The vertical dashed
lines indicate the location of the gas stream component.
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THE UV RESONANCELINES OF THREE HOT Ap STARS
HD 133029, HD 175362 and HD 219749

Karl D. Rakos
Institute for Astronomy

Vienna, Austria

SUMMARY:

High resolution spectra of the Ap stars HD 133929, HD 175329 and
HD 219749 have been obtained during two 16 hour shifts with the IUE
satellite at Goddard Space Flight Center. Stellar wind, extended
atmosphere in rigid corotation with the stellar surface and the
influence of the strong magnetic field on the upper part of the
atmosphere would explain the shape and the strength of the resonance
lines. The resonance lines of HD 175362 in particular show very
peculiar behavior. The necessary driving forces for the expanding
envelope are not compatible with the diffusion theory of the Ap
atmospheres.

INTRODUCTIONAND OBSERVATIONS:

HD 175362 belongs to the group of helium-weak stars building an
extension of the Ap stars toward higher temperatures. The oblique-
rotator model for the star has been published recently by Hensler,
1979. References to other investigations concerning HD 175362 can be
found in his paper. Bonsack (1977) made a detailed study of HD 133029
yielding the following results: vsin i = 21 km/s, period of rotation of
2a89, Tef f = 11375 K, B9p (log g = 4.0) Temperature estimates have
been carried out by Adelman (preprint 1979). HD 219749 has probably a
h_gher temperature but the same spectral type. The rotation period is
2a60.

Stimulated by the discovery of mass loss in the B9p star Alpha And
(Rakos et al. 1979), the attempt was made to obtain high resolution
observations in UV for other hot Ap stars. Very good high resolution
short wavelength spectra of each star have been used for this
investigation. IUE data reduction was carried out with the
Tololo-Vienna interactive image processing system. According to the low
value of v.sin i the spectral lines are in general narrow, but
nevertheless there are very few lines without strong blends.

Highly ionized atoms Si IV, C IV, N V and N IV (Figure I) are present
showing strong absorption with extended blue wings and emission in the
line cores. The emission features have velocities of expansion as high
as 150 km/s. Much higher expansion velocity is connected with the broad
absorption wings of this lines.
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The Si IV doublet 1393.755 and 1402.769 is very strong in HD 175362.
The first line shows strong reversal component in the core. From the
blue edge of this emission the expansion velocity of I00 km/s and from
the envelope absorption component 560 km/s can be derived. The second
line seems to have even stronger blue-shifted (150 - 170 km/s)
emission. Also a general expansion velocity of 500 km/s can be measured
from the blue absorption line wing.

This doublet is very faint and blended by other lines in HD 133029, The
C IV doublet 154B.195 and 1550.768 shows.very similar behavior. The
lines are less pronounced than the Si IV resonance doublet, 4 lines due
to Fe III mask possible absorptions due to a wind or the emission
components. At least the first line of C IV suggests an expansion
velocity in the range of 600 km/s. The star HD 133029 and especially HD
219749 have visible C IV resonance doublets with certain blue-shifted
wings.

The N V resonance doublet 1238.810 and 1242.800 in the spectrum of HD
175362 is very strong and the lines are broad. The first line has an
undisplaced emission component and the blue-shifted absorption core at
-170 km/s. The line wings are very broad allowing expansion velocities
of more than 700 km/s. The second line of the doublet is unfortunately
contaminated with a reseau mark. A strong emission is shifted bluewards
slightly and broad line wings are present.

The spectrum of HD 133029 is underexposed at 1230A. HD 219749 shows
defintely very broad absorption and a terminal velocity of 500 km/s A
probable emission can be allocated within the absosrption wing with an
expansion velocity of -360 km/s.

Finally, in the spectrum of HD 175362 the N IV intercombination line
from the ground state 1486.496 may be present as a very wide absorption
feature completely on the blue side of the unshifted line position. The
maximum of the expansion velocity derived from this feature approaches
1200 km/s. The same line is even sronger but less shallow in the other
two stars. The low resolution spectra have pronounced absorption
features in the same place. The presence of the emission features is
uncertain.

The discussed lines demonstrate a hot expanding shell, stellar wind, and
mass loss, an unexpected new characteristic of magnetic stars.

The mass loss is also confirmed by the other resonance lines of Si III
and Si II. The Si III 1206.510 line is strong and broad in HD 175362
with an extended blue wind and the maximum expansion velocity of 600
km/s. The Si II (3) 1309.274 line is not a resonance line, but it
originates from the fine structure level of the ground term. Such lines
tend to behave like resonance transitions in the lower density part of
stellar atmosphere, where neither the photon flux nor the
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particle density is high enough to populate the excited levels. The
line is strong broad and symmetrical in the spectrum of HD 175362. The
Doppler velocity of * 340 km/s can be derived from the profile. The
resonance line of the same multiplet 1304.369 is unfortunately on the
edge of the detector field and therefore of very low quality. The
1309.274 line is also strong and broad in HD 219749 and HD 133029. In
the spectrum of HD 175362 the second Si II resonance line at 1526.719
shows a narrow interstellar feature in the core, which has very broad,
shallow, and symmetric wings. The photospheric Si II line of the same
multiplet (UV 2) 1533.445 is visible but fainter by a factor of two.
According to their gf values the intensities should be reversed. The
same situation also holds for the resonance line Si II 1260.418 and the,
fine structure level line 1264.737.

HD 133029 and HD 219749 have very strong 1526.719 and 1533.445 lines.
The first line has strong blue wings, showing a terminal velocity in the
range of -500 km/s.

Also the resonance lines of Si II I190.418 and I193.284 in the spectrum
of HD 175362 are remarkable. The first line seems to show core reversal
and emission in the blue and red wings with a very moderate velocity of
• 120 km/s. The second line is stronger and probably symmetric, it is
unfortunately on the edge of the detector field.

The doublet Ti Ill 1295.897 and 1298.706 in the spectrum of HD 175362
contains broad, rather symmetric lines with emission in the cores of
both lines. Likewise, S II and C II resonance lines confirm the
expansion velocity in the order of 600 km/s in HD 175362. S II 1250.500
is very strong line, somewhat disturbed by the reseau mark on the
detector. It is also present in HD 219749 with a similar velocity
distribution. The doublet C II 1334.515 and 1335.703 is one of the

strongest absorption features (except Lyman Alpha) in the spectrum of
HD 175362. The asymmetry in the blue wing is strongly indicated.

C II lines are also visible in the other two stars. The first line of
the doublet in HD 219749 has a blue shift of -70 km/s and a wide shallow
blue wing with the terminal velocity of -400 km/s. HD 133029 has also
an extended blue wing of the unshifted 1334.515 line with the same
velocity distribution.

The resonance lines of neutral atoms are very narrow, as opposed to the
broad features produced by ions. A very good example in HD 175362 is
N I at I199.55. The line is very similar to two other lines; N I
1200.218 and 1200.707. The same is true for 0 I 1355.605 and Cl I
1379.528 in all three stars.

DISCUSSION OF THE RESULTS:

Stellar wind and mass loss in the atmosphere of a peculiar magnetic star
is an unexpected phenomenon. It poses a serious problem for the
explanation of abundance anomalies by diffusion. The whole stellar
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atmosphere would not be quiet enough for diffusion processes to operate,
even if the expanding envelope is restricted to the outermost regions of
the stellar atmosphere. The second question concerns the driving forces
for the expanding envelope. Also the reason for the measured abundance
anomalies located at the opposite magnetic polesshould be explained.

First, discussion should be pointed to the question of the stellar
luminosity class. HD 175362 is classifed as B8p IV according to its
visual spectrum. According to the Snow-Jenkins Catalogue (1977), Si III
1206.510 is not visible in B8 III stars. It is strong in the spectrum
type earlier than B5 III or B4 V, but also in B8 la. This line is
strong in HD 175362 and at least suggests an unusual character of the
upper part of the atmosphere. Supergiant structure is also supported by
the energy distribution in the low dispersion spectrum. The Ultraviolet
Bright-Star Spectrophotometric Catalogue (ESA SR 27) has been used for
comparison. HD 175362 has a similar spectrum as the stars HD 34085 B8
la, HD 202850 B91ab, and HD 212593 B9 I. Also the presence of C II
multiplet no. 11 at 1323.9 of photospheric origin suggests the
supergiant structure. These lines are missing in the spectra of the
main sequence stars of type B8 V, but they are quite strong for spectrum
type B8 la. The same is true for the multiplet no. 4 of C III around
I176A - as a comparison see Beta Orionis A B8 la (Snow-Jenkins, 1977).
Two other stars, HD 133029 and HD 21974'9 are "standard" Ap stars without
any strong indication for giant structure, except for stellar wind.

Besides the recent detection of a magnetic field in Canopus (FO Ib),
Rakos et al. (1976), the present results confirm that strong magnetic
fields in stars are widely independent of the stellar type and,
therefore fossil in origin.

It is reasonable to suppose a rigid corotation of closed magnetic lines
of force within a distance of a few stellar diameters from the stellar
surface. At larger distances the lines remain open, as do the magnetic
lines of the solar magnetic sector structure in the neighborhood of our
planet (see figure 2). The ionized atoms will be forced and accelerated
along these lines, spinning with the frequency m and semidiameter
according the magnetic field B, charge q, and the mass m of the ion.

mcvt qB
r- qB w- mc

The resulting speed vt depends on the distance from the stellar
surface and the efficiency of the rigid rotation and the corresponding
centrifugal forces..For R, = 6 R , and the period of rotation of
3d67, the equatorial rotational velocity will be 83 km/s. In a
distance of only 7 R, the velocity of 600 km/s could be achieved.

In general, the vt is given by the following equation
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2_R R,

vt = P 86400 R

(P is the rotational period in days, usually known for Ap stars.) The
escape velocity ve is given by

ve : 617.7 (M,IM )I12 1 (R,IR )I12 kmls

For the condition vt : Ve we can get the "escape radius" Re

Re/R : (12.2 p)2/3 (M,/M)I/3.

For HD 175362 and the assumption M, = 3 M we get the following
result:

Re = 18 R and ve = 252 km/s.

For a larger stellar diameter, according to the proposed spectral type,
this velocity can be produced within the extended stellar atmosphere.
Ions with high spinning speeds in the line of sight over the stellar
surface, accelerated along the magnetic line of force by rigid
corotation of the atmosphere, would explain broad symmetric absorptions
in the wings of the resonance lines and the absence of such broad
features for neutral atoms.

Finally, instead of diffusion, some kind of magnetohydrodynamic
separation process should be investigated. In general, the magnetic
field and its direction, systematic motion of the gas in the deeper
region of the stellar interior, the atomic mass and the charge set the
path for the motion of each ion - similar to the mass spectrograph
principle. As soon as the specific ions are guided to the surface of
the star, the abundance anomaly is formed. Slight changes in the
stellar structure may result in the large abundance anomalies. From
this point of view the magnetic stars are a permanent challenge for the
theorist.

I am grateful to the IUE Observatory staff for the _ssistance which they
have given me in obtaining my spectra.
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VARIATIONSIN THE UV SPECTRUMOF a CENTAURI

RichardP. Fahey

Laboratoryfor Astronomyand Solar Physics

ABSTRACT

Equivalentwidth and centraldepth measurementsof the ultraviolet
absorptionlines from the spectrumof the He I variable star a Cen [HD 125823]
are presented. The measurementsare from 53 short-wavelength,and 45 long-
wavelength,high-resolutionspectrographstaken with the InternationalUltra-
violet Explorer (IUE) satelliteover a 25 day period during July and August
of 1978. Centraldepth measurementswere of lines of Cr Ill, Mn III, V Ill,
C I.II,Si II, and S II seen in the region between1245 and 1255 _. Equivalent
width_ are of the three He I 23S - n3pO transitionsfound at 2945, 2829 and
2764 A.

The period for cyclic intensityvariationsin He I is determinedusing
a four-parameter,least-squaresfit to a sinusoid. The IUE observations
match both a periodof 8.8163 ± 0.0003 days and a previouslyunreported
period of 9.2532 ± 0.0003 days with equal minima for the least-squaresfit.
The phase of Cr Ill maximum relativeto He I maximum is found to be 0.53
cycles for the IUE observations.

HE I INTENSITYVARIATIONS

Intensitychanges in the spectrumof the B3 V He I variablea Cen are
cyclic,with a period of roughly8.8 days (Norris,1971; Underhillet al.,
1975). For the present study, 45 LWR and 53 SWP spectraof a Cen were
obtainedover a 25 day interval. From these, intensityvariationsin He I
and in Cr Ill lines have been measured.

In this sectiontwo major points are discussed;(1) the measurement
by equivalentwidth and central depth of the energy absorbedfrom the
continuumflux of a Cen by lines of He I, and (2) the determinationof the
period of variationof the intensityof these lines.

THE LINES MEASURED

Among the absorption!ines in the visiblespectrumof a Cen, those from
the He IJPO states (e.g. 2JP° - n3D) show especiallystrong cyclic intensity
changes. In the range of IUE wavelengthsensitivity,no members of these
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multipletsexist. However,the members of the 23S - n3po multipletsfrom
n = 5 through n = 9 are seen. Since these are also triplet heliumtransitions,
they were expected to vary in strengthin phase with the 3pO lines observed
at visiblewavelengths.

In July and August of 1978, 45 long wavelengthspectraof a Cenwere
taken at u_even Lime intervalsover a 23-day period. Well defined lines
from the 2iS - n_Po series can be seen in them at 2945, 2829, 2764, 2724
and 2696 X. No study of the line 23S - 43P° at 3188 X is possiblebecause
the flux in the order of the IUE echellogramscontainingit is too weak.

QUANTITIESMEASURED

The He I lines at 2945, 2829 and 2764 X were strong enough,and their
profilesclear enough,that equivalentwidth measurementswere appropriate

to search for _ntensityvariationsin them. Measurementsof the central
depth of 2829 a were also made so that the sensitivityof the two methods
could be compared.

RESULTSOF MEASUREMENT

The equivalentwidths of the li_es 2945, 2829 and 2764 R, as well as
the centraldepths of the line 2829 A, were measured. Becausethe width
of each line varieswith time, the calculationof equivalentwidth was
always performedbetweenthe same two wavelengthsfor each line.

Each of the He I lines measuredfrom the IUE spectrais from the same
series in 3po transitions,thus, their average gives more informationabout
the time variations in a Cen than any individualline does. Figure 1 giveS-
a plot of the weighted averageof all five measurementsof He I lines
observed by IUE versus time.

A four-parameter, least-squares fit to a sinusoid using the variable
metric metho_ of Fletcher and Powell (1963) was applied to the 45 measurements
of the He I triplet series of a Cen seen with IUE.

The period determined is twofold: 8.8164 ± 0.0003 days and 9.2530 ±
0.0003 days with roughly equal fit (i.e. the sample variance and its gradient
on the hypersurface are almost the same in both cases).

Because the exposuretime for IUE observationswas about 90 seconds
for each spectrogram,it should be possibleto detect cyclic changes on the
order of hours or minutes. A search of the IUE He I line strengthmeasure-
ments for a short-timevariationsfrom O.Ol days to l day leads to no
probable period.
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REGION FROM 1245 _ to 1255

Observationsof the spectrumof a Cen with the CopernicusSatellite
in 1975 and 1977 confirmedthe fact that regionsrich in Cr III, VIII or
Mn Ill absorptionlines showed intensityvariationsconsistentwith the
cyclic behaviorof He I strength. This sectionpresentsthe resultsof
intensitymeasurementsfor 5 individuallines in 53 IUE spectrogramsand
a least squaresfit to a four parametersine curve for these and previously
discussedlines.

IMPORTANCEOF THIS REGION

Three factorscontributedto the choice of the lO _ spectral range cen-
tered on 1250 A for this study. First, of the two spectralregionssurveyed
with Copernicusin 1977, only this one is accessibleto IUE. Second, the
earliRr study o_ a Cen with Copernicusin 1975 coveredthe entire range from
lO00 A to 1400 A and showed no Kegion within the range of IUE to vary more
strongly than that around 1250 A. Third, the complete multipletCr III (6)
is identifiable.

RESULTSOF MEASUREMENTS

The absorption_linesexaminedin the range 1245 - 1255 _ are from
heavierelementsthan the helium discussedbefore. Thus, they are much less
Doppler broadeneddue to thermaleffects. Further,there are many more
strong lines at these wavelengths,so many of the lines of interestare
blended. In such cases, an appropriatemeasure of intensityis central
depth.

The region from 1245 to 1255 X was dividedinto three sectorsfor the
purposeof drawingconstantreferencelines for each of the spectra. Examples
of these lines for one sector are given in Fig. 2 which shows the spectrum
at maximumand minimumabsorption. These plots includethe measuredwave-
lengthof each featurefor which the centraldepth was measured.

It is worth noting that the entire region from 1245 to 1255 _ shows
large,cyclic changes in flux. There are many lines from Cr Ill, VIII _
and Mn Ill in this range that are not as strong or well-identifiedas those
measured in this investigation. These may be contributingto the total flux
change in this region as they have been observed to do in many sectorsof
the Copernicusspectraof the same star at these and other wavelengths.

The least squaresfit to a sine curve for the Cr Ill lines not only
gives the period of intensitychanges, but also the phase relative to He I
strengthvariations. Two give the followingresults

I. Cr Ill alone (53 data points)--Thebest fit to a four parameter
sine curve is 9.2536 ± 0.0003 days. A secondminimum in the
sample variancewith essentiallythe same value and gradient
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indicates a period of 8.8160 + 0.0003 days. The phase leads
that of He I by 0.53 + 0.01 cycles in both cases.

2. Cr III and He I from IUE (98 data points)--Here again two periods
are indicated. The most probable is 9.2534 ± 0.0003 days, while
the other is 8.8161 ± 0.0003 days. The Cr III data have been
shiftedby 0.53 cycles to allow the search for a single-period
ieast_squaresfit. The last two figures (Figs.3,4) show the fit
of a sine wave of period 9.25 days and one of 8.82 days to the
combined He I and Cr III observationsfrom IUE.
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THE ULTRAVIOLET VARIABILITY OF THE

T TAURI STAR RW AURIGAE 1

Catherine L. Imhoff 2 and Mark S. Gi_papa 2
Steward Observatory, University of Arizona

ABSTRACT

Between 1978 and 1979 the visible brightness of RW Aurlgae increased by
0.rag. During this time (a) CIV and SilV increased by factors of 2 to 4 while

the lower ionization lines remained unchanged, (b) the fluorescent Ol line
increased by a factor of 8, (c) the shell spectrum changed from emission to

absorption, and (d) the ultraviolet continuum brightened by 2.m3. On a time• m
scale of a week the continuum varied by as much as 0.8 but the Mgll emission

lines showed no variability over 10%. We hypothesize an active chromosphere,

transition region, and envelope cooled by mass loss in order to explain the
ultraviolet observations of RW Aur.

INTRODUCTION

A large portion of our IUE observing Program has been devoted to an

extensive study of RW Aurigae, a well-known T Taurl star with strong emission
characteristics. Our two main objectives have been (a) to obtain the best

possible data for the star, utilizing multiple observations in order to

generate a spectrum with good signal-to-noise across a broad wavelength range

and attempting high dispersion observations, and (b) to study the star's vari-
ability in the ultraviolet continuum and emission lines.

The results of our first set of observations have been reported in our

first paper (ref. i). A complete discussion of all our observations of RW Aur

is in preparation. In this paper we present a preliminary discussion of

these results, concentrating on the ultraviolet variability of the star.

RW Aur has been observed during two periods, the first during July 30 to
31, 1978, and the second over April 2 to 9, 1979. The individual observations

are separated by intervals as short as half a day and as long as nine months.
The observations during the latter period are more extensive, but for both

runs long and short wavelength observations were made. Between July 1978 and

April 1979 the star brightened from V=ll.m5 to 10m6, according to the IUE fine
error sensor. Variability in the ultraviolet spectrum was seen in the short

wavelength emission lines, the shell lines at longer wavelengths, and the

_his research is supported by the National Aeronautics and Space

Administration through grant NSG 5235 to the University of Arizona.

2Guest Observer, International Ultraviolet Explorer
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ultraviolet continuum.

RESULTS

The short wavelength spectrum of RW Aur exhibits a number of emission

lines, including HI, CI_ CII, CIII, CIV, NIV, OI, SII, SiII, SiIII, and

SiIV. Figure 1 depicts the spectrum as seen in 1979. Between our 1978 and

1979 observations the lower ionization lines (except for OI) remained at

essentially the same flux levels. However the highly ionized lines increased

in strength, CIV by a factor of 2.1 and SiIV by 3.8. NV 1240 and HeII 1640

are not observed in _ Aur. The enhancement of the higher temperature lines

indicates a change in the structure of the star's emission region (thought

to be either a chromosphere or shocked zone) that is reminiscent of the

changes seen in solar and stellar flares. The OI 1304 emission lines are

also seen to strengthen by over a factor of 8. Since these lines are

fluorescent with Lyman-_, the variability signals a change in the flux and/

or llne profile of the 'Lyman-_ line_

How do the emission fluxes for RW Aur compare to solar and stellar

chromospheric fluxes? To make this comparison we convert the observed fluxes

to surface fluxes corrected for extinction. As for many T Taurl stars, the

spectral type of RW Aur and the amount and nature of the extinction affecting
it are uncertain. We have therefore considered two cases which should

embrace the most likely parameters describing RW Aur: the "liberal" Case I,m
a G5 star affected by 1.69 of visual extinction characterized by R=6 and the

@ Orionis extinction law, and the "conservative" Case II, a K2 star affected

by 0.m17 of normal extinction. The two cases yield different radii (2.6 and

3.0 Ro) for the star but the largest difference in the derived surface
fluxes comes from the assumptions about the extinction. We find that even in

the conservative Case II, the surface fluxes for RW Aur exceed the quiet

solar chromospheric fluxes (ref. 2) by a factor of about 2000. Thus the

surface fluxes for RW Aur exceed those of the active chromosphere dwarfs

(ref. 3) and even the RS CVn stars (ref. 2). Figure 2 has been adapted

from Dupree's (ref. 4) figure 6 to show RW Aur compared to a number of other

stars. Conservative Case II is depicted; Case I yields surface fluxes a

factor of 8 higher.

In stars with active chromospheres, one sees both an increase of the

emission llne surface fluxes over the solar values and an additional enhance-

ment of the high temperature SiIV, CIV, and NV lines, as well as HeII

(thought to be due to recombination after X-ray ionization). In RW Aur we

see very high surface fluxes but an apparent weakening of the higher temper-

ature lines. CIV is weaker than SiIV, while for NV and HeII we can only set

upper limits. There are also curious deviations in the weakness of CII and

the strength of SIII.

These results are in general repeated in IUE observstions of other T

Tauri stars (ref. 5,6,7,8). We note the following general behavior: (a) CII

is weak compared to other lines. CIV 1550/CII 1335 ranges from 2.0 to over

6; the ratlo is 1.3 in the quiet Sun. (b) CIV is weakened in the strong
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emission stars. CIV 1550/SilV 1400 is around the solar value of 2.3 and

higher for weak emission stars but_ on!y 0.9 in S CrA, RU Lup, and RW Aur.
(c) HeII 1640 and NV 1240 have been detected only in the weak and moderate

emission stars. (d) The density sensitive ratio CIII] 1909/SiIII 1892
decreases from 2.3 in T Tauri to 0.i for RW Aur. This reflects an increase

in electron density from under 108 cm-3 to 4 x i0I0 cm-3, if calculated

curves (ret. 9) may be applied to these stars. According to these indicators,
RW Aur is the most extreme T Tauri star that has thus far been observed

with IUE.

We are currently exploring a possible explanation of the behavior of
the T Taurl stars in the ultraviolet. We hypothesize an active chromosphere

that is affected by mass loss. The mass loss is greatest in the strong

emission stars such as RW Aur. It cools the chromosphere-coronasufficiently

that Tma x in RW Aur is only 80,000 K; the density increases and follows an
r-2 distribution (ref. i0). The existence of such a low Tma x may produce

two regions of intermediate temperature, the traditional transition region

and an outer extended region, both of which may contribute to the fluxes of
lines such as CI, SiI, SiII, FeII, and HI. Further evidence for a ten_era-

ture turn-over comes from a derived temperature of 5000 K or less at 5 R,
for the fluorescent FeI lines in RW Aur (ref. ii). For stars with smaller

amounts of mass loss, the deviation from normal chromospheric structure is
smaller.

We obtained several short exposures of RW Aur in order to determine

the MgII emission line flux. The observed emission lines are the strongest
in RW Aur of several T Tauri stars surveyed; only a 3 minute exposure was

required. Four different images obtained in 1979 yield an observed flux
of 1.55 x i0-II erg cm-2 s-l, with agreement to 10%. Thus we have no

evidence for variability of the MgII lines over 10% in a week's time span.

The great strength of the MgIl lines encouraged us to attempt high
dispersion observations of the lines; a 3 hour exposure was sufficient

(figure 3). Each llne is extremely broad (7 _ full width) with a deep

central reversal at line center. The interpretation of the line profiles

seen in T Tauri stars is a wide-open question; we defer a discussion of

these lines to a later paper, We are planning to make a4ditional high-

resolution observations of the MgII lines this fall simultaneously with

ground-based high-resolution data obtained for the Balmer lines, NaI D,
and CaIIH and K.

The MgII lines are surrounded by numerous low excitation lines of FeII,

CrII, and MnII. In some T Tauri stars observed with IUE these lines are

in absorption, others in emission. The long wavelength ultraviolet spectrum
of RW Aur, however, changed from emission in 1978 to absorption in 1979. It
is difficult to understand this behavior unless it is due to an extended

shell. In fact one may ascribe the change from emission to absorption as

related to the brightening of the star. One might consider that any line

produced in a shell around the star is the combination of an absorption

component produced by the gas in the llne of sight to the star and an

emission component from the extended shell. At low resolution, the line
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appears in absorption or emission depending upon the geometric extent of

the shell, the brightness of the star, the strength of the absorption lines
and the strength of the emission. If the brightness of the star increases,
the absorption contribution is enhanced over the emission (assumed unaffected

by the variability). If this is so, one may expect absorption to predomi-

nate when the star is bright, emission when it is faint. The large range
of variability in the ultraviolet indicates that this behavior can be seen

most easily in this wavelength range.

A confirmation of the shell nature of the absorption lines comes

(surprisingly) from one of our high resolution spectra of the Mgll lines.

In a 7 hour exposure the ultraviolet continuum is well enough exposed to
show individual absorption lines. Although the signal-to-noise is only

about 5, the lines are broad (i 2) and dip to zero residual intensity

making them easily visible. The source of the ultraviolet excess is there-

fore interior to the shell. We have performed line identifications over

the wavelength range 2600 to 3100 _. Numerous lines of low excitation

multiplets have been identified, including Mgl(1), Till(l), Vli(1,2,3),

Crii(5,6,7,8,11), MnII(l,5,18,19), and Feii(1,60,61,62,63,64,78).

The ultraviolet continuum from 2000 to 3300 _ showed variations on all

observed time scales. Between 1978 and 1979 the ultraviolet continuum at

3050 _ rose by 2.m3; at the same time the visual brightness increased by 0.m9.
m

During the 1979 run, a variation of 0.m4was seen in half a day and 0.8 in a

week. The tendency for variability to increase at shorter wavelengths in
T Tauri stars is thus continued into the ultraviolet.

A composite energy distribution for RW Aur was formed from several

exposures of different durations. Good slgnal-to-noisewas thus obtained

over a range from 2000 to 3300 _ . The 2200 _ graphite feature is definite!F

weak or absent. No more than a few tenths of a magnitude of visual extinc-

tion may be present if the extinction law is normal. If larger amounts of
extinction are present then the extinction law must be peculiar, perhaps

resembling that found for 80ri. Both Case I and Case II discussed above
are consistent with these results. In both of these assumed cases the

energy distribution of the ultraviolet excess may be determined. As noted
in our first paper, the resemblence to Balmer bound-free emission is
unmistakable.

CONCLUS IONS

In summary we may state that the ultraviolet variability of RW Aur has

exhibited the following behavior as the star brightened: (a) The high temper.-
ature lines of CIV and SIIV increased by factors of 2 to 4 while the lower

ionization lines remained unchanged. (b) The fluorescent Ol lines increased

by over a factor of 8. (c) The shell spectrum at longer wavelengths changed
from emission to absorption. (d) The ultraviolet continuum increased by 2.3

and varied by smaller amounts on shorter time scales. In addition the Mgll
emission line fluxes did not vary by over 10% in one week. We hypothesize

an active chromosphere and transition region affected by mass loss to
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explain the ultraviolet observations of RW Aur. It is clear that the

variability of the T Tauri stars in the ultraviolet can provide valuable
information on the nature of these stars.
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IUE OBSERVATIONS OF BLUE HALO HIGH LUMINOSITY STARS m

Margherita Hack, Margarita L. Franco and Roberto Stalio

Astronomical Observatory, Trieste, Italy

ABSTRACT

Two high luminosity population II blue stars of high galac-

tic latitude, BD+33°2642 and HD 187569 have been observed at high
resolution. The stellar spectra show the effect of mass loss in

BD+33o2642 and abnormally weak metallic lines in HD 137569. The

interstellar lines in the direction of BD+33°2642, which lies at

a height z_ 6.2 kpc from the galactic plane, are split into two

components. No high ionization stages are found at the low ve-

locity component; nor carl they be detected in the higher velocity

clouds, because of mixing with the corresponding stellar/circum-
stellar lines.

INTRODUCTION

Various classes and subclasses of blue halo stars of popu-

lation II and old disk population have recently been described

and discussed (ref.s 1 and 2). Three large groups, which include

all subclasses, are generally recognized to be important: the

horizontal branch (HB) stars, the subdwarfs, the high luminosity

(HL) population II-B stars. This last group is formed of stars
which lie several magnitudes above the HB stars. Bernard 29, in

the globular cluster M 13, BD+33°2642 and HD 137569 are commonly

thought to belong to the HL-population II-B-star group.

Here we report on the high resolution IUE observations of
BD+33°2642 and HD 137569. The spectrum of BD+33°2642 (only SWP

observations, exposure time 4.7 hours) will be discussed more ex-

tensively since it presents the effects of mass-loss in the high-

Based on observations by the International Ultraviolet Explor-

er (IUE) collected at the Villafranca Satellite Tracking Station

Of the European SPace'Agency. This work was partly supported by
a CNR-Italy contract.
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ly ionized resonance lines of C IV, Si III and Si IV, and in-

trlguing evidence for the presence of high ionization stages in
the interstellar lines. The basic data for the two stars are

presented in Table 1.

THE STELLAR SPECTRA

The main results emerging from a study of BD+33°2642 made

by Stalio and Franco (ref. 6) are:

i) the effective temperature, on the basis of the spectral ener-

gy distribution, is found to be about 18000 K, lower than the

temperature determined from the line spectrum (ref. 4) Dy about

5000 K. Discrepancies between temperatures determined from the

continuum and line spectrum are also found in population I early'

type supergiants (see e.g. ref. 7) but seem not to be so great.

They are generally ascribed to the different depths of formation

of _he two spectra,

2) the carbon spectrum appears less ionized than in _ Sco, whose

UV spectrum has been used for comparison. This result is proba_

bly due to combined effects of a lower effective temperature and

lower carbon abundance,

3) the photospheric turbulence is small: it has been calculated
to be 2.3 km s from a curve of growth of Fe Ill lines. This

value is in agreement with the visual data, but in conflic9 with

the observations of population I stars having similar effective

temperature and gravity (ref. 8),
4) the star has a stellar wind revealed by the displaced lines of

C IV, Si III and Si IVl(figure i). The terminal velocity is esti-
mated to be -520 km s from the steep blue edge of the Si III

resonance prof_e. A _wer limit for the mass-loss is calculated
to be 4.7 x i0 - M yr .e

HD 137569, on the contrary, does not show clear evidence for

mass flux: the most prominent features in the UV, the resonance

lines of C II, have large symmetrical wings. The remaining spec-

trum consists of abnormally weak metallic lines of Mg II, Si III

and Fe III, multiplet 34. The ultraviolet flux distribution is

that of a B3 supergiant with no reddening. The anomalous B-V

colour index, and the vat{able radial velocities reported in ref.

5, support the idea that the star is part of a binary system.
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THE INTERSTELLAR SPECTRA

If we consider both stars as having low mass (ref. 2) typi-

cal of population II objects, their height from the galactic pla-

ne is 6.2 kpe for BD+33°2642 and 0.8 kpc for HD 187569. By vir-

tue of its distance, BD+33°2642 can provide information on the

high ionization galactic halo gas. The interstellar spectrum is
split into two components at about -35 and -105 km s-1. All mea-

surable lines are presented in table 2. Hig1_ ionization stages,

C IV and Si IV, seem to be present (figure i) at the stellar ve-

locity, thus suggesting that they might come from gas formed
around the star.

The interstellar spectrum is very well measurable in HD

137569 due to the weakness of stellar lines. All usually obser-

ved interstellar lines are present at about zero velocity. T_re
might be evidence of weak Si IV components at 0 and -iO0 km s .

CONCLUSIONS

We have studied two stars of the group of HL-population II-

B objects, whose cinematical and evolutionary situation is rath-

er controversial. BD+33°2642 is likely to be a population II ob_

ject, similar to the globular cluster giant Bernard 29; it has a
large amount of mass loss for its low mass, and, besides abun-

dances, presents differences with population I stars of the same

spectral class in the size of the photospheric turbulent motions,

which are smaller, and in the _nonnt 6f aiscrepancies between the

effective temperature determined from the continuum and line spec-

trum. HD 137569 has a simpler UV spectrum than BD+33°2642: it

shows abnormally weak metallic lines and no evidences of hitch

ionization sta_es and mass flux, unlike all known early type

stars of low gravity.

For both stars the reddening, as deduced from the interstel-

lar bump at 2175 _, is low. The radial velocities of the _nter-

stellar g_ in the line of sight of BD+33°2642 are at -35 and
-105 km s ; no high ionization stages are found in the low ve-

locity cloud; nor can they be detected in the higher velocity

cloud, because of mixing with the corresponding stellar/circum-
stellar lines.
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TABLE 1 : The Basic Data.

BD+33°2642 HD 137569

Spectral Type B2 B5
l

V i0.8 7.86 ( ref. 3

B-V -0.14 0.24 }

i

i" 520 21 o

b" +510 +520

-i -1
Radial Velocity -95 km s variable; -30 km s

in our spectrum

22900 °K_ 120OO' °K )Tef f

io_ g 2.3 __ref.4 2.3
ref. 5

M -3.9 -2,6 based on masses
v of 0.66 M

®

197



TABLE _, : Radial velocities of _he interstellar lines on the wavelength scale

of the star rest frame,BD+33o2642.

Vel Vel Ion k (A) Vell Veil
Ion I (A) (km s -1) (km s -1) (km s- ) (km s- )

C I 1656.928 - -103 Si II 1260.418 -42 -I01

1657.380 - -113 1264.730 - -103

1657.907 - -118 1265.023 - -102

1328.833 -20 -110 1304.369 -40 - 98

1277.240 -29 - 1526.719 -33 - 72

C II 1334.530 -20 -110 1533.445 - -112

1335.700 -23 -102 Si Ill 1206.510 - - 90

C IV 1548.202 - - 87 Si IV 1393.755 - - 90

w ,
1550.774 - - 81 1402.769 - - 85

N I -1199.549 -15;-55 - S II 1250.586 -35 -106

1200.224 -34 - 1253.-812 -29 -100

1200.7ti -5;-43 - 1259.520 -30 -102
L

0 1 {302.170 -36 - 98 Fe II 1608.456 -28 - 84

Mg I 2026.405 - - 82 Ni II 17_1.560 -31 -117:

A III 1670.786 U41 - 95 175!.920 522

A! III 1854.726 - -106" !Z7! 960 -42 -
w

1862.795 -" -102 Zn II 20_6.097 -27 -105

Si II i193.784, -36 - 87 \

. . .I194_497- - " 90 _Iso photospheric
contributions
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THE EMISSION/ABSORPTION FE II SPECTRUM OF HD 45677

R. Stalio and P.L. Selvelli

Astronomical Observatory of Trieste

Italy

ABSTRACT

The complex behavior of the Emission/Absorption spectrum of Fe II is

analyzed. The far UV spectrum is characterized almost solely by absorption
lines, while, in the near [IV, strong emissions are predominant. Radiative

excitation from the ground to the highest levels (X = i0 eV) with re-emission

in the near UV, visible and I.R. seems to be the main mechanism capable of

explaining the observed spectral features.

THE EMISSION/ABSORPTION SCHEME

The emission-line star HD 45677 (a short summary of its main observed

characteristics is presented in Table I) shows a Fe II spectrum which appears

as (i) sharp in absorption with typical Be-shell-phase profiles; (2) sharp

in emission in its forbidden components, (3) wider in emission, sometimes with

sharp absorption on the blue wing. This variety of profiles is present

throughout the different spectral ranges observed: the passage from shell-

phase-like _rofiles to emission is gradual as one moves from the ultraviolet
below^2000 K to longer wavelengths. There is probably a "null" region, around

2100 _, where absorptions and emissions are balanced. Above 2300 _ the lines

are in emission, but the strongest ones show a reversal on the blue wing. In

the visual this characteristic is enhanced, the emission appearing as split

into two components. All forbidden Fe II lines are in the visual-near IR

ranges. The usually expected inter/circumstellar Fe II absorptions are

observed between 2300 and 2600 _ superimposed on the corresponding stellar
emissions.

The only important exceptiRn to the above scheme is due to multiplet UV
191, in emission at about 1786 K. Figure 1 illustrates some of the behaviors
described above.

Ni shows the same behavior, the passage from absorptions to emissions
being observed in a more restricted wavelength range from 1200 to 1750_.

Other emission lines in the ultraviolet spectrum are OI at X1305 and the
Mg II resonance doublets. At X1641.2 there is also an unidentified strong

emission that was incorrectly attributed to He II: it cannot be He II

because the wavelength displacement is too large and its presence would be in

contradiction with the generally low ionization character of the emission
spectrum.
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II. THE GROTRIAN DIAGRAM

We restrict the analysis to that portion of the energy level diagram _

formed by _he term systems of the quadruplets and of the sextets. The

extension to the doublets follows naturally. Octets are unimportant. One

must recall that deviations from LS coupling can be important for Fe II, so
that intercombination transitions must be taken into account.

If we consider only the sextets, we see from Figure 2 that transitions

between the ground term a6D and the closest ones a6S(multiplet 7F), z6D °

(multiplet UVI), z6F ° (UV2), z6P ° (UVS) correspond to actually observed

emission lines. On the contrary, as the excitation potential of the upper

terms increases_ we observe the transitions a6D-y6p ° and a6D-x6p ° in

absorption. The terms y6pO and x6p ° emit to the metastable term a6S

(multiplet UV 191), which in turn emits to the a6D. Trnasitions from the

ground to higher energy terms, as for example a6D-w6p ° (EP h!gh=ll.30 eV,

multiplet UVI8) fall below the wavelength range of IUE. As the correlated

downward transition to a6S is not observed either in emission or in

absorption, we guess that there is not enough flux reaching the regionof

formation of Fe II lines to cause excitation above about I0 eV. Partial

support for this idea comes from a comparison of the transition probabilities

and the observed line strengths. The oscillator strengths for the transitions

a6S-x6p ° and a6S-w6p ° are comparable; conversely only the lines of the lower

energy transition (multiplet 191) are seen in emission. Thus the situation

can be represented by a simple three-level-atom scheme, the levels being the

terms a6D, a6S and either y6pO or x6p°: we observe high frequency quanta

being transformed into low frequency quanta through radiative processes

occurring in diluted radiation fields. The high energy quanta are radiated in

the Balmer continuum of the B2 stellar photosphere. Part of these quanta

have energy sufficient to excite Fe II until about 10 eV; not more, because

the flux of a B2 star falls down steeply shortward of Ly m.

A similar three-level-atom scheme holds for the quadruplets and doublets.

A partial energy transition scheme for the quadruplets is given in Figure 2b.

All the levels of the lowest even terms are excited to high energy levels
(AE>TeV) of the permitted odd terms. These last emit to the metastable levels

around S eV, which in turn emit to the lowest even terms via forbidden

transitions observed in the visual-near IR range.

NI shows the same behavior for the 2p3 2D°, 2p3 2pO and 3S2p terms,

the lower term 2p3 2pO being excited to 3S2p, 8.3 eV above.
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The three-level-atom scheme, however, explains only partially the

observed emissions. It is not very evident what is the source of excitation

of the odd-term-z-levels. In Figure 2a we see, for example, that two strong

emissions (the multiplets UV3 and V42) depart from z6P °, despite the fact

that there is no evident way of feeding it. The emissions corresponding to

the transition z6pO-e6D are, in fact, too weak; intercombination transitions

do not seem to play any role in this case. Also for the quadruplets and

doublets the z levels behave in this way. We have not yet, carefully checked

the influence of intercombinations in these cases.

Iii. CONCLUSIONS

It is still too early to draw definite conclusions from our observations.
HD 45677 is not a very common object, although the features that we have
briefly described in Table 1 and called "stellar" are characteristic of all
early-type stars: the profiles of the "sensitive" lines give evidence of
motions, and there is mild superionization (NV seems to be absent) indicating
chromospheric-coronal regions.

Theunusualness lies in the cool "metallic" line spectrum, essentially
Fe II. The concomitant presence of absorption lines in the far-UV, permitted
emissions in the near UVand permitted-forbidden emissions in the visible and
near-IR suggests a simple explanation in terms of resonance fluorescence from
the ground terms under conditions of diluted radiation and matter density.

However, the difficulty of explaining a number of emission line strengths,
as for example that of multiplets [IV3and V42, makes us reluctant to assume
the resonance fluorescence mechanism as the only possible one: there might
be other mechanisms, like pumping from other ions, which produce part of the
observed emission spectrum.

In our case it is possible that a clue towards a better understanding of
the odd-term-z-level excitation will come from IUH observations with a high
signal-over-noise ratio in that region that we have called "null", around
2100 _.
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TABLE 1

mv = 8.5-9.5 Presently fading in light

Spectral type: B2 From.:_.visual and UV spectral energy
distribution. IR excess.

E (B-V): 0.15 From the "bump" at _2175.

IUE high resolution 2xLWR: the emission strength has

observations: declined from the first (Sept 1978)

to the second observation (March 1979);
IxSWP (March 1979).

IUE "stellar" absorption C IV and Si IV are the highest

spectrum: ionization states definitely present;
undisplaced resonance, lines observed;

FWHM 250 and 40 km s-I respectively.
A1 Ill resonance doublet and Fe llI

(multiplet 34) with abrupt rising of
the blue wing to the continuum.

IUE emission spectrum: described in the text.
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THE DETECTION OF COMPANION STARS TO THE CEPHEID VARIABLES ETA AQUILAE
AND T MONOCEROTIS

John T. Mariska, G.A. Doschek, and U. Feldman

E.O. Hulburt Center for Space Research

Naval Research Laboratory

ABSTRACT

We have obtained ultraviolet spectra with IUE of the classical Cepheid

variables _ Aql and T Mon at several phases in their periods. For D Aql
significant ultraviolet emission is detected at wavelengths less than

1600 _, where little flux is expected from classical Ce_heids. Further-
more, the emission at wavelengths less than about 1600 A does not vary
with phase. Comparison with model atmosphere flux distributions shows that

the nonvariable emission is consistent with the flux expected from a main-

sequence companion star with an effective temperature of about 9500 K

(A0 V - AI V). For T Mona nonvarying component to the ultraviolet

emission is observed for wavelengths less than about 2600 _. Comparison

with model atmosphere flux distributions suggests that the companion has an

effective temperature of around 10,000 K (A0) and is near the main sequence.

INTRODUCTION AND OBSERVATIONS

Classical Cepheids are a major element in the determination of galactic
and extragalactic distances. Thus determinations of their masses and ab-

solute magnitudes are of considerable interest. One method for determining

these properties is to study binary systems containing Cepheids. We report
evidence here that the classical Cepheids q Aql and T Mon have companion
stars.

As part of a program to study classical Cepheids with IUE, we obtained

spectra of N Aql and T Mon on several days in 1979. All of the spectra

were obtained at low resolution. Exposures were made in both the long and

short wavelength cameras and with both the large and small apertures. Fig-

ures i and 2 show samples of the calibrated spectra at several different

phases for q Aql and T Mon, respectively.

Examination of the spectra in figures i and 2 shows a number of inter-

esting features. In both cases at short wavelengths (below 1600 A in fig-
ure i and below 2000 _ in figure 2) the magnitude of the flux and its

spectral distribution are clearly incompatible with the F or G type
spectrum expected for a Cepheid. Only at longer wavelengths does the

continuum flux increase with increasing wavelength as would be expected
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for a Cepheid. Furthermore, only at longer wavelengths does the flux

vary with phase, as expected for a Cepheid. For both stars the features

pointed out above are seen in all of the spectra we have obtained, includ-

ing those taken with the small aperture. Thus the source of the radiation

must be within 1.5 arc sec of the two Cephelds. We therefore suggest that
the features of the spectra presented in figures i and 2 indicate that

Aql and T Mon have early type companion stars.

ANALYSIS AND DISCUSSION

To determine accurately the characteristics of the companion stars,

we have compared the observed flux at the Earth in the wavelength range of

IUE with predicted fluxes from a series of stellar atmosphere models cal-

culated by Kurucz (ref. i). Each set of model atmosphere fluxes was redden-

ed using published color excesses for the Cepheids. To reduce the contri-

bution from the Cepheid, the models were fit to the data at the phase

closest to minimum light. Further details on the model fits are presented
elsewhere (refs. 2 and 3).

For _ Aql the best fit was found for a model with an effective temper-
ature of about 9500 K. For T Mon the best fit was for a model with an

effective temperature of I0,000 K. Figures 3 and 4 show the data near

minimum light, the best fit model fluxes, and fluxes for models with effec-

tive temperatures that bracket the best fit values for n Aql and T Mon,
respectively. In both cases the agreement of the model fluxes with the

observations is good in the region of the spectrum where the flux is due

only to the companion and interstellar reddening is not a major problem.

If we assume that the companion stars are at the distance of the

Cepheids, then we can use the observed ultraviolet flux to estimate the
radius of the stars and hence their luminosity class. The radius is given

by the expression (R/d) 2 _ F% = f%, where R is the radius of the star,

d is the distance to the star, _ is the surface flux at the star, and
f% is the flux measured at the Earth, corrected for interstellar absorption_
Following this procedure, we find radii for the companion stars of N Aql

and T Mon of 2.2 Ro and 7.4 Re, respectively. Further details of the
determination are given elsewhere (refs. 2 and 3). The radii determin-

ations indicate that the companion star to _ Aql is an A0 V to A1 V star,

while the companion star to T Mon is an A0 III star.

The detection in the ultraviolet of companion stars to Cepheid vari-

ables could provide a valuable method for checking the period-luminosity

relation. So far with IUE we have observed 6 classical Cepheids, two of

which have companions. Pel (ref. 4) has estlmated that at least 25% of

all Cepheids are binaries. As our understanding of normal stars in the

ultraviolet region of the spectrum improves, these companions to Cepheids

could prove to be a new check on the period-luminosity relation.
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Figure i. Low-dispersion short and long wavelength spectra in absolute

flux units of _ Aql at 3 phases in the 7.18 day period.
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Figure 2. Low-dlsperslon short and long wavelength spectra of T Mon at

5 phases in the 27 day period. The ordlnate for each spec-

trum has been displaced from the one above it by a factor of

ten.
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Figure 3. A comparison of the absolute flux distribution at the Earth

for n Aql at phase 0.73 with reddened flux distributions from

model atmospheres by Kurucz. The models have been adjusted

to fit the data at 1600 _.
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LINE STRENGTH VARIATIONS IN B CEPHEI

David Fischel and Warren M. Sparks

Goddard Space Flight Center

ABSTRACT

The line strength variations of the resonance line of

C IV (1550_, 2s 2S - 2p) observed by OAO-II have been
confirmed by IUE observations. In addition, the NV

resonance line (1204_, 2s 2S - 2p), the Si III line (1206_,

3p _P-_, multiplet ii) and the Si IV resonance line (1395_,
3s S _ 2p) all vary in line strength essentially in phase

with the C IV variation. The (preliminary) period of the
variation is 6.02/12.04 days.

INTRODUCTION

Observations of B Cephei taken by OAO-II in 1971
revealed a mysterious variation in the C IV doublet at 1550_

(ref. i). The doublet appeared to disappear totally, but

this was an effect of the coarse resolution of OAO-2, since
each line clearly appears in all of the IUE observations.

IUE observations were taken October 10, 1978 (day 285) and

February 24 to March 10, 1979 (days 55-71). The variations

detected by OAO-II have been confirmed and other strong
lines have been observed to emulate the C IV variation.

OBSERVATIONS

The October 10, 1978 spectra were exposed for 20

seconds. Since the 1550_ region is in a valley of low

spectral sensitivity, the February - March exposures were
incrementally increased to 50 seconds, and then decreased to

20 seconds. In this manner, the observations around

February 26, 1979 provide the most reliable equivalent

widths of C IV and, yet, the spectra could be searched for
variations in other lines.

One scan on October 10, 1978 was lost due to confusion

of the star tracker by the apparent visual companion located
at 250_ 13.5 arsec distant with _m = 4.7 mag. (references 2
and 3). Subsequent observations used an offset in the star

tracker reference point to compensate for the apparent
companion when it was in the field-of-view.
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DATA REDUCTION

The data has been photometrically corrected with the

new intensity transfer function. The relative net flux for
order 89 (which contains 1550_) was obtained by estimating

the background flux at the edge of the order, subtracting it

from the gross spectrum and applying the (l+a_ ) sinc 2 x
correction with a = 0.01. When each line of the doublet

appeared clearly singular, each line's equivalent width was

measured separately and added together. Since the lines

blend together as their strength increases, such cases
necessitated measuring a single equivalent width covering
both lines.

Table I lists the IUE exposure number for the short

wavelength prime camera (SWP), the observation midpoint
time, and the total equivalent width. Figure 1 illustrates

the variation of the C IV line strength over a 6.02 day

period. (Zero time has been a_bitrarily selected as day
zero of 1978). If the data were plotted for a 12.04 day

period, the crosses would appear between phases zero and

0.5, and the circles would appear between phases 0.5 and
one. Visual inspection of the distribution of crosses and

circles clearly shows the nearly perfect similarity. If

this similarity did not exist, one would choose the 12.04

day period as the more likely period.

Figure 2 illustrates the variation observed in the C IV
doublet. At minimum strength (_ = 0.94), the lines are

clearly separable and their strengths are in the expected
2:1 ratio. As their strengths increase, the weaker (blue)

component increases more rapidly than the red component, and
extends its absorption further to the blue than the red

component extends to the red. Furthermore, even at maximum

strength ( _= 0.41), the region between the lines is never
completely absorbed.

It is not yet clear whether this strong variation of

the blue component is enhanced by the presence of other

absorption lines varying in strength or not. Additionally,

at some phases (e.g. % = 0.23), the red wing of the blue

component exhibits a very sharp [ise. Figure 3 illustrates
the same effects in the N V 1240_ doublet. This doublet

does virtually disappear at minimum strength (# = 0.94).

Both components first appear to the blue side of their rest

wavelengths. At maximum strength ( _ = 0.41), both

components are near their rest wavelengths, and then shift
redward as the phase progresses. A similar effect occurs in
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the C IV lines, but it is much less obvious. Since the N V

is a well separated doublet there is no blending between the

components, and the effects are more dramatic than in C IV.

The Si III singlet at 1204_ and the SI IV doublet at

1395_ also show the same periodic line strength variation.

Weaker lines do not exhibit any strong 6.02 day variation.

CONCLUSIONS

The OAO-II observations have been confirmed by the IUE

observations which provide much better data for theoretical

analysis. The 6.02 or 12.04 day variation appears in the

strongest lines of C IV, N V, Si III, and Si IV and unusual

line profiles are observed. Whatever mechanism causes these
variations, it is most effective in the outermost layers of

the stellar atmosphere. The previously hypothesized tidal

distortion by an unseen binary companion for either P =
12.@4d, e = 0 or P = 6.@2, e = 1/2 does not explain the wavelength

shifting. If a tidal distortion occurred, one would see

both bulges, one contributing to the blue and one to the red

wing. Pending further analysis which awaits receipt of the

remainder of the processed data from the IUE observatory, we

conclude that the mechanism must be pulsational with a 6.02

day period.
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TABLE I

Date

SWP GMT W

2428 285:08:14:40 2.980

2929 285:08:49:50 3.290

2930 285:08:18:00 2.890

2931 285:09:45:36 3.059

2932 285:10:13:05 3.915

2933 285:10:40:10 3.451

2934 285:11:08:30 3.663

2935 285:11:36:08 3.626

2937 285:12:31:47 3.066

2938 285:13:00:12 3.292

4361 55:05:20:12 1.533

4362 55:05:48:35 1.315

4370 55:17:16:53 0.878
4384 56:23:07:32 0.951

4386 57:00:06:26 1.313

4387 57:00:35:02 1.802

4395 57:05:52:44 1.579

4405 58:04:22:35 2.631

4418 58:23:01:14 3.093

4452 61:02:56:22 1.636
4453 61:03:31:55 1.882

4458 62:02:32:44 1.678

4459 62:03:03:20 1.538

4460 62:03:33:05 1.479

4468 63:02:45:56 2.124

4481 63:20:46:40 2.570

4502 64:23:22:11 3.173

4511 65:22:36:10 2.505

4532 67:00:31:57 1.667

4533 67:01:57:30 1.542

4550 67:22:10:12 1.197

4551 67:22:38:28 1.387

4552 67:23:08:40 1.464

4554 68:01:57:02 0.879

4555 68:03:30:59 0.856

4576 69:20:20:25 2.055

4595 70:21:05:43 3.581

4596 70:22:00:44 3.439

4597 70:22:55:11 3.769

4598 70:23:49:55 3.382

4599 71:00:44:50 3.345
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4600 71:01:34:06 3.392
4601 71:02:33:19 3.956
4602 71:03:27:30 3.913
4609 71:20:44:46 3.066
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COMMENTS ON THE ORIGIN OF HEATING IN THE MANTLES OF EARLY-TYPE STARS

Anne B. Underhill

Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

ABSTRACT

It is shown that quiescent heating by magneto-dynamic effects can

produce a range in injected non-radiative energy that is probably adequate

to account for the range in physical properties that is observed for the

mantles of early-type supergiants.

INTRODUCTION

The properties of B-type la supergiants are summarized in Table i.

The question arises of why there is such a large change in level of

ionization and outflow velocity in the mantle (that is, in the outer

atmosphere of the star where the effects of the deposition of non-radiative

energy are apparent) when the change in effective temperature is by a

factor of only 2.6.

Table i.

Properties of the B la Supergiants

Property 09.5/BO B3/B5 B9/A0

Teff(K ) 26000 14000 i0000

Radius (R@) 36 56 85

v_(km s-1) 1900 600 250

Diff. vel.

(km s-±) <40 <25 <15

Wind profile 0 VI, N V, C IV ?, Si IV Mg II, C II

seen C IV, Si IV AI III, C II Si IV ?, AI III ?

Wind profile AI III, C II, 0 VI, N V, 0 VI, N V,

not seen AI II, Fe II, AI III, Fe II, C IV, AI II,

Mg II Mg II Fe II

2
Typical _ Cam, 15 Sgr o CMa HD 21291

stars e Ori, < Ori _ CMa liD 21389
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DISCUSSION

Important points concerning the heating of stellar mantles by quiescent

magneto-dynamic processes have been summarized by Stencel and lonson (i)

and applied by them to late-type stars. Their formulas are equally valid for

early-type stars. In the case of B superglants, one can consider that all

the la supergiants originate from about the same place on the ZAMS. Thus

these stars probably have about the same initial magnetic field. Substi-
tution into Stencel and lonson's formulas of values for the stellar radius

and for the density and temperature in the mantle appropriate for B super-

giants shows that _ is probably significantly less than unity and that the

magnetic Reynolds number is large. Consequently, magnetic heating will
dominate over possible heating from mechanical waves. Also it follows that

the initial magnetic field will have dissipated by very little during the

time taken by the star to evolve from the ZAMS to being a B Ia supergiant.

Let us assume that the magnetic field in the mantle at a point at radiu_

R has the value and shape of a dipole field, and that the typical size of a

coronal loop, RL, is proportional to the radius of the photosphere. Then

the rate of heating by quiescent magnetic processes per unit volume in the
o+ -4

mantle, Qquiescent' will vary as 0=v = BinitialR . Substitution of typical

values for p(about the same for all B supergiants), v, the typical differen-

tial velocity in the mantle (probably turbulence due to rotation), and

stellar radius shows that if Qquiescent is 1.0 for 09/B0 supergiants, it will

be 0.067 for B3/B5 supergiants and 0.0045 for B9/A0 supergiants.

Consideration of these numbers and of observed details of BCtype super-

giant spectra as well as recognition of the fact that supergiants are formed
initially with small magnetic fields suggests:

I. that the mantles of luminous early-type stars are inhomogeneous;

2. that the mantles are probably heated by magnetic energy, quiescent

heating occurring in magnetlc-loop structures which may be relatively
small;

3. that outflow is started by magnetic events and accelerated by radiation
pressure;

4. that impulsive magneto-dynamlc heating may occur locally.

These four conclusions will account for the observed variability of the
light and spectra from Ia supergiants as well as for the main characteristics

of the ultraviolet spectra of B supergiants.

The full text of this paper has been submitted to the Astrophyslcal Journal
Letters for publication.

REFERENCE

(i) Stencel, R. E. and Ionson, J. A. 1979, Pub. Astron. Soc. Pac., 91 451.
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DISCUSSION - PART II

Hartmann: Several authors have shown that the radiation pressure force

in the wind is unstable to perturbations, so that you may not need to

invoke perturbations in the stellar core.

Also, I don't believe that the Castor, Abbott, and Klein force calcula-
tions extend to A stars. Therefore, law will depend on effective

temperature. Thus, one cannot expect that the scaling V_/Vesc =3

necessarily holds for all stars, and so your contradiction of the low
terminal velocities in A stars may not be correct.

Aller: Those of us who try to derive abundances from stellar spectra
would like to have stars for which we can trust model atmosphere.

Earlier work on LMC snpergiants (for practical reasons) utilized the

very brightest stars where atmospheres are unstable. Is there a limit

on luminosity below which we can be pretty sure the stellar atmosphere

models may be trusted? In our work on LMC supergiants Ross, O'Mara,

Bruce Peterson, and I selected less luminous stars in hopes we would

escape the difficulty.

LamerS:for_ = -6 seems a good cut-off below which you should be safe,except _e very rapidly rotating stars.

Peimbert: What is known about mass loss rates from stars in the

Magellanic Clouds? What are the predictions by the different mass loss

mechanisms proposed?

Lamers: The mass loss rates of the Magellanic Cloud stars are not well

known, but a first differential study by Hutchings, based on low reso-

lution spectra, suggests that the wind velocities and the rates may be
smaller than for Galactic stars.

If the wind is due to radiation pressure, one expects that the rates are

smaller in the Magellanic Cloud stars, because the C, N, 0 abundances

are smaller and the radiation pressure comes mainly from the CNO lines.

If the mass loss is driven by some other mechanism but accelerated by

radiation pressure, one expects about the same mass loss rates but
smaller wind Velocities.

Stencel: You indicated a correlation between mass loss rates

and v sin i. Given the current scenario for cool stars requiring

rotation to power dynamos to produce magnetic fields which influence

the outer atmosphere (chromosphere and corona), and speculation that

reconnection in coronal polar plumes is the site of the solar wind

origin, do you think this dynamo mechanism could be important in hot
stars?

Lamers: The connection between rotation and a dynamo mechanism for

creating magnetic fields in hot stars is possible. However, the chromo-
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spheric activity in late-type stars is correlated with rotation and

convection for the generation of magnetic flux tubes. In hot stars the

convection layer is either absent or very thin.

Darius: Perhaps I could comment that the ratio of terminal to escape

velocity deviates from Abbott's relation not only for lower temperatures

but for lower luminosities at the same high temperatures as the luminous

OB stars. In particular, in the anomalous cases of mass loss found in

two hot subdwarfs, the ratio runs therefore _ than the value expected
from the radiatively driven model and confirmed by Abbott for more
luminous mass-losers.

Imhoff: I would just like to comment that the density-sensitive ratio

Si III/C III] is about I0 in RW aur, which falls outside the range you

have in your diagram. I find the range in the ratio is higher than

you've indicated.

Plavec: I notice that you made a comment that all the excess continuum

can be explained in terms of hydrogen free-bound emission. I think that
a considerable contribution must be due to hydrogen free-free emission,

since the continuum and veilin_ are seen right across the Balmer jump
all the way up to about 4,000 K.

Gahm: The free-free emission is certainly a dominant feature at blue

wavelengths. However, for the wavelengths looked at with the IDE, the
free-bound emission dominates.

Hartmann: Can you comment on the presence or absence of BE II 1640 _ in
T TAU Stars?

Imhoff: Some "weak-lined" stars show relatively weak 1640 _ emission.

The strong-lined stars like RW AUR and RV LUP show no evidence for 1640
2

Gahm: Yes, in RV Lupi He II 868 _ is present in emission, but it is

very weak.

Underhill: I wish to emphasize the point implicit in some of your

illustrations that stars at the same point in the ]{R diagram (same T _

and R), and therefore at same stage of evolution, of ten show differen_

spectra from their mantles. A very striking case is for

WN7 stars which fall exactly on the same spot as EAri (BO Ia). The

striking parts of their line spectra are very different, but their
continuous spectra are very similar. This is because the continuous

spectrum is formed in the photosphere which is similar in both stars,

but the characteristic lines are formed in the mantles which are different.

Lamers: The ionization balance in the winds of early type stars can

vary drastically from star to star. From a study of Copernicus spectra

of 25 stars we found that the Si IV/N V ratio strongly decreases with

increasing _eff for T .. > 30000K, whereas the 0 VI/N V ratio is inde-

pendent of Teff, but _ends on the density in the wind: 0 VI/N V
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decreases as the density increases (Gathier, Lamers and Snow, 1980,

Astron. Astrophys., in press).

Wallerstein: What do the WC stars show for mass loss?

Conti: The analysis of WC spectra is difficult and complicated; we

have not yet completed our analysis.

Rumpl: Did I.understand you to say that some of the mass loss rates

were derived on the basis of one line?

Conti: In most cases two lines, e.g., 0 IV and C IV were used, but

there were a few where the mass loss rates were based on one line, e.g.,

N IV in WN stars. However, as noted earlier_ the derived ionization

structure was similar for most of the stars.

Hartmann: How do the mass loss rates derived from radio techniques

compare with your rates?

Conti: Generally they agree within a factor of two or three. One star,

9 SGR, is discrepant by a factor of 40. There may be some source confu-
sion in the radio measurement, but otherwise there is no real problem in

understanding this.

Conti: Would you please comment on the variability reports for a CAM?

Grady: Large scale line profile variability was reported for

sEAM in the first IUE conference, in April of 1979. At this time we
were working with old ITF data and the net, rlpple-corrected, extracted

spectra, provided by GSFC and VILSPA. We have since discovered that the

background extraction procedure is faulty and in fact, that the large

scale line profile variability in _CAM was totally spurious and due to

changes in the background extraction. We have yet to check for changes

in terminal velocity measurements.

Lamers: The additional components that you see in 8Arc may not be

exceptional for early type supergiants. In a study of the Copernicus

spectra of 25 stars, we found that in almost all stars there are narrow

components (by =200 k_ s) superimposed on the P Cygni profiles. These
occur typically at V = 0.70 V _ (Lamers, Gathier and Snow, 1980, Astron.

Astrophys., in press). Is it possible that the components that you see

in Arc might be the same features, but only stronger?

Cassinelli: We have called the lines in SAra "transition region lines"

because they appear at zero velocity displacement. Similar lines are
seen in several of the Ib supergiants at around B5. Because of the lack

of velocity shift, I think these are different from the features you
have discussed.

Linsky: Have you noticed any correlation of x-ray luminosity and mass
loss rates in O stars and early B supergiants?
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Cassinelli: Mass loss rates in early B supergiants are poorly known.

For the O-type stars there is no obvious simple correlation. But _ere
is _pnsiderable attenuation of x-rays by the wind and^La may be 10

-10°0 egs/sec before attenuation, compared to L z 10_ZXegs/s observed.

Thus, any intrinsic correlation can be easily m_sked by uncertain attenua-
tions in different stars.

Aller: If you take thsqobser_d x-ray fluxes for these 0 stars, how well
does the predicted N(O _)/N(O _) agree with the observed values of this

ratio? In other words, does the mechanism work well when you put in the
numbers?

Cassinelli: Yes, for the 0 stars the Auger mechanism seems to suffice

quantitatively. That is the x-rays flux that actually reaches the

outermost layers of the wind where u = u_ (and is subject to no furth$_
atte_ation on travelling to earth) is sufficient to convert enough 0-_
to 0 _ to explain the observed profile.

Hartmann: Are you concerned that you are really observing the terminal
velocity in the cooler stars when the lines are weak?

Cassinelli: There may be some problem. However, it doesn't surprise me

that the velocities decrease with decreasing effective temperature even
in the context of radiatively driven wind theory.

Lamers: Is your efficiency for transferring momentum from the radiation

to the wind large enough to explain the acceleration of the very thick
winds of Wolf-Rayet stars?

Macchetto: In the case of the Wolf-Rayet stars, the larger rates of
mass-loss increases the efficiency of transfer of momentum from the

radiation field to the wind through three effects: a) as the opacity of

each line increases, the number of scatterings per photon is also
increased, b) the number of lines which become available are also

increased, and c) the spectral interval from which photons become

available to be scattered is increased towards longer wavelengths and
therefore the increase in the total flux is considerable.

Underhill: You speak Of sufficient flux in the range 200 to 500 _ for
driving the wind of stars like _ _ Sco. How do you know that sufficient

flux is available? I doubt it unless your stars are of types near 05.

Macchetto: The single scattering mechanism is capable of accelerating
winds up to velocities of between 500-1000 km/s. This mechanism can

account for the wind acceleration of all B type stars (T ._ < 20000°K).

Therfore the expressed low flux shortwaved of 500 X does not present any
problem. For hotter stars, the multiple scattering mechanism becomes

increasingly important, and can easily accelerate the winds to velocities
as large as 3000-4000 km/s.

Linsky: Since the infrared excesses imply a large amount of material at

22,000K, have you computed Le and C II emission fluxes and, in the case

of L_, whether they are observable through the interstellar medium?
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Underhill: All the B supergiants do indeed show C II 1335_ emission in

the low and high dispersion IUE d@ta. L@ emission is not seen presumably
due to interstellar absorption. I have not computed any fluxes.

Lamers: The mass loss rates for A-type supergiants derived by Barlow
and Cohen from infrared excess are about a factor 30 larger than those

derived from the UV spectra (Lamers, et al., 1978, Ap. J. 223, 207;

Praderie et al., 1980, Atron. Astrophys., in press). Can you comment on

these large rates derived from the IR-excess?

Underhill: I consider Barlow and Cohen's calculations to be based on an

inappropriate theory and to be of no relevance for the late B supergiants.

Holm: Systematic errors are known to exist in the low dispersion which

produce discrepancies between the SErp and the LWR spectra of the order
of 70_. Moreover, longward of 3200 _ the reproducibility of the spectra

is lower than over most of the wavelength range of the instrument. Dr.

R. Bohlin and I are attempting to derive an improved calibration to be

published in the next IUE newsletter.

Underhill: I have not used IUE low-dispersion spectra longward of 3200
_. The fluxes which I do find in the range 1200 to 3200 _ agree reasonably

well with the available ANS and $2/68 faint star photometry.

Plavec: When you go, in the LWR camera, from 2,000 _ longwards, at

which wavelength do you first encounter the Balmer emission?

Underhill: Balmer continuum emission becomes significant from about

2100 _ longward.

Plavec: I noticed on my LWR spectra, even those of standard main-

sequence stars, that I get increased flux--something like a mild "Balmer

emission," which I suspect must be due to incorrect calibration, i.e.,

it must be spurious.

Underhill: A. V. Holm tells me that the intensity calibration of the

LWR camera is uncertain longward of 3200 _: it may contain small errors

in the range 3000 to 3200 _.

Underhill: I am doubtful of some of the identifications you have made.

In many late B stars and in Si stars there is a broad strong absorption
feature near 1485 _ which can plausibly be identified as a Si II line

whose upper level can autoionize.

Rakos: I cannot exclude this possibility but Si II lines are of moderate

strength.

Lien: Have there been any non-periodic flare events, given the limita-
tions of the SWP camera?

Fahey: Not in the region studied, but there is some evidence in some of
the material which has not been analyzed on detail.
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Underhill: Did you see any "wind profiles" in the ultraviolet spectrum
of a Centauri?

Fahey: Yes, there was evidence of emission on many spectra (especially
LWR) and often the HE I lines around 2945 _ showed a P Cygni profile.

Stencel: I) The Mg II profile is amazing. A sample of 50 late-type

stars indicates general agreement with the Wilson-Bappu_ Weiler-Oegerle

correlations of line width to absolute magnitude, to ±0.7. But, forcing
RW Aur on this correlation leads to M ~ -12 . I gather Kuhi already

noted this for the CA II H+K lines. _asri (1980 U of Colo. Dissertation)
has found the lowest gravity cool stars may have transfer effects which

excessively broaden the Mg II emission core. 2) The Mg II profile
appears to represent outflow. 3. Rutten, Cram & Lites have modeled

Fe II emission in the solar spectrum and find that it can be pumped by
UV photons from the lower photosphere. By analogy, Fe II emission in T

Tauris could arise from a hot, sub-envelope source. Changes from absorption
to emission due to density variations.

Savage: Have you considered the effect of interstellar line absorption

on the emission line fluxes? It is quite common for interstellar absorption

by species like C II %1335 OrlSi II %1260 to be total over velocity
widths of about 50 to 60 km s .

Imhoff: We have no estimates at present.

Plavec: Emission spectra of binary stars of the W Serpentis type also

show striking differences in line intensities compared to typical chromo-
spheres. Then the stars show mass outflow but the kinetic and ionization

energies for the emission lines probably ultimately comes from accretion.
I noticed that in your SWP spectra a sudden rise of the continuum flux

for _>1750 A. I have observed the same phenomenon, and eclipse observa-
tions of 8 Lyrae suggest that it is due to an accumulation of Fe III

emission lines. Do your T Tauri observations suggest that the material
flows in or out?

Imhoff: There is no indication either way in the ultraviolet observations,
aside from interpretations of the high resolution Mg II lines. Other

data suggests mass loss but the observations are not simply interpreted.

Gahm: Did the ratio of Si III to C III line intensities change with
time?

Imhoff: The ratio is roughly C III]/Si III=O.l in both observations but

the quality of the data doesn't allow us to see variability of under a
factor of 2.

Gahm: You mentioned that the absolute flux of versions mission lines

increased with increasing brightness of the star. Were there also
changes in the equivalent width of the lines?

Imhoff: We have not yet determined the fluxes for the weak continuum

seen at short wavelengths, so we have no equivalent width estimates.

232



Gahm: Comment on the question of infall or outflow. In the case of RW

Aur the absorption lines RW are seen on the Balmer continuum from 3300

to 3750 _ are violetshifted on all spectrograms I've looked at.

Imhoff: RWAur is probably one of the clearer cases of mass loss, but

the situation for T Tauri stars in general is not clear.

B_hm-Vitense: Would it be possible that the apparently weak emission in

the ha absorption in Mg II could actually be left over between two
absorption components_ the longward component being due to interstellar
absorption and the shortward component being the intrinsic circumstellar
line?

Imhoff: Yes, in fact J. Linsky suggested also when I first showed him
the line profile that the "emission" would be leftover between two

absorption components.

de Boer: I would like to comment that the interstellar lines you detected

are of negative radial velocity_ in the same sense as galactic rotation
would produce. Your star is at i z 60° and b z 50 °, equal to but of

opposite sign as, the direction of the Small Magellanic Cloud. The

absorption pattern has very similar radial velocities, but with opposite

sign, as detected toward the SMC (Savage and de Boer, this symposium and

submitted to Ap.J.). You cannot exclude that C IV is interstellar in

deed, at large 2, due to a gaseous galactic halo.

Stalio: No, in fact, I cannot. If C IV is intersteleon, it is unfortunate
that it has the same radial velocity as the star. On the other side one

must take into account that there are two rather well-separated groups

of interstellar lines at velocities different from the star velocity.
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AN IUE'S EYE VIEW OF COOL-STAR OUTER ATMOSPHERES
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I. INTRODUCTION

One of nature's curiosities is that cool stars have hot outer atmo-

spheres. In fact, some cool stars have hotter plasma in their coronal ex-
teriors than in their fusion-powered interiors.

The study of exotic atmospheric phenomena in stars was limited until

recently to our own Sun. The Sun is a fairly mundane sort of star, as stars

go, although the solar surface confronts us with a myriad of constantly

changing fine structure that tax the theorist's ingenuity to explain.

The Sun has taught us that the chromosphere and corona are powered by

the deposition of mechanical energy. The remarkable temperature inversions

in the solar outer atmosphere arising from the dissipation of comparatively

small amounts of heat are likely the result of thermal instabilities driven

by the inefficiency of the plasma radiative cooling at low densities. The

nature of the heating mechanism remains elusive, however, although magnetic

fields are thought to play a central role.

Somewhat more than two years ago, the study of cool-star chromospheres

and coronae gained a measure of respectability with the advent of the Inter-

national Ultraviolet Explorer. For the first time, large numbers of cool

stars could be observed in the ultraviolet with enough sensitivity to detect
the faint emission features formed in the chromosphere (T _ 6 x 103 K) and

hotter layers (T _ 2 x 105 K) of the outer atmosphere. A year and a half

ago, the Einstein soft X-ray telescope was orbited, and almost immediately

began detecting coronal emission from ordinary late-type stars. Together,

these complementary instruments have provided a remarkable picture of the
occurrence of chromospheres and coronae in the HR diagram that i_ very dif-

ferent from that anticipated by stellar theorists (Vaiana 1980; Linsky 1980).

A few months ago, the Solar Maximum Mission was launched to study solar

chromospheric activity at the height of the sunspot cycle.

The detailed morphological and dynamical study of solar active regions

by SMM very likely will be a key to understanding many aspects of stellar

activity that are seen so vividly with IUE and Einstein. Nevertheless,

tThis work is supported in part by NASA under grants NAS5-23274 and NGL-06-

003-057 to the University of Colorado.

237



there is much we cannot learn if we study the Sun in isolation. In particu-

lar, the Sun confronts us with an unchanging set of fundamental stellar para-

meters; surface gravity, effective temperature, chemical composition, age,

rotation rate, and so forth. Variations in the gross structure of chromo-

spheres and coronae in stars with very different fundamental properties can,

in principle, provide important clues to the nature of outer atmospheric

phenomena that studies of the Sun cannot. For example, we might suspect that

stellar magnetic fields are the driving force behind the physical structuring

and plasma heating in stellar coronae, if the Skylab S-054 soft X-ray images
of the solar corona are a useful guide (Vaiana and Rosner 1978), but the ori-

gin of the Sun's magnetic field is only poorly understood, and will likely
not be explained in the basis of solar observations alone, no matter how
detailed.

We must therefore temper the morphological and dynamical picture that

solar physicists will provide of our nearby G2 V star with gross surveys of

chromosphere-corona properties in a wide range of cool stars, in addition to

more comprehensive studies of particularly interesting objects. (I am told
that Otto Struve once commented that at least one in five stars is remark-

able [e.g. Stencel et al., these proceedings], so there should be no lack of
suitable candidates for the latter studies!)

It is in the spirit of the solar-stellar connection, and the supple-

menting of gross survey results with detailed studies of individual stars,
that I present my review.

Because of space limitations I cannot begin to cover all of the IUE

studies of cool stars that have been undertaken by the many groups and in-

dividuals who are active in this field. (To those authors whose work I do

not mention, my apologies.)

Instead, I will focus on three separate topics that together demonstrate

the power of IUE for probing the occurrence of chromospheres and coronae in

the cool half of the HR diagram, and perhaps also shed some light on the

reasons why stellar outer atmospheres behave in the peculiar ways they do.

I summarize the three topics as follows:

First, _ will describe how the IUE is used in practice to deduce the

physical properties of stellar outer atmospheres. I will discuss the sorts

of information that one can extract from low-dispersion and echelle-mode
spectra with the SWP and LWR cameras. I will illustrate the discussion with

spectra of two bright binary systems, _ Centauri (G2 V + K1 V) and Capella

(G6 III+ F9 III). In fact, the comparison of these two systems with the

Sun has revealed unexpected clues to the nature of the chromosphere-corona

phenomena. (Harking back to Otto Struve's comment, there should be at least

one remarkable star in that group of five, and there is!)

Second, I will describe the several IUE surveys of stellar Mg II emis-

sion that are now available. The Mg II h and k resonance lines are impor-

tant radiative cooling agents in stellar chromospheres, and have provided

the first empirical confrontation with a proposed chromospheric heating
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mechanism, namely acoustic waves. In addition, the correlations of Mg II

emission core shape parameters with stellar luminosity -- the Wilson-Bappu

relation for the FWHM for example -- provide useful clues to systematic

trends of chromospheric structure with changing stellar properties, espe-

cially surface gravity. I will discuss what the stars that obey the Wilson-

Bappu effect seem to be telling us about chromospheric conditions, and

equally important, how the stars that don't obey the Wilson-Bappu relation
fit into the overall picture.

Last, I will summarize some of the recent low-dispersion surveys of

cool-star emission in the i150 _-2000 _ short wavelength region. Several of

the strong emission features found in that region -- C II 1335 _ and C IV
1550 _ for example -- are formed in the thin, 105 K transition region (TR)

interface between the multi-million degree corona and the 6000 K chromo-

sphere. I will describe the evidence that the cool half of the HR diagram
is divided into zones where the TR emission is prominent, and zones where

the hot lines tend to be very Weak or below detection thresholds. I will

present preliminary correlation diagrams comparing the chromospheric emis-

sion in the Mg II doublet with the hotter lines of the SWP region, and

demonstrate that stars with weak transition regions have weak chromospheres

as well. Finally I will specuiate on the nature of the chromospheric heat-

ing mechanism that is suggested by the Mg II correlations,and review an

evolutionary scenario to explain the weakening of cool-star outer atmo-

spheres in the red giant branch.

II. ULTRAVIOLET SPECTROSCOPY WITH IUE

IUE offers the stellar spectroscopist two complementary observing

modes: (i) low dispersion, for which no information concerning detailed

line profiles or velocities is available, but the resolution is adequate to

separate important emission features from each other and from background

continua; and (2) the echelle mode, which can provide detailed line profiles

with a resolution of somewhat better than 30 km s-1, and individual line po-
sitions to within several km s-I. The echelle mode does sacrifice sensiti-

vity for increased resolving power, consequently only a few bright cool stars

are accessible, even with long exposures (at short wavelengths). Neverthe-

less, comparatively faint stars are observed routinely in the L_ region with

the low dispersion mode (and at the 2800 _ Mg II resonance lines with the

LWR echelle mode).

A. LOW DISPERSION MODE, SHORT WAVELENGTH REGION

Figure 1 compares IUE short wavelength spectra of the nearby solar-type

dwarfs of _ Centauri (G2 V + K1 V) with an irradiance spectrum of the Sun

that has been degraded to the 6 _ FWHM resolution of the low dispersion

mode. The solar data were obtained during a moderately active portion of

the sunspot cycle (Mount, Rottman and Timothy 1980).

The spectra illustrated in Figure i, and in several of the subsequent

figures, are normalized fluxes. That is, the absolute monochromatic fluxes

measured at the Earth have been divided by the stellar bolometric luminosity,
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also as measured at the Earth. (The resulting monochromatic units are _-I.)

Normalized fluxes are a fair way to compare the chromospheric emission of

stars having very different surface areas (dwarfs and giants, for example),

and. essentially represent the fraction of the stellar irradiance budget that
is provided by the particular emission spectra. Normalized fluxes are inde-

pendent of often uncertain stellar distances, although they are sensitive to

bolometric corrections, which can be quite large for K and M stars.

One sees in Figure 1 that the two _ Centauri dwarfs are very similar

to each other and to the Sun in their ultraviolet emission properties. Both

Cen A and B exhibit all of the important transition region and chromo-

spheric lines seen in the solar short wavelength spectrum (0 I 1305 _, C II

1334 _, Si IV 1400 _, C IV 1550 _, Si II 1815 _). In fact, the normalized

line strengths of _ Cen A and B are quantitatively similar to the solar
values (Ayres and Linsky 1980a).

The presence of TR emission in both _ Centauri dwarfs is proxy evidence

that these solar-type stars possess multi-million degree coronae analogous
to that of the Sun. In fact, both components of _ Centauri have been re-

solved recently as coronal soft X-ray sources by the High Resolution Imager
on Einstein (Golub et al. 1980).

Figure 2 depicts the ultraviolet emission spectrum of another binary

system, Capella (_ Aurigae A; G6 III+ F9 III). Capella has a much shorter

orbital period than _ Centauri (0.3Y versus 80Y), and the two giants are too
close to each other to be separately observed by IUE or Einstein. Conse-

quently, only the composite emission spectrum is obtainable.

While Capella exhibits essentially the same emission features that are

prominent5in the solar spectrum, the normalized line strengths, particularly
of the i0 K transition region features, are considerably larger, and sever-
al of the line ratios, 0 I 1305 _/C II 1335 _ and C 1 1660 _/C IV 1550 _ for

example, are quite different. Like the _ Centauri system, Capella has been

detected as a prominent coronal soft X-ray source by HEAO-I and Einstein
(Cash et al. 1978, Holt et al. 1979).

Given SWP spectra such as those illustrated in Figures 1 and 2, one can

determine straightforwardly integrated line strengths, line ratios, andcon-
tinuum intensity distributions.

Emission line strengths indicate the amount of material present over
the temperature range where the particular atom or ion is most abundant. In

addition, many of the prominent high temperature emission features acces-

sible to IUE in the L_ region, namely the Si IV, _ IV and N V doublets, are
important radiative coolants between about 6 x i0_ and 2 x 105 K. Conse-

quently, the strengths of these features are an indirect probe of the plasma

energy budget in the transition region.

Like the emission line strengths, line ratios play an important role in

diagnosing the physical conditions in stellar outer atmospheres. The most

common application of line ratios is to estimate transition region densities

(Doschek et al. 1978b). In principle, intensity ratios of spectral features

240



that are formed under similar plasma thermal conditions, but which have dif-
ferent sensitivity to local density -- "permitted" and "forbidden" transi-

tions, for example -- can be used to deduce the spatially averaged pressures
in the atmospheric structures responsible for the ultraviolet emission. How-

ever, many obstacles remain in the practical application of density sensitive

line ratios (Raymond and Dupree 1978; Baliunas and Butler 1980), particularly
because most of the numerical simulations of the response of line ratios to

density have been specialized to solar transition region structures (Doschek

et al. 1978a). Nevertheless, the density diagnostic line ratio techniques

offer essentially the only way to estimate transition region pressures in

other stars that is comparatively free of geometrical considerations (the

situation of a patchy TR brightness distribution, for example).

The question of transition region pressures is an important one,

because it bears directly on the nature of the heating mechanism. The

classical (preSkylab) picture of the solar transition region was of a geo-

metrically thin interface between the hot corona and cool chromosphere that

supported a large conductive heat flux driven by the steep temperature gra-
dient (Withbroe 1977). The heat conducted from the corona downward into the

cooler and denser chromospheric layers was an important energy loss channel

that, in concert with high temperature radiative emission, served to stabi-

lize the coronal plasma thermally. When the conductive flux through the

transition region is dissipated entirely by radiative cooling, the gas pres-

sure in the TR is proportional to the conductive flux itself (for a plane

parallel nondivergent geometry, see e.g., Rosner, Tucker and Vaiana 1978).

Since the conductive flux is proportional to the temperature gradient,

and since the emission strength of an optically thin resonance line of an

abundant ion in the TR is roughly proportional to the square of the gas pres-
sure divided by the local temperature gradient, then the TR emission should

be directly proportional to the gas pressure (e.g., Haisch and Linsky 1976).

Consequently, if stellar TRs obey the conductive heating hypothesis, then the

stellar TR pressures should scale directly from solar values as the ratio of

the stellar and solar surface fluxes of permitted TR lines (Haisch and Linsky
1976). Alternatively, if stellar transition regions are heated by a noncon-

ductive process -- magnetic reconnection in situ, for example -- then the

same surface flux could be provided at considerably lower pressures simply

by a flatter temperature gradient In fact, empirical studies of the tem-

perature gradient at the 105 K level of the solar TR, by means of emission

measure analyses, have revealed that the likely conductive flux in those and

deeper layers is insufficient to balance the measured radiative losses, con-

sequently an additional heating agent seems to be required (Withbroe 1977).

Furthermore, Noyes (1974) has proposed a semiempirical TR model to explain

the intense emission in 105 K lines observed in sunspot plumes (Foukal et al.

1974), that is characterized by a much flatter temperature gradient than is

predicted by the conductive heating model. It is therefore premature to sup-

pose that all stellar transition regions are a product of conductive heating
(e.g., Baliunas et al. 1979), until reliable, independent pressure estimates

are available to test that contention in a wide variety of late-type stars.

A third useful aspects of the IUE low dispersion spectra of cool stars

is the continuum emission distribution longward of 1500 _. Radiation in
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that spectral region is produced in the stellar outer photosphere, and is a

sensitive diagnostic for the stellar effective temperature. For example, the

substantial drop in normalized continuum emission levels near 1800 % between
Cen A and _ Cen B is the result of only a 500 K difference in effective

temperature. On the other hand, the close similarity in the normalized

continuum emission strengths of _ Cen A and the Sun indicates that the two

G dwarfs have very nearly the same effective temperature. [In several re-

spects, _ Cen A and the Sun are twins of each other (Flannery and Ayres

1978).] Finally, the continuum emission levels in the composite low dis-

persion spectrum of Capella are significantly larger than solar. The
ultraviolet continuum enhancement implies that the hotter secondary, which

dominates the short wavelength emission of the system, is very likely a

late F giant.

In addition to its usefulness as a temperature diagnostic, the short

wavelength continuum emission can signal the presence of previously unrecog-

nized stellar companions. For example, Mariska, Doschek and Feldman (1980)

have discovered a hot-star companion to the classical cepheid _ Aquilae on

the basis of an anomalously bright emission signature in the region short-

ward of 1600 _ that did not vary with the cepheid pulsation period.

B. ECHELLE MODE, LONG WAVELENGTH REGION

Useful as the low dispersion mode is, the stellar spectroscopist should

feel somewhat uncomfortable that it does not provide many of the basic pieces

of information that are central to atmospheric structure analyses. Principal

among these are line shapes and velocities. Fortunately, the IUE echelle

modes can provide such information for a wide range of cool stars longward

of 2500 _, and for the few brightest shortward of 2000 _.

i) Line Shapes

Emission line profiles contain an enormous amount of information con-

cerning plasma conditions in -- and the geometry of -- the line-forming

region.

When a feature is optically thin, one can estimate the amplitude of

nonthermal broadening velocities in the layers where the emission origi-

nates. For example, Athay and White (1978,1979) and Brunet (1978) have

applied this technique to high-quality solar C IV profiles, obtained with
the OS0-8 UV spectrometer, to set limits on the possible acoustic wave flux

passing through the 105 K layers

When a line is optically thick and develops a centrally reversed emis-

sion core, one can estimate the optical path length required to produce the

central reversal. The line optical depth and total emission can then be

used to estimate the plasma density and geometry of the emitting structures.

Lites, Hansen and Shine (1980) have applied such an approach to self-reversed

C IV profiles observed in an active region near the solar limb by 0S0-8.

Some emission features, the 2803 A h and 2796 _ k resonance lines of

Mg II for example, are very optically thick in stellar chromospheres. In
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fact, the Mg II features are effectively thick (see Hummer and Stewart 1966)

as well. Very optically thick lines that are effectively thick in the chro-

mosphere, and which possess extensive Lorentzian damping wings (H I 1216

L_ and the H and K resonance lines of Ca II are other examples) are valuable

thermal structure diagnostics (Ayres 1975; Basri et al. 1979). The outer

edges of the emission features, beyond the narrow Doppler-dominated core,

and the damping wings of these lines carry, in principle, a faithful mapping

of the outer atmospheric thermal structure from the middle chromosphere down

to the deep photosphere (in the case of Mg II and Ca II). For example, the

kI profile minimum features are formed near the temperature minimum region

at the photosphere-chromosphere interface, while the k2 emission peaks are
formed in the hotter layers of the middle chromosphere, where the Mg II

cores first become effectively thick.

The left-hand panel of Figure 3 compares echelle-mode profiles of Mg II

k from_ Cen A and B. The ordinate is normalized flux, fk/_bol, in the same
units as Figures 1 and 2.

First, note that the Mg II emission cores are overwhelmingly brighter

than any of the chromospheric or transition region features of the short wave-

length spectrum (even L_). Since the Mg II features are important radiative

coolants in the stellar chromosphere, one sees that the chromospheric energy

budget must be considerably larger than that of the overlying transition
region.

Second, note that the inner damping wings of the _ Cen A k profile are

brighter than the _ Cen B k wings. This difference is a reflection of the

500 K photospheric temperature difference of the two dwarf stars, and is

analogous to the behavior of the UV continuum emission seen in Figure i.

However, the contrast is amplified near 1800 _ compared with 2800 _ owing
to the exponential character of the ultraviolet Planck function.

Despite the cooler photospheric emission, the _ Cen B k core is brighter

than that of _ Cen A (in normalized flux). Consequently the _ Cen B chromo-

sphere likely occupies a larger fraction of the overall stellar energy budget

than that of _ Cen A. A similar difference is seen in the L_ region (Fig. 1),

where the _ Cen B TR emission features are somewhat brighter than those of
Cen A.

Finally, note that the k-line emission core of _ Cen B is narrower at
the top, and has a smaller FWHM, than that of _ Cen A, although the emission

features are more nearly the same width at their bases. The broadening of

the k-line FWHM with increasing absolute visua I luminosity (_ Cen A is I_3

brighter than _ Cen B in My) is a well-known correlation that was first rec-
ognized in the near ultraviolet Ca II H and K resonance lines by Wilson and

Bappu (1957). The existence of such a simple correlation has provided chro-

mospheric theorists with a tantalizing challenge, whose resolution remains

controversial even after two decades of study. I will return to the Wilson-

Bappu effect, and its bearing on chromospheric structure, later in the
review.
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ii) Profile Asymmetries and Velocities

Besides the fundamental emission core shape parameters, high resolution

observations of the h and k features offer further possibilities for deducing
chromospheric structure. For example, under certain circumstances, asymme-

tries in the emission cores can indicate gross material inflows or outflows

(Stencel and Mullan 1980). Furthermore, absorption features superimposed on

the intrinsic stellar emission profile can be used to probe the properties of

circumstellar (Hartmann, Dupree and Raymond 1979; Stencel et al. 1980) and

interstellar matter (BBhm-Vitense 1980a) along the line of sight. Finally,

emission centroid velocities and gross asymmetries in the profiles can be

used to isolate the component emission in certainmoderate and short-period

binary systems. Although the separation of the companion stars on the sky

may be too small to allow the component spectra to be observed individually,

often the projected orbital velocity amplitudes are sufficiently large to

permit at least partial resolution of the component spectra by the Doppler
effect. This technique is particularly useful in practice, because the

closer the two companions are to one another, the faster the orbital motions,

and the easier it is to separate the individual spectra (if the orbit is

favorably inclined in the line of sight). Furthermore, there is a well-known

correlation between orbital period and chromospheric activity levels in cool-

type spectroscopic binaries, in the sense that the shortest period systems

(P < i0d RS CVns, for example) tend to exhibit the brightest optical emission

lines (Ca II and Ha; see e.g., Young and Koniges 1977), and the strongest

coronal soft X-ray emission (Walter, Charles and Bowyer 1978). Nature has

indeed been kind to provide a class of interesting close-binary systems that

are possible to study with a small aperture instrument such as IUE.

The right-hand panels of Figure 3 illustrate some of these notions

more quantitatively.

I have depicted profiles of the Capella Mg IIk emission at two orbital

phases when the primary andsecondary have the maximum, and opposite, radial

velocity separations. In both panels the radial velocity scale is relative

to the system center-of-mass velocity, and the positions of the primary's and

secondary's velocity zeros at each orbital phase are indicated by arrows.

The substantial asymmetry in the K-line emission produced by the F-giant sec-

ondary is readily apparent. Note also that the Mg II emission envelope of

the giant stars is considerably broader than that of the _ Centauri dwarfs,
as required by the Wilson-Bappu relation.

What appears to be k3 central reversal in the G-star component of the
composite emission profile (bottom, right-hand frame of Fig. 3) is very

likely mostly interstellar Mg II absorption. In particular, the deep self

reversal in the primary k emission core (Aa) is absent in the upper frame

when the primary is to the red of the system center of mass, but an absorp-

tion feature is present at the same velocity (-I0 km s-I relative to the

Capella COM) as the "k3" feature in the bottom frame. The presence of a

strong interstellar Mg II _bsorption feature is not unexpected, since a

prominent interstellar D I L_ absorption is seen against the intrinsic stel-

lar L_ emission (Dupree, Baliunas and Shipman 1977; Ayres and Linsky 1980b).
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Nevertheless, the presence of such a strong absorption feature in the center

of the k line of a nearby star (d_ 13 pc) is somewhat disconcerting. In

particular, the k2 emission peak separation plays an important role in some
theoretical interpretation of the Wilson-Bappu effect, and the red-violet

k2 emission asymmetry has been invoked as a spectral anemometer to measure

stellar wind flows (e.g. Stencel and Mullan 1980). However, as BUhm-Vitense

(1980a) has shown recently in a systematic survey of interstellar Mg II ab-

sorption, in stars more distant from the Sun than a few tens of parsecs, much

of the k3 self reversal and the k2 peak asymmetry may be an artifact of the
interstellar absorption component. In fact, the presence of a saturated in-

terstellar absorption core displaced somewhat from the stellar radial velocity

may explain why some supergiants, 56 Peg (KO Ibp) for example, exhibit oppo-

site k2 peak asymmetries in Mg II and Ca II (Stencel et al. 1980), despite

the fact that the two sets of resonance lines are formed at essentially the
same levels of the stellar chromosphere, and presumably under nearly similar

conditions of temperature, density and macroscopic flow velocity (cf. Basri

1979). (Note, however, that purely circumstellar absorption can produce the

same result [see Stencel et al., these proceedings].)

C. ECHELLE-MODE, SHORT WAVELENGTH REGION: THE CAPELLA DICHOTOMY

One has seen from the comparison of low-dispersion, short wavelength
spectra that the Capella system is considerably more active than the solar-

type stars of _ Centauri or the Sun itself. One anticipates that echelle-

mode studies of Capella in the short wavelength region might reveal clues to

the particular properties of the chromospherically active giant system that
sets it apart from the quiescent main sequence stars.

Figure 4 compares the stronger member of the C IV doublet, 1548 _, and

the weakest component of the Si II triplet, 1808 _, in _ Centauri A and

Capella. The Capella profiles were taken at one of the orbital velocity

crossings when the contributions from the G primary and F secondary are
superimposed in velocity.

Note that the _ Centauri A profiles are narrower than their Capella
counterparts, in fact close to the echelle-mode resolution of _25 km s-I.

The _ Centauri profiles are also considerably fainter than the Capella emis-

sion features, as anticipated from the low dispersion spectra.

The enhanced width of C IV 1548 _, in particular, is likely an artifact

of an optically thick emitting region, in contrast to the solar TR which

usually is regarded as optically thin in C IV (but see Lites et al. 1980).
If the principal broadening mechanism is Doppler in character, either ther-

mal or small-scale velocity fields, an optically thick emitting region can

produce a profile that is a factor of _ _ (_n T%c) I/2 wider than the intrin-
sic Doppler width, where T£c >> i is the line center optical thickness of

the layer. The scale factor _ is a very slowly varying function of T%c , and
could provide at least factor of 2 width enhancements for the strongest TR

lines of Capella. However, the saturation phenomenon (also called "opacity
broadening") is not a convincing explanation for the enhanced Si II 1808

width of Capella, since the Si II feature is already optically thick in the

solar chromosphere (Tripp, Athay and Peterson 1978), and presumably also in
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Cen A. On the other hand, the Si II feature is likely not thick enough

that the Lorentzian wings of the profile function can significantly influence

the emission line shape (the wing effect is likely important for the Mg II h

and k cores, however). Consequently, the enhanced Si II width in Capella must

be explained either by an increase in the intrinsic chromospheric Doppler

width, or by an extrinsic Doppler broadening mechanism such as macroscopic

flow patterns or rotation.

In short, the significant differences between the gross emission line
strengths of Capella and _ Centauri A are continued in the details of the in-

dividual line shapes. The comparison of line shapes has not directly helped

us understand the fundamental differences between the giant stars and the

solar-type dwarfs. Nevertheless, the comparison has provided us with at

least one potentially useful clue: the transition region of Capella is very

likely optically much thicker than the solar TR. (This suggests in fact

that the Capella TR is not heat-conduction dominated, since the optical

t_ickness T _ P/[dT/dh] of the conductive equilibrium TR is independent of

the TR pressure P, since _T/dh] _ Fcond % P, and T therefore should be the
same in Capella as in the Sun.)

An even more important --and unexpected -- clue to the nature of the

giant-dwarf emission dichotomy was revealed by short wavelength echelle-mode

observations of Capella at different orbital phases.

Figure 5 compares several prominent emission features of the Capella

short wavelength spectrum at two orbital phases. The profiles in the left-

hand panel were taken at one of the orbital velocity crossings when the two

stars have the same projected radial velocity, and their spectra are super-

imposed. The profiles in the right-hand panel were taken near one of the

elongations when the F-type secondary is shifted to the red of the system

center-of-mass velocity, and the G-type _rimary is shifted to the blue. The
velocity separation is of order 50 km s- . The zero-points of the individual

stellar velocity scales at the two orbital phases are indicated by arrows.

The emission profiles are arranged from bottom to top in a sequence of

increasing temperature of formation. The bottom-most and top-most profiles

are composites of two or more features that are formed at similar tempera-
tures and have similar line shapes (Si IV 1394,1403 _ + C IV 1548,51 _, for

example). The features were superimposed on a common velocity scale to en-

hance the signal-to-noise of systematic velocity patterns.

The profiles in the left-hand panel are all comparatively symmetric and

the composite Si IV + C IV line shape has essentially the same velocity cen-

troid as the chromospheric 0 1 and Si II features. (The dotted curves are

the long wavelength edges of the emission profiles reflected about the sys-

tem COM velocity to illustrate the symmetry of the line shapes. The error

bars within each profile are estimated emission bisectors.) The lack of sig-

nificant differential shifts between the TR features and the chromospheric

lines at the velocity crossing suggests that there are no substantial system-

atic flows of material at the 105 K level in Capella -- a wind for example --

compared with the cooler chromospheric layers (Ayres and Linsky 1980b). This

result is contrary to interpretations of low S/N Copernicus spectra of
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Capella (Dupree 1975, 1976), which indicated the presence of a _ 30 km s-I

accelerating outflow at and above the 105 K level.

The right-hand panel illustrates the most surprising result of the

Capella study (Ayres and Linsky 1980b): while the chromospheric features

(O, I, Si II) taken near one of the elongations in the orbit are asymmetric,

indicating contributions from both the G primary and F secondary, the high

temperature composite profile remains comparatively symmetric, and shifts

bodily to the Ted following the radial velocity motion of the secondary,
exclusively. The straightforward interpretation of this curious behavior is

that most of the high temperature emission from the Capella system is pro-
duced by the F-type secondary, rather than by the somewhat more massive and

luminous primary. This result is contrary to the presumption of most pre-

vious work on the Capella system that the G-star is the major ultraviolet

emitter (e.g. Dupree 1975; Haisch and Linsky 1976). In fact, symmetrizing

the long wavelength emission edges of the elongation profiles about the

secondary's velocity indicates that the bulk of the low temperature, chromo-

spheric emission is produced by the F_star as well.

In short, the Capella-_ Centauri emission dichotomy has resolved itself

into an emission dichotomy between the Capella giants themselves. This is a

promising simplification because the evolved giants are obviously very dif-
ferent from the main sequence dwarfs, but the Capella stars are very similar

to one another in their fundamental stellar properties: mass, temperature,
luminosity, chemical composition, age, and so forth.

The only fundamental property that is very different between the Cape!la

siblings, and is a plausible candidate to explain the emission dichotomy, is

rotation (Ayres and Linsky 1980b). The Capella primary is a sharp-lined,

slow-rotating giant, while the secondary has a diffuse spectrum and presum-

ably is a fast rotator. The rotation dichotomy itself is likely a result of

the somewhat more advanced evolutionary state of the primary comPared with

that of the secondary owing to the small mass difference (Iben 1965).

D. THE ROTATION-ACTIVITY CONNECTION

Rotation is a plausible candidate to explain the Capella ultraviolet

emission dichotomy, if the chromospheric activity of cool stars is intimately

related to surface concentrations of magnetic fields, as certainly appears to

be the case for the Sun (Vaiana and Rosner 1978). If the decay of surface

fields is responsible for the heating of the outer atmosphere, the fields must

be replenished continually for the chromosphere and corona to persist over

evolutionary timescales. A likely replenishment mechanism is dynamo action
(Parker 1955, 1970), and the dynamo is more vigorous in fast rotating convec-

tive stars than in slow rotators. Indeed, the chromospherically most active

of cool stars are those in short-period binary systems (the RS CVns, for exam-

ple; Hall 1978), where tidal friction forces the two companions into rapid,

synchronous rotation (Zahn 1977). Furthermore, Bopp and Fekel (1977) have
argued that rotation, rather than binarity per se, is responsible for the BY

Draconis flare star "syndrome" among dwarf M stars. Finally, the recent
Einstein survey of coronal soft X-ray emission (Vaiana 1980; Vaiana et al.

1980) has revealed that the brightest cool-star sources, as a class, are the
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F-type stars. These tend to be fast rotators compared with single G, K and

M stars, very likely because the F stars are young (see e.g. Skumanich 1972).

Ironically, the corona itself is thought to be responsible for the spin-

down of single stars as they age. In particular, a weak coronal breeze, such

as the solar wind, that is magnetically coupled to the stellar photosphere out

to many radii, can shed angular momentum effectively (Durney 1972). If the

magnetic braking by a coronal breeze is positively correlated to the chromo-

spheric activity level, then the corona is, in a sense, a self-defeating en-

tity. However, short-period binary systems need not suffer the coronal decay

of single stars, owing to the large reservoir of angular momentum in their

orbits to maintain the component rotation rates through tidal coupling.

Finally, the rotation-activity connection has an intriguing, practical

consequence. Soft X-ray and EUV images of the Sun have revealed that active

regions are composed of discrete structures, namely magnetic loops (Rosner,

Tucker and Vaiana 1978). If the analogous loop systems on an active star ex-

tend an appreciable fraction of the stellar radius above the photosphere, and

if the loops corotate with the phtospheric plasma, one might expect enhanced

broadening of TR (and coronal) emission features, compared with chromospheric

or photospheric line profiles. Furthermore, if a particularly active -- or

flaring -- loop system happens to be near one of the equatorial limbs, one

might find an emission enhancement in the wing of the C IV 1548 _ profile,

for example, that corresponds to the projected rotational velocity of the

active region at the time of observation. Again nature has provided a simple

way to obtain crude spatial information concerning structures on the surface

of another star. All one requires is moderate spectral resolution, which is

certainly more appealing from a practical standpoint than the alternative:

direct imaging with kilometer-aperture telescopes!

III. MG II h AND k: CHROMOSPHERIC COOLING AND WIDTH-L_INOSITY CORRELATIONS

Turning aside from stellar transition regions for the moment, I would

like to discuss Mg II emission in more detail, particularly with regard to

chromospheric radiative losses, and the origin of the Wilson-Bappu relations.

A. CHROMOSPHERIC COOLING BY MG II h AND k

Mg II h and k are important radiative cooling agents in stellar chromo-
spheres (Linsky and Ayres 1978). Calibrated measurements of the integrated

core emission of these lines provide a more-or-less direct probe of chromo-

spheric energy budgets. In fact, comparisons of pre-IUE Mg II fluxes with

the predictions of chromospheric heating by acoustic waves constituted the

first direct test of a proposed theoretical chromosphere formation mechanism
(Linsky and Ayres 1978).

The important result from the early Mg II work was that when expressed

in the form fMg ll/%bol, the stellar emission fluxes showed a wide range of

variation at a given spectral type and luminosity class, but no clear corre-

lation with surface gravity. The empirical result was diametrically opposite

to the predictions of the acoustic heating scenario. The latter required

248 i



rather uniform chromospheric heating (and consequently also uniform Mg II

cooling) at a given spectral type and luminosity class, because only convec-

tion zone parameters -- Tef f and g -- ultimately determined the acoustic flux
production. Furthermore, the acoustic theory predicted a large systematic

increase in the heating with decreasing surface gravity (e.g. Ulmschneider

et al. 1977). Some attempts have been made recently to rectify the substan-

tial discordances between the acoustic heating theory and the semiempirical

chromospheric cooling estimates (Schmitz and Ulmschneider 1979; B_hm 1980),

but the fundamental disagreement remains (Linsky 1980), The failure of the

acoustic heating scenario to explain the formation of stellar chromospheres

is no surprise to solar physicists, given the overwhelming empirical evi-

dence that the structure of the solar outer atmosphere is intimately related
to magnetic fields (Skumanich, Smythe a_d Frazier 1975; Vaiana and Rosner

1978), which are not even considered in the conventional acoustic heating
treatments.

In any event, IUE has provided a greatly expanded data set to test

proposed chromospheric heating mechanisms. For example, Basri and Linsky

(1979) and Stencel et al. (1980) have presented diagrams analogous to that
of Linsky and Ayres, but based on the more homogeneous and better calibrated

IUE spectra. Furthermore, BOhm-Vitense and Dettmann (1980) recently have

published an extensive survey of F and late-A stars to probe the occurrence

of classical chromospheres in the HR diagram. Mg II fluxes for additional

stars are available elsewhere (e.g. Hartmann, Dupree and Raymond 1980; Pagel
and Wilkins 1979).

I have combined these several IUE studies of Mg II emission on a common

diagram in Figure 6. The "bubbles" represent mean fMG II/%bol ratios in each
of the spectral type/luminosity class bins for which data are available.

Often, only one star falls in a bin, but in some cases, particularly in the

K-giant region, as many as ten stars are represented by a single bubble.
The small filled circles refer to stars for which Mg II emission was not

detected (these data are taken from the B_hm-Vitense and Dettmann study).

The dashed circles are Mg II flux ratios based on the Copernicus work of

Weiler and Oegerle (1979) as quoted by Basri and Linsky. The Copernicus
fluxes are very uncertain compared with the IUE measurements. I have in-

cluded them only to fill out regions of the bubble diagram where IUE mea-
surements were not available.

The Mg II bubblegram illustrates three important characteristics of the

occurrence of chromospheres in the HR diagram.

First, there is an abrupt onset of detectable chromospheric emission in

the early F stars that coincides with the beginnings of vigorous convective
activity (see B_hm-Vitense and Dettmann for details).

Second, there is no large systematic trend of increasing fM- II/%bol
ratios with increasing luminosity, although the variation of flu_ ratios

within a given bin (not illustrated in Fig. 6 explicitly) can be an order of

magnitude or more. l For example, the active G8 dwarf _ Boo A has a Mg II flux

ratio (Basri and Linsky 1979) some twenty times that estimated from the Pagel
and Wilkins (1979) h and k profiles of the G8 dwarf % Ceti. Therefore, the
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new IUE Mg II spectra confirm the tentative results of the earlier Linsky and
Ayres study.

Third, the stars in the red giant branch (KO III and later) appear to

exhibit somewhat weaker chromospheric Mg II emission ratios than the dwarfs

or supergiants of similar spectral type (see also Stencel et al. 1980).

This is in fact the same region of the HR diagram where Linsky and Haisch

(1978) identified an abrupt drop in transition region emission, which they

interpreted as a weakening, or disappearance altogether, of solar-like coro-

nae. Incidentally, the Linsky-Haisch division corresponds to the onset of

strong stellar winds in the red giants (_ _ 10-8 Me yr-i compared with _
10-14 for the solar "breeze"), and has been characterized as a corona-wind

boundary (Haisch, Linsky and Basri 1980).

I will return to the question of the origins of the structure seen in

the Mg II bubblegram at the conclusion of the review.

B. THE WILSON-BAPPU RELATIONS

Because the Ca II H and K and Mg II h and k transitions are so similar

in their atomic properties, it is not surprising that the systematic in-

crease of H and K emission core FWHMs with increasing stellar luminosity --

the well-known Wilson-Bappu effect -- is seen in the Mg II features as well

(Moos et al. 1974; McClintock et al. 1975; Dupree 1976). The study of the

Wiison-Bappu effect is somewhat easier in the Mg II lines than in Ca II

since the former always exhibit much larger core-wing contrasts than the

latter. Furthermore, a large (and still growing) sample of high-quality

Mg II line shapes has been obtained by one instrument, namely IUE. A homo-

geneous data set is an essential ingredient for determining systematic
trends in line profile shapes.

Although the conventional Wilson-Bappu effect refers solely to the

broadening of the emission core FWHM (Lutz 1970), other characteristic pro-

file features, such as the K1 minimum separation and K2 peak separation (see

Fig° 7), also obey qualitatively the same width-luminosity correlations as
the FWHM (Ayres, Linsky and Shine 1975; Cram, Krikorian and Jefferies 1979).

Curiously, though, the Mg II and Ca II profiles of solar active regions,
which exhibit 5-10x enhanced chromospheric emission compared with "quiet"

regions, are broader at the base (WKI), but narrower at the emission peaks

(WK2) , while the FWHM is essentially unchanged (Shine and Linsky 1972). In
fact, the constancy of the Ca II FWHM among stars of similar absolute visual

magnitude, but very different chromospheric activity levels, allows the

Wilson-Bappu effect to be a reliable luminosity indicator, on the one hand,
but a headache for theoreticali:modelers, on the other (see e.g. BUhm-Vitense

1980b).

The simple dependence of the K (and k) FWHMs on stellar luminosities,

and little else, suggests that the fundamental correlation is in terms of

stellar surface gravity (e.g. Lutz and Pagel 1979).
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i) Doppler versus Damping Control

There are essentially two kinds arguments to explain why the Ca II and

Mg II FW]{Ms broaden with decreasing surface gravity. The first class of

arguments assumes that the emission core shapes are controlled entirely by

nonthermal Doppler broadening, and the widening of the emission profiles

with decreasing surface gravity simply reflects a systematic increase of

chromospheric nonthermal velocities with increasing stellar luminosity. The

second class of arguments assumes that the outer edges of the emission core

are at least partially controlled by the Lorentzian damping wings, and that

the overall broadening of the emission profile is caused by a physical

thickening of the stellar chromosphere with decreasing surface gravity.

[Previous work on both aspects is summarized by Ayres (1979).]

The Doppler hypothesis would seem to be plausible if, for example, the

Mg II emission cores were broadened by acoustic waves having roughly the same

flux in dwarf and giant stars. Since the acoustic flux is proportional to the

square of the disturbance amplitude v and to the material density 0, one would

expect v to increase with decreasing surface gravity to compensate for the

substantial drop in 0. However, in the supergiant stars, which have very wide

Mg II emission profiles, nonthermal velocities greatly in excess of the chro-

mospheric sound speed would be required to explain the observed broadening

(Basri 1979). It is not clear how this "shocking" result could be attained'in

a real stellar chromosphere. Furthermore, it is difficult to reconcile the

kl width-luminosity relation in the Doppler context, since the profile mini-
mum features are formed well beyond the chromospheric Doppler core (Engvold

and Rygh 1978). Finally, the narrowing of the K2 emission peak separation

in solar plages compared with quiet Sun profiles, but relatively unchanged

FWHM, are difficult to understand in the pure Doppler picture, unless the

nonthermal broadening decreases rapidly with altitude in active regions,

contrary to semiempirical chromospheric models (Shine and Linsky 1974).

The second class of Wilson-Bappu explanations, based on the hypothesis

of damping wing control in the outer emission core, _relies on a physical

thickening of stellar chromospheres as surface gravity decreases. In the

damping wings, the monochromatic o_acity is a slowly varying function of
wavelength displacement (<A% _ A_-z), at least compared with that of the

Doppler core (<A% _ exp -(AI/AID) 2 ). As a result, there is a one-to-one
correspondence between wavelength displacements in the profile and atmo-
spheric column densities, in the sense that the intensity at a particular

A% is a mapping of the emissivity N(T) at monochromatic optical depth

TA% _ 1 (i.e. an Eddington-Barbier relation; see e.g. Ayres 1979). For

example, the temperature minimum at the photosphere-chromosphere interface

would be mapped onto an intensit Y minimum (i.e. KI) at a wavelength dis-
placement from line center A%, such that the monochromatic optical depth

down to the location of the Tmi n in mass column density, m, (g cm-2), is of
order unity. If Tmin is shifted to larger column densities, the_ A%, will
increase as well (Al, _m_/2). The correspondence between structure in the

atmospheric emissivity, which is characterized in terms of the line source

function Sz, and features in the emergent profile is illustrated in Figure 7.
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The notion that stellar chromospheres might physically thicken in column

density with decreasing surface gravity is appealing, particularly b_cause

stellar photospheres exhibit just that behavior (at least when they are in

hydrostatic equilibrium), owing to the pressure sensitivity of the dominant
continuous opacity source, H- (e.g. Ayres et al. 1975). In fact, Lutz,

Furenlid and Lutz (1973) have invoked the photospheric thickening mechanism

to explain the gross broadening of the photospheric wings of Ca II H and K
with increasing stellar luminosity. It remains, then, to find a mechanism

to similarly thicken stellar chromospheres.

There are in fact several possibilities (e.g. Thomas 1973), but I will

summarize here only the one proposed by Ayres (1979), if only because I have

read that paper somewhat more carefully than the others.

ii) Chromospheric Scalin8 Laws

In that study, I proposed a set of simple scaling laws for the thick-

ness and mean electron density of stellar chromospheres as functions of,

primarily, surface gravity g and an activity scale parameter F. The latter

indicates by how much a given stellar chromosphere deviates from the gravity-

independent mean heating trend I adopted from the Linsky-Ayres Mg II study
(see §IIIA, above). For example, F = I for the quiet Sun, while F _ 5 for a

medium strength plage.

The scaling laws are predicated on the notion that the initial tempera-

ture inversion at the base of the chromosphere is caused by an instability

in the low temperature plasma cooling when a source of mechanical heating is

present. The thermal instability is driven by the dependence of the plasma

radiative cooling (ergs cm-2 g-I) on the electron density, and the fact that

the electron density itself depends strongly on temperature only between

about 5 x 103 K and 8 x 103 K, while for lower and higher temperatures ne

is directly proportional to the hydrogen density nH. For example, at low
temperatures (T < 5 × 103 K), electrons are provided by the first ioniza-

tions of the abundant metals Fe, Si and Mg (Vernazza, Avrett and Loeser

1976), consequently ne _ 10-4 nH, where the proportionality constant is the
collective abundance of those metals. Similarly, above 8 × 103 K, hydrogen

is essentially fully ionized, consequently ne _ nH. In either regime, the
electron density, and therefore also the radiative cooling, is inextricably

bound to the rapid outward decrease of the hydrogen density in a hydrostatic

stellar atmosphere.

If the atmospheric energy balance is dominated by radiative emission and

absorption (radiative equilibrium), the rapid outward decline of the plasma

cooling when ne is proportional to nH is of little consequence because the

radiative heating rate also declines in proportion to the electron density.

A balance can thereby be struck between the radiative heating and cooling

at comparatively low temperatures (T < 5000 K). However, if the atmosph@re
supports a small mechanical heat deposition, in addition to the radiative

absorption, that does not fall off with height as nH or faster, then at some
altitude the mechanical deposition will become comparable to the radiative

heating. The combined energy input will then exceed the plasma's ability to

cool itself at low temperature, in the face of the rapid outward decline of
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the electron density. A thermal instability will ensue, and the plasma will
heat up until partial ionization of hydrogen liberates enough additional elec-

trons that the radiative cooling function can balance the mechanical heat in-

put. In the regime of partial ionization of hydrogen, the electron density is

at least temporarily divorced from the outward decrease of the hydrogen den-

sity. For example, the electron density can remain constant with height while

nH decreases by four orders of magnitude, as long as the temperature rises

slowly outward. The atmospheric layers in which the electron density is rela-

tively unchanged and the temperature rises smoothly outward over a four order

of magnitude decrease in the gas pressure is what I would characterize as

the classical chromosphere. However, once the temperature reaches 8000 K

what I would characterize as the electron density is again inextricably tied

to the outward hydrostatic decrease of the hydrogen density, and a second

thermal instability and temperature inversion -- the transition region -- is

possible.

In short, I propose that the gross structure of stellar chromospheres

is a simple consequence of the trifurcated character of the ne/n H ratio for

T < 104 K, and the sensitivity of the plasma cooling to the electron density.

If one assumes that the energy deposition per gram of material in the

chromosphere is constant with height, and that the total heat deposition is

the same in a dwarf and a giant star of similar activity levels (namely, the

same fMg II/_bol ratios at a given Teff), then it is easy to show that the
chromosphere of the low gravity giant must be thicker in column density than

that of the high gravity dwarf. However, the dwarf star chromosphere re-

quires a larger mean electron density than that of the giant star to ensure

that the total radiative cooling will be the same. If one considers two

stars of similar surface gravity but different activity levels, one finds

that the chromosphere must thicken in the active star, and the mean electron

density must increase as well._

The simple chromospheric scaling laws I proposed have profound implica-

tions for the Wilson-Bappu effect, if the characteristic profile features --

the KI minima and K2 emission peaks -- are at least partially controlled by
the Lorentzian damping wings.

For example, the K1 minimum feature separation broadens with increasing

chromospheric thickness, because the monochromatic optical depths down to the

temperature minimum increase in proportion to the column density. Further-

more, the K2 emission peak separation widens with decreasing mean electron

density because the line source function thermalizes to the chromospheric
Planck function at larger line-center optical depths, and consequently is

mapped onto emission maxima further away from line center. (Note, the so-

called thermalization depth, or scattering length, A depends inversely on

the collisional destruction probability e, which itself is proportional to

ne. In a chromospheric having an outward temperature rise, A is the line-

center optical depth at which the source function S% is a maximum [see Fig.

7]. The maximum of the source function is mapped onto the line profile as a

pair of emission peaks in a completely analogous way to the mapping of the

aource function minimum at Tmin onto the K1 intensity minima.)
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Consequently, both the K1 and K2 feature separations should broaden
with decreasing surface gravity, in fact with the same g-i/4 behavior. One

would therefore expect that profile positions between K I and K2, the FWHM in
particular, would show a similar g-174 gravity dependence.

For stars of similar surface gravity but different activity levels, th_

situation is somewhat changed. The K1 feature separation widens with in-

creasing activity as the chromosphere becomes thicker. However, the K2 pea_
separation becomes narrower with increasing activity because the larger mea:a
electron density in the active chromosphere forces the line source function

to thermalize at shallower optical depths, and consequently to be mapped on:o

K2 peaks that are closer to line center. In fact, the K1 broadening and K2
narrowing have equal, but opposite, dependences on the activity scale facto:_

F. Consequently, one expects the FWHM to be relatively independent of ac-

tivity. These behaviors are illustrated schematically in Figure 8.

Although my arguments are perhaps overly simplistic, they do make

definite predictions that can be tested.

iii) Confrontation with IUE Observations

The major parameter dependence of the derived width-luminosity scaling

laws is the broadening of the K1 feature separation with decreasing surface

gravity, namely A%KI _ g-i/4. What is true for Ca II K1 is equally true for
Mg II kI.

Figure 9 compares measured Mg II kI widths (Basri and Linsky 1980;

Stencel et al. 1980) with estimated stellar surface gravities. Since the
theoretical kI widths also depend on the activity parameter F, stellar me-

tallicity and effective temperature, I have applied appropriate corrections

determined from the original scaling laws (Ayres 1979) to isolate the gravi -_

ty dependence (see also Linsky et al. 1979). The activity parameter is

straightforward to derive from measured fMg ll/%bol ratios, and is usually

the largest component of the correction. The adjustments for Tef f and non-
solar metallicity are less secure, but are small in most cases. More impor-

tant, any errors introduced by uncertainties in the kI adjustments pale
beside the uncertainties in the stellar surface gravities themselves.

Two sets of data are represented in Figure 9. The open and filled

circles and open squares depict stars for which both high-quality Mg II k
and Ca II K line shape parameters are available, and for which reasonable

surface gravity estimates could be found (see Basri and Linsky, and Stencel

et al. for details). These data will appear in subsequent diagrams that
compare the k and K lines against each other. (I have separated the stars

crudely into dwarfs [V], giants [IV,Ill] and supergiants Ill,I].) The

pluses represent additional gaints and supergiants from the Stencel, et al.

lists for which Mg II k line shape parameters and surface gravity estimates
are available, but no Ca II information. I have included these stars in the

diagram to give a better impression of the true scatter of the data.

The four-pointed open circles refer to quiet and active Sun profiles of

k obtained with the French experiment on 0S0-8 (courtesy P. Lemaire; see
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Chapman 1980). The plage k I separation is larger than that of the quiet
Sun, but when corrected for an activity enhancement of ff= 5, it actually

falls somewhat below the quiet Sun width. (Notice that I have plotted the

adjusted kI widths in km s-I to partially mollify the Doppler broadening
enthusiasts.)

Finally, I have drawn a line with slope -1/4 through the quiet Sun point

to illustrate the gravity dependence expected from the simple scaling
laws.

It is clear from the figure that while the stars appear to obey a gross

trend of increasing kI width with decreasing surface gravity compatible with

the scaling laws, there is a great deal of scatter, and the lowest gravity

stars appear to deviate significantly from the expected relation. Analogous

studies of the Ca II K1 width-luminosity correlation have proposed a gravity
dependence closer to -1/5 than -1/4 (e.g. Cram et al. 1979), and a somewhat

flatter relation would appear to be appropriate for Mg IIk I here as well.

The departure of the supergiants from the proposed relation is not unex-

pected, because a subtlety in the k-wing formation process -- partial co-
herent scattering (e.g. Ayres 1975) -- was glossed over in the derivation of

the scaling laws. The density-sensitive coherent scattering effects become

increasingly important the lower the surface gravity, and work in the direc-

tion of producing a narrower kI separation than if the wing scattering were

completely non_oherent (see Basri 1979).

iv) The Stars that Don't Obey the Wilson-Bappu Effect

In any event, it is not clear whether the Mg II Wilson-Bappu relation is

relevant to the supergiants in the first place. For example, _ Ori (M2 Iab)

and B Dra (G2 II) have similar Mg II FWHMs, yet the former is some 4 magni-

tudes brighter in Mv. Furthermore, _ Cyg (G8 IIIp) is somewhat more luminous

in absolute visual magnitude than B Dra, yet has a Mg II FWHM only half as

large, and in fact comparable to that of _ Ser (K2 III) which is 2 1/2 mag-

nitudes fainter than _ Cyg in Mv.

Incidentally, another class of stars that do not obey the Wilson-Bappu

relations are the short-period eclipsing binaries (e.g. Young and Koniges

1977). In such systems, the Ca II and Mg II FWHMs are correlated with the

emission core strength, contrary to a central tenet of the Wilson-Bappu
effect that the FWHM is independent of chromospheric activity levels. How-

ever, the Ca II and Mg II features of such systems are broadened by the rapid

synchronous rotation of the binary companions (at least for the eclipsing

systems, which are viewed edge on). The violation of the Wilson-Bappu rela-

tion in these cases is simply an expression of a stronger driving force,

namely the rotation-activity connection. (This is also a situation in which

the Doppler advocates are correct, although the broadening is extrinsic
rather than intrinsic.)

v) MS II kl Versus Ca II K1

Figure i0 compares Mg IIk I separations with the corresponding KI
widths in the available sample of dwarfs, giants and supergiants. Ca II
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data were taken from the recent surveys by Linsky et al. (1979) and Cram

et al. (1979).

The scaling laws predict that the kl/K 1 width ratio should depend only
on atomic parameters and the Mg/Ca abundance ratio. For solar abundances

(Mg/Ca _ 15), the Wkl/WKI ratio (when the W's are in _) should be 2.5. On
the other hand, if the minimum features are formed in the Doppler core, it

is easy to show that the expected width ratio is about 0.75. The empirical

relation in Figure I0 lies comfortably between the alternative predictions.

To explain the apparent discrepancy in terms of the scaling laws re-

quires either a Mg/Ca abundance ratio roughly half of the accepted solar

value, which seems unlikely, or a mechanism that would selectively narrow

the Mg II kl separation relative to Ca II KI. One possibility is the dif-

ficulty of defining the location of the relatively flat kI minima in typical
IUE LWR echelle spectra, particularly because the Mg II wings are signifi-

cantly more distorted by atomic line blanketing than are the Ca II inner

wings. However, the high-resolution OS0-8 Mg II profiles from the quiet and

active Sun exhibit the same overall discrepancy, and the solar kI and K1 fea .0
ture separations are far less ambiguous than typical stellar data. A more

plausible differential broadening possibility is the coherent scattering phe-

nomenon mentioned previously. Coherent scattering has a stronger influence

on the Mg II wings compared with those of Ca II, owing primarily to the exis-
tence of the subordinate infrared triplet in Ca II which introduces an addi-

tional source of noncoherence in the photon scattering and redistribution

process that is not available to Mg II h and k (e.g. Ayres 1975).

If one were feeling particularly charitable, one would use the solar

width ratios to "calibrate" the magnitude of the differential coherent nar-

rowing effect, namely Wkl/WK 1 _ 1.5-2.0, and conclude that the remaining
stellar width ratios were reasonably consistent with the revised prediction.

It is encouraging that the largest deviations from the original prediction
occur for the supergiants where chromospheric densities are lowest and the

coherence effects largest, while the smallest deviations occur for the high
gravity dwarfs where the coherence effects should be least.

vi) Mg ll_k2 Versus Ca ll K2

Figure II compares Mg II emission peak separations with those of Ca II.

The prediction of the Damping hypothesis is depicted as a dotted line, while

that of the Doppler hypothesis is depicted as a dashed line. (A height-

independent chromospheric Doppler width is assumed for both cases: Yes,

the K2 separation in the Damping picture does depend on the non-thermal

broadening, through its effect on the line-center optical depth scale, but
only as vl/2.)

Although the empirical data appear to be in better agreement with the

Damping hypothesis, the comparison is somewhat more ambiguous than that for

the KI features. Unlike the profile minima, the Ca II and Mg II emission

peaks are formed at different heights in the chromosphere. In principle, if

the broadening velocity is larger in the k2 forming region than in the K2
layers, the Doppler prediction would be increased. Furthermore, the presence
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of saturated interstellar Mg II absorption components in the emission core

potentially could produce a spuriously large empirical k2 separation.

vii) Summary

I have presented the Mg II width-luminosity correlations to illustrate sev-

eral points. First, the Damping hypothesis provides a viable alternative to

the conventional Doppler arguments, that mimics quite naturally several aspects

of the Wilson-Bappu relations which the Doppler theories are hard-pressed to

explain. Second, the comparision of empirical line widths to the predictions

of chromospheric scaling laws, for example, is hampered not so much by the poor

quality of the measured profiles (which previously was the case), but rather

by a lack of reliable stellar parameters, particularly surface gravity. Finally,

the optically thick emission cores of Ca II K and Mg IIk contain a great deal

of information concerning the gross structure of stellar chromospheres that is

only just beginning to be tapped.

IV. EMPIRICAL CORRELATIONS AMONG CHROMOSPHERIC, TRANSITION REGION AND CORONAL
EMISSION

The final topics I will address are empirical correlations among chromospheric,

transition region and coronal emission, and the implications of these correlations

for understanding the occurence of chromospheres and coronae in the HR diagram.

As mentioned previously, in the first year of IUE Linsky and Haisch (1978)

discovered an apparent division in the HR diagram between stars that tend to

exhibit solar-like transition region emission (i.e. C IV 1550 _) and stars for

which the 105 K lines are very weak or below detection thresholds. However,

stars in the latter category often appear to have prominent chromospheric emission

spectra (e.g. 0 I and Si II). The Linsky-Haisch work generated considerable

controversy, particularly concerning whether the division, which the authors

characterize as a corona-wind boundary (Haisch et al. 1980), is "sharp" or "fuzzy"
(e.g. Dupree and Hartmann 1980). Indeed, Hartmann, Dupree and Raymond (1980)

found two hydrid cases of G-type supergiants (e and 8 Aqr) for which a strong

chromospheric wind appears to coexist with hotter, TR-like material. These ex-

amples suggest (e.g. Linsky 1980) a multi-component situation analogous to that

of the solar outer atmosphere where the structures that emit TR and coronal

radiation (the closed magnetic loop systems of active regions) are physically

distinct from the structures that produce much of the solar wind (coronal holes,

which are regions of diverging magnetic fields).

It is worthwile, then, to reexamine the question of TR boundary lines in

the HR diagram, and correlations between TR and chromospheric emission in general,
in light of the much larger sample of ultraviolet spectra available today.

A. EMPIRICAL EMISSION CORRELATIONS

The observations I will summarize below are described in more detail by Ayres,

Marstad and Linsky (1980). Some ultraviolet data have been taken from other

surveys, for example that by B_hm-Vitense and Dettmann (1980) for many of the

F stars, and Hartmann et al. (1980) for 3 G-K supergiants. The stellar soft X-ray
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measurements are partly from the HEAO-I experiment and partly from preliminary

results of Einstein IPC imaging that were kindly made available through a coll_bor-

ative observing program with the CFA Stellar Survey team (see e.g. Ayres et al.
1980 for details).

Figure 12 compares the normalized emission strengths of prominent chromospheric

and transition region emission lines, and broad-band soft X-ray fluxes (0.15-4.5 keV)

as functions of normalized Mg II fluxes. The stars are separated crudely according

to spectral type (i.e. warm or cool) and luminosity class (i.e. dwarfs or giants).
No finer separation is practical at this stage owing to the limited sample. The

four-pointed open circles refer to measurements of the quiet and active Sun as

described by Ayres et al. (1980).

Beginning with the chromospheric O I triplet (1305 _) in the upper left-hard

panel of Figure 12, one sees that the O I flux ratios are well-correlated with

Mg II, and that the slope of the correlation is roughly unity. However, the

giant stars tend to have systematically larger O I fluxes at a given Mg II

flux level than the dwarf stars. I conclude that 0 I is a genuinely "chromospheric"

diagnostic, but that the mean atmospheric density plays an important role in setting

the overall strength of the oxygen emission. Such a link is plausible because the

O I triplet lines are thought to be strongly pumped by H I LS, through a Bowen

fluorescence mechanism, and the pumping should increase substantially with decreas-

ing chromospheric density (Haisch et al. 1977).

The upper middle panel illustrates the comparison between the Si II triple_

(41815 _) and Mg II. Here again one finds a close correlation between the two

chromospheric features, although the overall emission levels in Si II are a factor

of 230 smaller. The weakness of Si II relative to Mg II is a reflection of the

dominant role played by h and k in the chromospheric radiative cooling.

The top right-hand panel compares the C II doublet (1335 _) with Mg II. _tce

again the correlation is strong, at least among the cooler dwarfs and giants,

although the slope of the correlation appears to be steeper than for the purely

chromospheric 0 1 and Si II features. Curiously, the F stars deviate substantially
from the mean trend, in the sense that their C II emission is enhanced relative

to Mg II. Since C II is formed in the lower portion of the transition region,

it is not surprising that the correlation with Mg II does not have unit slope.

Presumably one is seeingthe differences between an optically thick layer (the

upper chromosphere) and an optically thin layer (the TR) that are at essentially

the same gas pressure (e.g. Haisch and Linsky 1976). The fact that a correlation

_xists at all is compelling evidence that the TR and chromosphere are physically
linked in some way, presumably by magnetic fields or a common heating mechanism.

The lower left-hand panel compares the He II Balmer e line (1640 _) and Mg II.

kgain one finds an excellent correlation, but apparently of even steeper slope

than that of C II. Although He II is formed at only somewhat hotter levels of

:he TR than C II, photoionization of helium by coronal radiation fields is thought

:o play an important role in the He 1-He II ionization balance (Avrett, Vernazza

_nd Linsky 1976). In fact, Hartmann et al. (1980) have proposed that the He II

glux is an indirect diagnostic for the level of coronal soft X-ray emission,

lamely FX _ 50 fHe II. Some support for that suggestion is found in the steep

31ope of the He ll-Mg correlation (but see below).
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The middle, bottom panel compares the summed fluxes of Si IV 1400 2,

C IV 1550 _and N V 1240 _ with Mg II. The three5transition region doublets

are formed over a temperature range of 0.6-2 x I0 K, and the sum is usually
dominated by C IV (I0 K). Here, one finds a very similar behavior to that

of C II. The cooler stars exhibit a good correlation of the hot line flux

with Mg II, having a steeper than unit slope, while the F stars deviate sys-

tematically from the mean trend. Furthermore, even for the most active stars

of the sample (the RS CVn systems HR 1099 and UX Ari), the summed TR fluxes

are at least an order of magnitude smaller than the corresponding Mg II

fluxes. This dichotomy implies that the chromospheric energy budget in

"normal" stars is always considerably larger than that of the overlying TR.

The final panel compares coronal soft X-ray emission levels with Mg II.

(A larger, and more systematic, study of X-ray-Mg II correlations is currently

in progress [Zwaan 1980] ). Again a rough correspondence of increasing X-ray

flux with increasing Mg II flux is apparent, although the slope is steeper

than any of the previous correlations. However, several of the stars for

which only upper limits are available (primarily G-K supergiants) seem to
fall well below the mean trend, which is based largely on u-K dwarfs and G

giants. For example, the Upper limit that falls below the lower edge of the
diagram refers to the bright K2 giant Arcturus. That nondetection should be

compared with the detection of the K1 giant _ Gem (the filled circle immedi _

ately above the "3") at normalized flux levels an order of magnitude higher

despite the somewhat smaller Mg II flux ratio. It is likely not coincidental
that the stars which were not detected in the collaborative mini-survey all

show evidence for stellar winds and circumstellar envelopes.

Curiously, the soft X-ray flux levels in the brightest coronal sources

exceed the corresponding Mg II fluxes. In those stars,the coronal energy

budget must be comparable or larger than that of the chromosphere, whereas

in the quiescent dwarf stars,suchas the Sun, the coronal energy budget is

only a small fraction of the chromospheric budget.

Finally, one sees that the He II-soft X-ray scaling proposed by Hartmann

et al. (1980) is incompatible with the measured flux levels, except perhaps

for the brightest of the coronal sources. For example, Hartmann et al. pre-

dicted that _ Aqr^(G2 II) would have a soft X-ray flux in the i/4-keV band

of order 7 x i0-IZ ergs cm-z s-i at the Earth based on the measured He II

flux of 22 x 10-13 . However, the 3_ upper limit for the entire 0.15-4.5 keV
Einstein IPC band is only 2 x 10-13 , which is considerably smaller than the

predicted flux. A similar situation exists for _ Aqr, where the measured He
II flux is comparable to the Einstein upper limit, whereas the soft X-ray

flux should be a factor of _50 larger according to the Hartmann et al. pre-

scription. There are at least two ways to resolve the dilemma.
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First, circumstellar material surrounding both _ Aqr and _Aqr may

, heavily attentuate the intrinsic coronal soft X-rays, consequently the upper

limits measured at the Earth may have little meaning. However, note that the

Sun exhibits only 4-7 times enhanced soft X-ray emission relative to He II

in both quiet and active regions, contrary to the factor of 250 expected.

Even if circumstellar obscuration is viable for the supergiants, one would

still have to find an additional mechanism to explain the solar discrepancy.

A second, more plausible, possibility is that the He II emission stren@th

is itself overestimated, especially in the stars having weak coronae. _ This

possibility is attractive because the "He II" feature is actually a blend of

He II and Fe II. Consequently, the intrinsically steep He ll-Mg II correla-

tion predicted by the Hartmann et al. prescription (namely fH _I _- 0.02J I e_f_. f.... ) may be significantly diluted by a f_ _- f _ contribution
m i • e i mg

a_ moderate and low f.... /_.. levels. Note t_at _he Fe I_ component is at

least 30% of the tota_g"_ l_±emission in the Sun (Kohl 1977). The compos-

ite relation might then mimic the empirical He ll-Mg II slope of 2.

In any event the possibility of either mechanism -- circumstellar ob-

scuration or Fe II contamination -- urges caution in the practical applica-

tion of the Hartmann et al. He II-soft X-ray scaling prescription.

B. IS THE CORONA-WIND BOUNDARY REAL?

The apparent correlations among chromospheric, TR and coronal emission

imply that transition regions and coronae do not completely die out to the

right of the Linsky-Haisch boundary. Nevertheless, the weakening of transi-

tion regions and coronae in the red giant branch is a real phenomenon that is

seen clearly even in the chromospheric Mg II emission (Fig. 6). The Linsky-

Haisch boundary appeared to be "sharp" in the early IUE spectra for two rea-
sons. First, the TR emission falls off rapidly with decreasing chromospheric

activity levels, and the giants to the right of the dividing line generally

have weak chromospheres. Second, the red giant ultraviolet spectra are domi-.

nated by chromospheric O I emission that is considerably enhanced relative

to that of dwarf stars having comparable Mg II activity levels (Fig. 12). If one

obtains low dispersion short wavelength spectra of dwarf and giant stars to

optimally expose the brightest emission feature (aside from L_), namely 0 1

1305 _, then one would in effect be selectively underexposing at C IV in the

giants compared with the dwarfs, by a factor of five or so. Since the IUE

vidieons have a limiteddynamic range, the factor of five in exposure can

make the difference between "signal" and "noise" at C IV.

In short, the weakening of transition regions and coronae in the red

giant branch is genuine, but appears "abrupt" primarily because of two

selection effects: (I) The steep contrast between TR and Mg II emission;

and (2) underexposure s in the L_ region of giant stars driven by the
selective enhancement of 0 1 emission.

C. ON THE OCCURRENCE OF CHROMOSPHERES AND CORONAE IN LATE-TYPE STARS

The fact that coronal and TR emission are well-correlated with Mg II flux

levels, at least in the cool stars for which all three have been detected,
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suggests to me that chromospheres and coronae must be physically associated.

However, the steepness of the soft X-ray correlation, and to some extent also

that of the TR emission, suggests to me that the chromospheric and coronal

heating mechanisms are quite different. The latter notion is strengthened by
the discordant behavior of the F-stars in TR emission, and by the K giants and

G-K supergiants in soft X-rays. The F-stars appear to support rather promi-
nent TRs and coronae (e.g. Vaiana 1980), but comparatively weak chromospheres,

while the cool giants and supergiants appear to be deficient in coronal mate-

rial compared with dwarf stars of similar chromospheric Mg II emission.

I will now outline a speculative picture to tie together these

disparate notions.

The detailed studies of the Sun during the Skylab era have strongly im-

plicated magnetic fields as the fundamental building block in the solar outer

atmosphere (Vaiana and Rosner 1978). The fields are responsible for the

physical structuring of the coronal plasma and likely also for the heating.

If the solar corona and TR are heated by a magnetic agency, is it not

reasonable that the chromosphere might be similarly heated, especially given

the close correspondence of chromospheric brightness with mean magnetic field

strength (Skumanich et al. 1975)? Actually, the answer is probably no, for

the following reasons. The thermal energy density in the corona is much
smaller than the magnetic energy density, consequently the dissipation of

only a small fraction of the available coronal field, by reconnection for

example, is required to balance coronal energy losses by radiation and back-
conduction to the chromosphere. On the other hand, the thermal energy den-

sity in the chromosphere is more nearly comparable to that of the magnetic

field, consequently large volumes of field would have to be converted to heat
on short timescales in order to power the large radiative losses in Mg II h

and k andmaintain the chromospheric temperature inversion.

An intriguing alternative to an in situ field dissipation mechanism for

heating the chromosphere, is if the small-scale magnetic flux tubes thought
to exist in the photosphere (Chapman 1980) serve simply as conduits of acous-

tic wave energy into the'outer atmosphere. Magnetic flux tubes could, in

principle, operate as acoustic wave guides owing to the reduced radiative

damping of acoustic modes that results from the decreased gas pressures in-
side the tubes. (The gas pressures are lower owing to the large internal

magnetic pressures.) Since the wave damping is proportional to the square

of the gas pressure while the wave flux is directly proportional to the

pressure, a potentially much larger absolute flux of wave energy could

survive photospheric passage inside the tubes than in the unmagnetized
plasma surrounding the tubes. In this picture, stellar chromospheres and

coronae would be confined entirely to the interiors of magnetic flux tubes,

but the heating mechanism in the distinct atmospheric layers would be quite

different. Consequently, chromospheric and coronal emission levels should

be grossly correlated, because the different atmospheric layers are

physically associated through the agency of the magnetic field, yet the
correlation need not have unit slope because theheat deposition mechanisms
are distinct.
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In this scenario, the weakening of chromospheres toward the early F
stars is explained by a decrease in the acoustic wave flux as the stellar

outer envelope becomes less convective. However, the TR and corona need

not weaken correspondingly, since they are powered by the magnetic field

directly. In particular, the rapid rotation of the F stars likely compen-

sates somewhat for the reduced convective motions in the dynamo replenish-

ment of surface fields. Alternatively, the F star chromospheres may be

systematically thinner than those of cool stars owing to the enhanced photo-

ionization of neutral hydrogen in the outer atmosphere by Balmer continuum

radiation. The photoionization effect would strongly decouple the n /nH
ratio from its intrinsic temperature sensitivity, thereby removing t_e

ionization "safety-valve" for the plasma cooling function that may be re-

sponsible for the extraordinary thickness (in pressure) of chromospheres
in cooler stars.

The existence of the "corona-wind" boundary in the HR diagram is also

understandable in the acoustic/magnetic scenario: A quirk of nature has

allowed stars with very different main sequence heritages to evolve into

nearly the same region of the HR diagram (Ayres 1980). Figure 13 depicts
the phenomenon.

The heavy dashed curve represents the corona-wind boundary proposed by

Linsky and Haisch. Evolutionary tracks for IM® (right-hand track) and 3M_
stars connect the Zero Age Main Sequence and the giant branch. Also included

are contours of constant stellar radius, and arrows that indicate the general

flow of stellar evolution in the two major regions which feed stars into the

giant branch. Simple consideration of stellar statistics suggests that most

of the comparatively numerous K giants must have evolved from main sequence
stars only slightly more massive than the Sun. On the other hand, the less

numerous G giants must evolve typically from _3M o A-type or B-type stars.

Consequently, the K giants tend to be old (_i09 yr) and have evolved verti-
cally in the HR diagram from relatively slowly rotating progenitors (F-G

dwarfs). On the other hand, the G giants tend to be young (_i08 yr), and

have evolved more nearly along the lines of constant radius from rapidly
rotating progenitors (B-A dwarfs).

The substantial evolutionary expansion, advanced age, and slow-rotating

predecessors of the K giants virtually guarantee that they too will be slow

rotators. (In fact, the development of a massive chromospheric wind would

rapidly shed any vestige of rotational angular momentum that had survived to

that evolutionary stage.) Similarly, the modest evolutionary expansion and

rapid-rotating precedessors of the youthful G giants virtually guarantee
that they will be fast rotators (certainly compared with the K giants). The

apparent weakening of chromospheric and coronal emission in the red giant

branch, is then simply an artifact of comparing young magnetically active

stars having vigorous dynamos to the left of the boundary with old, magnet-

ically dying stars to the right. Chromospheres are considerably more visible

in the K giants than are coronae, because the major component of the chromo-

spheric heating, namely acoustic waves, is still active, despite the decay

of the surface magnetic f±elds which are the sole coronal energy source.
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The case of the supergiants is somewhat different from that of the

giants• The supergiants have evolved horizontally in the HR diagram from

very massive (_IOM®) progenitors and must be quite young (106-107 yr).
These stars have suffered enormous evolutionary expansion and are likely

slow rotators as a result• Dynamo action must be comparatively weak in the

supergiants once they have cooled sufficiently to develop convective enve-
lopes. Nevertheless, because such stars are so young, one would anticipate

that some of the primordial fields from the protostellar collapse would have

survived dissipative processes over the relatively brief main sequence life-

time of the massive progenitor, and would therefore be available during the

supergiant phase to form chromospheres and coronae by the scenario I have
outlined above. Since the corona is a field-dissipative mechanism itself,

and since the dynamo replenishment action is likely to be nil, one would

expect to find a general weakening of the mean coronal emission levels with

increasing age (toward cooler spectral types), and a peaking of chromo-

spheric emission toward the early G supergiants where the rising acoustic

flux production encounters the failing mean surface magnetic field levels.

D. CONCLUSION

I can only hope that the insight and impetus that the first and second

years of IUE have given to the study of cool-star outer atmospheres will
continue unabated into the third and future years•

REFERENCES

Athay, R. G. 1976, The Solar Chromosphere and Corona: Quiet Sun, (Boston:
D. Reidel).

Athay, R. G. and White, O. R. 1978, A.____., 226, 1135.

. 1979, Ap. J. Suppl•, 39, 333.

Avrett, E. H., Vernazza, J. E. and Linsky, J. L. 1976, AP" J" (Letters),

207, L199.

Ayres, T. R. 1975, A.______, 201, 799.

. 1979, Ap. J., 228, 509.
• 1980, in Proceedings of "Cool Stars, Stellar Systems and the Sun,"

ed. A. K. Dupree, SAO Special Report, in press•

Ayres, T. R. and Linsky, J. L. 1980a, Ap. J., 235, 76.

. 1980b, Ap. J. (in press)•
Ayres, T. R., Linsky, J. L. and Shine, R.A. 1975, Ap. J. (Letters),

195, LI21.

Ayres, T. R., Marstad, N. and Linsky, J.L. 1980, in preparation.

Baliunas, S. L., Avrett, E. H., Hartmann, L. W. and Dupree, A. K. 1979,

Ap. J. (Letters), 233, L129.

Baliunas, S. L. and Butler, S. E. 1980, _ (in press)•
Basri, G. S. 1979, Ph.D. Thesis, Univ. of Colorado, Boulder, Colorado•

Basri, G. S. and Linsky, J. L. 1980, Ap. J., 234, 1023.

Basri, G. S., Linsky, J. L., Bartoe, J.-D. F•, Brueckner, G. E. and Van

Hoosier, M. E. 1979, Ap. J., 230, 924.
Bohm, H. U. 1980, preprint.

B_hm-Vitense, E. 1980a, preprint.

263



. 1980b, in Stellar Turbulence, eds. D. F. Gray and J. L. Linsky
(New York: Springer-Verlag), p. 300.

B_hm-Vitense, E. and Dettmann, T. 1980, Ap. J., 236, 560.

Bopp, B. W. and Fekel, F., Jr. 1977, A. J., 82, 490.

Bruner, E. C., Jr. 1978, Ap. J., 226, 1140.
Cash, W., Bowyer, S., Charles, P., Lampton, M., Garmlre, G. and Riegler, G.

1978, Ap. J. (Letters), 223, L21.
Chapman, G. A. 1980, in Proceedings "Skylab Series C Workshop: Active

Regions," ed. F. Q. Orrall, (in press).

Cram, L. E., Krikorlan, R. and Jefferles, J. T. 1979, Astr. AP., 71, 14,

Doschek, G. A., Feldman, U., Bhatia, A. K. and Mason, H. E. 19785, _,

226, 1129.

Doschek, G. A., Feldman, U., Marlska, J. T. and Linsky, J. L. 1978a, A.____

(Letters), 226, L35.

Dupree, A. K. 1975, Ap. J. (Letters), 200, L27.

• 1976, in Physique des mouvements dans les atmospheres stellaires,
ed. Cayrel and Steinberg (Paris: CNRS), p. 439.

Dupree, A. K., Ballunas, S. L. and Shipman, H. 1977, _, 218, 361.

Dupree, A. K. and Hartmann, L. 1980, in Stellar Turbulence, eds. D. F. Gray
and J. L. Linsky (New York: Sprlnger-Verlag), p. 279.

Durney, B. R. 1972, The Solar Wind, NASA Report, ed. Sonett_ Coleman and
Wilcox.

Engvold, O. and Rygh, B. O. 1978, Astr. Ap., 70, 399.

Flannery, B. P. and Ayres, T. R. 1978, Ap. J., 221, 175.

Foukal, P. V., Huber, M. C. E., Noyes, R. W., Reeves, E. M., Schmahl, E. J.,

Timothy, J. G., Vernazza, J. E. and Withbroe, G.L. 1974, Ap. J.

(Letters), 193, L143.
Golub, L., Harnden, F. R., Rosner, R., Topka, K. and Vaiana, G. S. 1980,

B.A.A.S., ii, 775.

Hall, D. S. 1976, in Multiple Periodic Variable Stars, ed. W. S. Fitch
(Dordrecht: D. Reidel), p. 287.

. 1978, A. J., 83, 1469.
Haisch, B. M. and Linsky, J. L. 1976, Ap. J. (Letters), 205, L39.

Haisch, B. M., Linsky, J. L. and Basrl, G. S. 1980, Ap. J., 235, 519.

Haisch, B. M., Linsky, J. L., Weinstein, A. and Shine, R. A. 1977, Ap. J.,

214, 785.
Hartmann, L., Dupree, A. K. and Raymond, J. C. 1980, Ap. J. (Letters)

(in press).

Holt, S. S., White, N. E., Becket, R. H., Boldt, E. A., Mushotzky, R. F.,

Serlemltsos, P. J. and Smith, B.W. 1979, Ap. J. (Letters), 234, L65.

Hummer, D. G. and Stewart, J. C. 1966, Ap. J., 146, 290.

Iben, I., Jr. 1965, A._____J_.,142, 1447.

. 1967, Ann. Rev. Astr. Ap_, 5, 571.

Kohl, J. H. 1977, Ap. J., 211, 958.
Linsky, J. L. 1980, in Proceedings Jan. 1980 HEAO-AAS Meeting (in press).

Linsky, J. L. and Ayres, T. R. 1978, Ap. J_, 220, 619.

Linsky, J. L. and Haisch, B.M. 1978, Ap. J. (Letters), 229, L27.
Linsky, J. L., Worden, S. P., McClintock, W. and Robertson, R. M. 1979,

Ap. J. Suppl., 41, 47.
Lites, B. W., Hansen, E. R. and Shine, R. A. 1980, _, 236, 280.

Lutz, T. E. 1970, A. J., 75, 1007.
Lutz, T. E. and Pagel, B. E. J. 1979, preprlnt.

264



Lutz, To E., Furenlid, I. and Lutz, J. H. 1973, Ap. J., 184, 787.
Mariska, J. T., Doschek, G. A. and Feldman, U. 1980, Ap. J. (Letters)

(in press).

McClintock, W., Henry, R. C., Moos, H. W. and Linsky, J. L. 1975, Ap. J.
202, 733.

Moos, H. W., Linsky, J. L., Henry, R. C. and McClintock, W. 1974, Ap. J.

(Letters), 188, L93.
Mount, G. H., Rottman, G. and Timothy, J. G. 1980, preprint.

Noyes, R. W. 1974, contribution to IAU Symposium No. 27, Cambridge, Mass.

Nugent, J. and Garmire, G. 1978, Ap. J. (Letters), 226, L83.
Pagel, B. E. J. and Wilkins, D. R. 1979, preprint.

Parker, E. N. 1955, AP.. J', 122, 293.

. 1970, Ann. Rev. Astr. Ap., 8, I.

Raymond, J. C. and Dupree, A. K. 1978, Ap. J_, 222, 379.

Rosner, Ro, Tucker, W. H. and Vaiana, G. S. 1978, AP- _., 220, 643.

Schmitz, F. and Ulmschneider, P. 1980, Astr. Ap. (in press).

Shine, R. A. and Linsky, J. L. 1972, So!a r Phys., 25, 357.

1974, Solar Phys., 39, 49.
Skumanich, A. 1972, Ap. J., 171, 565.

Skumanich, A., Smythe, C. and Frazier, E.N. 1975, Ap. J., 200, 747.

Stencel, R. E. and Mullah, D. J. 1980, Ap. J. (in press).
Stencel, R. E., Mullan, D. J., Linsky, J. L., Basri, G. S. and Worden S. P.

1980, AP" J" (in press).

Thomas, R. N. 1973, Astr. Ap_, 29, 297.

Tripp, D. A., Athay, R. G. and Peterson, V. L. 1978, Ap. J., 220, 314.

Ulmschneider, P., Schmitz, F., Renzini, A., Cacciari, C., Kalkofen, W. and

Kurucz, R. L. 1977, Astr. Ap., 61, 515.
Vaiana, G. S. 1980, in Proceedings Jan. 1980 HEAO-AAS Meeting (in press).

Vaiana, G. S. and Rosner, R. 1978, Ann. Rev. Astr. Ap., 16, 393.
Vaiana, G. S., et al. 1980, preprint.

Vernazza, J. E., Avrett, E. H. and Loeser, R. 1976, Ap. J. Suppl., 30, i.

Walter, F. M., Cash, W., Charles, P. A. and Bowyer, C. S. 1980, Ap. J.,

236, 212.

Walter, F. M., Charles, P. A. and Bowyer, C. S. 1978, A. J., 83, 1539.

Weiler, E. J. and Oegerle, W. R. 1979, AP. J" suppl., 39, 537.

Wilson, o. c. and Bappu, M. K.V. 1957, Ap. J., 125, 661.

Withbroe, G. L. 1977, in Proceedings of the 0SO-8 Workshop (Boulder:
University of Colorado Press), p. 2.

Withbroe, G. L. and Noyes, R. W. 1977, Ann. Rev. Astr. Ap., 15, 363.

Young, A. and Koniges, A. 1977, Ap, J., 211, 836.

Zahn, J. P. 1977, Astr. Ap., 57, 383.
Zwaan, C. 1980, in Proceedings, "Cool Stars, Stellar Systems and The Sun,"

ed. A. K. Dupree, SAO Special Report (in press).

265



2.10 -7

Sun (G2V)

H

-r- _

I .10 "7 I

• El
e_

, I ,.,/
p _

0 -"--"-'-_'
1200 1400 1600 1800 2000

WAVELENGTH (_,)
Fig. I. Short wavelength, low dispersion IUE ultraviolet spectra of
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Fig. 4. Comparison of SWP echelle-mode profiles of C IV 1548 _ and Si II
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Fig. 5. Comparison of Capella chromospheric and transition region line
profiles attwo orbital phases: velocity crossing, left-hand

panel; near elongation, right-hand panel. The COM velocities of,
the G-type primary (Aa) and F-type secondary (Ab) at each phase

are indicated by arrows. (Courtesy Astrophysical Journal.)
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(b)

Fig. 7. Correspondence of atmospheric thermal structure (right-hand panel)

to emission structure in Mg II k or Ca II K line profile. For ex-

ample, the minimum temperature region at the top of the photosphere

is mapped onto an intensity minimum in the line profile ("KI").
The displacement of K 1 from line center is governed by the depth

of the temperature minimum in mass column density, m, (g cm-2).

If m, increases, so does A_I<I. (Courtesy Astrophysical Journal.)
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Fig. 8. Schematic depiction of Ca II K and Mg II k profile behavior with
changing surface gravity (top panel) and chromospheric activity
(bottom panel) as predicted by scaling laws. The intensity scale
in the top panel is arbitrary for each profile. In particular,
all three emission features should have similar integrated core
surface fluxes. Note that the K 1 minimum feature separation
broadens both with decreasing surface gravity and increasing
chromospheric activity, while the K2 separation broadens with
decreasing surface gravity but becomes narrower with increasing

activity. (Courtesy Astrophysical Journal.)
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Fig. 10. Comparison of Mg IIk 1 and Ca II K1 separations for the available
sample of dwarfs, giants and superglants. The dotted curve de-
picts the 2.5 relation expected from the chromospheric scaling

laws and "Damping" hypothesis, while the dashed curve is the

relation expected if the minimum features were formed entirely in

the Doppler core• Partial coherent scattering effects, which were

not considered explicitly in the derivation of the scaling laws,

would tend to reduce the 2.5 prediction somewhat. The decrease

would be largest for the superglants where the PCS effects are

most pronounced.
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Damping (dotted curve) and Doppler (dashed curve) predictions are

based on a depth-lndependent chromospheric broadening veloelty.

Both predictions would be increased if the nonthermal broadening

in the middle chromosphere rises outwards. In addition, some of

the measured k2 widths may be overestimates of the true separations
owing to the influence of interstellar and circumstellar absorption
components in the k emission core.
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Fig. 12. Correlogram for chromospheric, transition region and coronal

emission. The individual normalized fluxes are plotted against

the normalized Mg II emission strength. The dashed curves in each

panel are for f_/_bol =- fn zl/_'DO_'1 Note that the Mg II emission
is always considerably lar_er than that of the prominent features
of the short wavelength spectrum. The solid curves are not fits

to the data, but merely indicate the approximate slope of the

individual correlations. (Courtesy Astrophysical Journal.)
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Fig. 13. A simple evolutionary scenario to explain the weakening of coronae_
and chromospheres, in the red giant branch. The heavy dashed curve

is the corona-wind boundary proposed by Linsky and Haisch. The

thin curves are evolutionary tracks (Iben 1967) for iMe (right-

hand track) and 3M e stars. The arrows indicate the general flow
of evolution into the G and K giant regions. Spectral types are

given for the Zero Age Main Sequence and in the yellow (F-G) and

red (K-M) giant branches.
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ABSTRACT

We present observed Mg II h and k line fluxes for a sample of 4 dMe and

3 dM stars obtained with the IUE satellite in the long wavelength, low dis-
persion mode. The observed fluxes are converted to stellar surface flux units

and the importance of chromospheric non-radlative heating in this sample of M

dwarf stars is intercompared. In addition, we compare the net chromospheric

radiative losses due to the Ca II H and K lines in those stars in the sample

for which calibrated Ca II H and K line data exist. Moreover, we estimate

active region filling factors which likely give rise to the observed optical
and ultraviolet chromospheric emission. Finally, we briefly discuss the

implications of the results for homogeneous, single-component stellar model
chromospheres analyses.

INTRODUCTION

The resonance lines of Ca II and Mg II, designated as the H and K and h

and k lines, respectively, are valuable diagnostics of stellar chromospheric

properties. The dominant role of the H and K lines in model chromospheres
analyses has been due to their accessibility to earth-based observation

iThis research is supported in part by the National Aeronautics and Space

Administration through grants NAS 5-23274 to the University of Colorado and to
the Air Force Geophysics Laboratory.

2Staff Member, Quantum Physics Division, National Bureau of Standards.

3Guest Observer, International Ultraviolet Explorer.
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(ref. i and references therein). However, with the advent of the International

Ultraviolet Explorer (IUE) satellite, the resonance lines of Mg II ar_ now

available for theoretical analysis. The height of formation of the h and k

lines is somewhat greater than the height of formation of the Ca II H and K

resonance lines. Furthermore, Mg II can be represented with a simple atomic

model. Hence the radiative transfer can be solved more accurately to yield

more reliable results. In the following we will offer a brief quantitative

assessment of low dispersion Mg II h and k line observations of dMe and dM ,
stars.

RESULTS

The stars observed, their spectral types and the Mg II (h + k) llne

fluxes at the earth are given in the first three columns of table 14. The

spectral types are taken from reference 2 except for 61 Cyg B. The spectral

type for this star is given in reference 3. The relations between stellar

angular diameter and (V-R) color (refs. 4, 5) convert the observed flux to
surface flux. The (V-R) color index for each star follows from reference 6

(the (V-R) color for 'AT Mic is not available). The ratio of the Mg II (h+k)

stellar surface flux to the same quantity for the mean Sun is listed in

column 4 of table I. This ratio is based upon the mean solar value of the

M8 II h and k line flux given in reference 7. The importance of chromospheri_:

non-radlatlve heating in this sample of M dwarf stars considered here can be

readily intercompared through the ratio

4

_k = F(Mg II h+k)/o Tef f ,

where Rhk represents the chromospheric radiativelosses in the h and k lines
normalized to the total stellar surface flux. We assume that the radiative

equilibrium contributlonto the h and k line fluxes is negligible in these

cool dwarfs. The values of Rhk are listed in column 5 of table I. The
effective temperatures for GL 380 and GL 411 are taken from reference 8. The

values of Tef f for EQ Vir and YZ CMi are taken from reference 9. The effec-
tive temperature of 61 Cyg B is taken from reference i0 while that for UV

Ceti is estimated from its spectral type and reference Ii. Values of RHK,

the analogous quantity for the Ca II H and K lines, are taken from reference 8

and listed in column 6 of table I (the RHK value for 61 Cyg B follows from

reference i0 while the RHK values for EQ Vir and YZ CMi given in reference 8
have been modified to reflect the new Tef f measurements presented in referenc_
9). Finally, we list in column 7 of table I the ratio of the Mg II (h+k) lin,_
fluxes to the Ca II (H+K) line fluxes. Omitted entries in table I indicate

that the particular value is not available.

DISCUSSION

The values of the ratio F(Mg II h+k)/F_(Mg II h+k) are less than unity,
with the exception of the most active star (as defined by the Rhk values),

EQ Vir. The values of Khk for the dMe stars are basically an order of magni-
tude greater than for the dM stars. Furthermore, F(Mg II h+k)/F@(Mg II h+k)

4The observed Mg II fluxes for YZ CMi and UV Ceti have been kindly provided by

K. G. Carpenter and R. F. Wing in advance of publication.
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increases with increasing Rhk. In addition, the ratio F(Mg II h+k)/F(Ca II H+K)

is greater than unity (with the exception of GL 380) for the sample considered

here. Thus the Mg II resonance lines generally play a more important role in
the overall chromospheric energy balance in dMe and dM stars than do the Ca II

H and K resonance lines. However, there is an important caveat that must be

noted: the Mg II data and the Ca II data discussed in this investigation were

not acquired simultaneously. Thus the emergence and decay of stellar surface

activity combined with the rotational modulation of these features are likely

to cause variations in the observed net chromospheric radiative losses. There-
fore data sets obtained at widely separated times of observation cannot be

confidently compared on a star-by-star basis (with the possible exceptions of

the "most active" and the "least active" stars). We can, however, partially

circumvent this difficulty by comparing the mean values of physical quantities

for a particular sample of stars. Since the degree of chromospheric activity

among stars in a given sample is uncorrelated, the mean values of physical
quantities will remain relatively constant. We thus find the mean value of

the ratio F(Mg II)/F(Ca II) to be 2.85° This is similar to the mean solar

value___oof2.5 (ref. I0). The mean values of Rhk and RHK are Rhk = 8.6 (-5)

and RHK = 3.3 (-5). The ratio Rhk/RHK is 2.6 which is even closer to the
solar value of 2.5. Thus we conclude that the mechanism which determines the

relative contributions of certain spectral lines to the energy balance in the

chromosphere must be similar in the late-type, main sequence dwarf stars.

An approach to account for the degree of chromospheric emission in M

dwarf stars is to assume that the dM and dMe stars fundamentally differ from
each other in terms of the fractional area of their surface which is covered

by active (plage) regions. The active region filling factor can be crudely

estimated according to the following expression (ref. 12)

F = A Fa + (I-A) FQ, (i)

where A is the dimensionless ratio of the area of the active region to the

area of the visible quiet stellar surface. The symbols Fa and FQ represent
the Mg II h and k line surface flux for an active and quiet region, respec-

tively. The underlying assumptions which lead to equation (i) are given in

reference 12. The values of A based upon the Mg II h and k fluxes presented
in this investigation are given in column 2 of table II. We also list in

column 3 of table II the values of A given in reference 12. These filling

factors are based upon the Ca II H and K line data presented in reference 8.

In order to compute the relative active region filling factors it was necessary
to arbitrarily define A _ I for EQ Vir and A _ 0 for GL 411 (ref. 12).

Excluding these extreme values, we find the mean values A (Mg II) = 0.15 and
A (Ca II) = 0.07. Of course the small size of the sample renders a comparison

of these two estimates of active region filling factors less meaningful. How-
ever, it is interesting to note that model chromospheres deduced from the

Ca II K-line profiles of reference 8 underpredict the Mg II k-line flux by an
order of magnitude or more for a subset of the dMe and dM stars discussed in

this investigation (ref. 13). In summary, the apparently discrepant mean

active region filling factors derived from the Ca II H and K and the Mg II h

and k lines combined with the failure of model chromospheres to reconcile two

overlapping chromospheric spectral features suggest that single-component,

homogeneous model atmospheres are not physically realistic representations of
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M dwarf stars.

The stellar chromospheric emission features probably arise from plage

regions which are, in turn, composed of magnetic flux tubes. A schematic

model of a magnetic flux tube is prasented in figure i. The levels hI and hZ

represent the heights of formation of the Ca II K-line and the Mg II k-line,

respectively. We consider a flux tube in hydrostatic equilibrium. Therefore

Pext(h) = Pg(h) + [B(h)]2/8_,

where Pext(h) is the external (field-free) gas pressure at height h, Pg(h) is
the internal gas pressure and B(h) is the internal magnetic field strength,

also at height h. We ignore turbulent pressure in this preliminary analysis.

At the levels hI and h2 we have

p1 ext = P1 g + B12/8_ ,

p2 ext = P2g + B22/8_.

Now P2 ext < PIext by the constraint of hydrostatic equilibrium. But B2 < BI

in a flux tube characterized by diverging field lines (see fig. I). Thus it

is possible for P2g > PIg, which would lead to enhanced Mg II k-line emission.

The condition P2g > PIg occurs if the inequality

B12 - B22 > 8_ (P1 ext - P2 ext)

is fulfilled. An alternative way to conceptualize the problem is to note t_t

the emission area (filling factor) for the k line, A2, is greater than the

emission area for the Ca II K line, AI, as shown schematically in figure i.
Of course a proper analysis of the chromospheric line spectrum in a magnetic

flux tube requires a two-dimensional radiative transfer calculation since the
flux tube is in radiative exchange with its surroundings. Moreover, the

importance of lateral turbulent heat exchange will change along a flux tube _Ls
the field decreases with height (refs. 14, 15).

CONCLUSIONS
i

The Mg II h and k line data and the transition region line data from IU_:
combined with Balmer line and H and K llne data for the dMe and dM stars offe_r

us the unique opportunity to construct self-consistent stellar model chromo-
spheres. We further suggest that multi-component model atmospheres are more

realistic physical representations of stellar chromospheres. In particular,

we hypothesize that a detailed consideration of the line spectrum arising

from magnetic flux tubes is required in order to reconcile various chromo-

spheric spectral llne diagnostics.
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TABLE I. - SUMMARY OF IUE Mg II (h+k) OBSERVATIONS

Spectral
F

Star Type _*(Mg II) F*(Mg II) _(Mg II) _k BE F(Mg II)/F(Ca II)

EQ Vir dK5e 1.36 (-12) 2.67 (6) 2.12 1.71 (-4) 1.2 (-4) 1.43

61 Cyg B dM0 6.52 (-12) 3.10 (5) 0.25 2.92 (-5) 8.2 (-6) 2.67

GL 380 dM0 8.19 (-13) 4.95 (4) 0.04 3.97 (-6) 1.0 (-5) 0.38

GL 411 dM2 5.79 (-13) 3.33 (4) 0.03 4.39 (-6) 1.4 (-6) 3.06

_ AT Mic dM4.5e 3.94 (-12) ....

YZ CMi dMS.5e 1.26 (-12) 9.37 (5) 0.75 1.68 (-4) 2.5 (-5) 6.72

UV Ceti d_f6e 6.41 (-13) 4.00 (5) 0.32 1.40 (-4) .....

* -2 -i
Units: ergs - cm - s



TABLE SI. - ACTIVE REGION FSLLING FACTORS

STAR A (MgSS) A (CaSS)

EQ Vlr E 1.0 _ 1.0

61 Cyg B 0.I0 0.065

GL 380 0.01 0.07

GL 411 E 0.0 _ 0.0

AT Mic ......

YZ CMi 0.34 0.07

UV Ceti 0.14 ---
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Figure i. - Schematic model of a magnetic flux tube.
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ABSTRACT

We report on IUE spectra of _ CMi (F5 IV-V), B Cas (F2 IV), _ Car

(F0 Ib), and y Boo (A7 III) in the context of the question as to whether

chromospheres disappear in the early F-late A portions of the HR diagram.

Both _ CMi (Procyon) and 8 Cas show bright emission line spectra indicative

of chromospheres and transition regions, but neither _ Car (Canopus) nor

y Boo show any evidence of emission in their SWP spectra or at the Mg II

lines, despite very deep exposures. These results are consistent with those

recently published by BShm-Vitense and Dettmann. We note that _ CMi has

emission line fluxes roughly 6 times those of the quiet Sun, but the rapidly

rotating _ Scuti-type variable _ Cas has surface fluxes 10-50 times those of

the quiet Sun. Upper limits on emission line fluxes for _ Car are 4-20

times those of the quiet Sun and for y Boo are 15-80 times the quiet Sun.

We conclude that the apparent absence of emission lines in the spectra of

Car and ¥ Boo should not be interpreted as due to the absence of nonradia-

tively heated outer atmospheres in stars hotter than spectral type F0, but

rather to our inability to see emission lines with IUEagainst a background
of scattered light and a bright photospheric absorption line spectrum either

in low or high dispersion.

INTRODUCTION

We consider here the important question of whether the outer atmospheres

of stars change in a fundamental way near spectral type F0 as convection
zones become thin and carry little flux with increasing stellar effective

temperature. The earliest-type stars with Ca II H and K line emission noted

by Wilson (1966) in his I0 A mm -I photographic survey are at spectral type

F5. These data, together with the empirical result that stellar rotational

velocities decrease rapidly in the middle F stars (e.g. Kraft 1967) and the
theoretical result that acoustic wave heating (the presumed chromospheric

heating source) should decrease rapidly in the early F-type stars, led many
authors to conclude that chromospheres disappear in the middle F stars.

Subsequently, using higher dispersion spectra, Warner (1966,1968) found weak

iThis work was supported by NASA through grants NAS5-23274 and NGL-06-003-057

to the University of Colorado.

2Staff Member, Quantum Physics Division, National Bureau of Standards.

3Guest Observer with the International Ultraviolet Explorer (IUE___)satellite.
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Ca II emission in Canopus (F0 Ib) and y Vlr N (F0 V), and Le Contel et al.

(1970) reported occasional Ca II emission in the _-Scuti-type star y Boo
(A7 III). Frelre (1979) and Frelre et al. (1977,1978) have searched for

emission in the Ca II lines and ultraviolet C II and Si ll lines in Vega
(AO V) and two other early A-type stars without success.

BShm-Vitense and Dettmann (1980) have observed 21 F- and 13 A-type

stars with__IUE. They find that chromospheric emission lines begin to appear

at (B-V) _ 0.32 (about spectral type F0) on the main sequence, but at the
Cepheid instability strip for the more luminous stars. Our observations con-

firm their identification of an empirical dividing line for the appearance oE

chromospheric emission lines in the Hertzsprung-Russell (HR) diagram, but we
feel that the data cannot determine whether chromospheres disappear in this
region of the HR diagram.

OBSERVATIONS

We summarize the stellar parameters and our IUE observations in Tables [

and 2. Since our goal was to search for emission features superimposed on a

bright backgrouod consisting of the stellar ultraviolet absorption llne spec-

trum and scattered near ultraviolet light, we obtained several exposures in-
cluding very long exposures in which the long wavelength portions of the
spectra are heavily overexposed.

The composite low dispersion spectra (deleting saturated pixels) are
presented in Figure I in absolute flux units at Earth. The calibration fac-

tors used are those described by Turnrose et al. (1980) and Cassatella et al.

(1980), except that the small aperture e CMi spectra were calibrated using
the low dispersion fluxes of the strong C II %1335 and C IV %1550 doublets

cited by Brown and Jordan (1980). These data imply that the transmission

of the small aperture for our e CMi observations was 0.33. Since the _ CMI

spectra were obtained with the small aperture, we are able to measure fluxes

in the Si III %1206 and L_ features accurately.

Clearly both e CMi and 8 Cas exhibit bright emission lines due to chro-

mospheric ions (0 I, C I) and ions (C II, C III, C IV, Si IV, N V) formed at

temperatures of 20-200 x 103 K, perhaps in geometrically thin regions analo-
gous to the solar transition region. However, neither _ Car nor _ Boo show

any of these emission lines in the low dispersion data. A high dispersion
SWP spectrum of e Car also shows no evidence for any emission features.

High dispersion spectra of the Mg II features in 8 Cas, e Car, and ? Boo
are shown in Figure 2. These spectra show no clear evidence of Mg II emis-

sion, despite the very long exposure times to bring up the line cores to typi-

cally 150 DN. B_hm-Vitense and Dettmann (1980) call attention to a strong

correlation between M_ II emission and the appearance of chromospheric emis-

sion lines in the SWP images. We feel that the apparent absence of Mg II
emission in B Cas is probably due to rotational smearing of a weak emission

feature in the core of an absorption line. Emission features appear in the

1200-1600 region of this star despite rotation smearing, because the contrast

between the emission line flux and 6 A of continuum is large. We find no
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evidence for Mg II emission in _ Car (see Fig. 2), although Evans et al.

(1975) identify emission features in their Copernicus V2 spectrum of the star.

We feel that our data have higher signal-to-noise and higher spectral resolu-
tion than their data. Thus we feel that the absence of Mg II emission in our

data is real. Also interstellar absorption features in the cores of the Mg II

lines can suggest double emission features which may not be present.

We list in Table 3 observed fluxes at Earth and probable identifica-

tions of emission features we consider to be real. Also given are flux

upper limits for _ Car and y Boo. These are estimated as roughly equal to

the flux in adjacent "emission" features with widths comparable to emission
lines in _ Cas and measured above a curved line drawn through the low points

in the spectra. These "emission" features are probably stretches of con-
tinuum between absorption lines. Thus the "noise" in the _ Car and y Boo

spectra is not true noise but rather the up and down character of absorption

line spectra. Our estimates of emission line flux upper limits thus refer
to the maximum emission line flux that could be confused with the absorption

line spectrum and thus not identified as an emission line.

The observed fluxes were then converted to stellar surface fluxes using

the Barnes-Evans relation for stellar angular diameters (cf. Linsky et al.

1979). The derived angular diameters and ratios of surface flux to flux ob-

served at Earth are given in Table i. Listed in Table 4 are quiet Sun sur-

face fluxes cited by Linsky et al. (1978) and the ratios of stellar surface

fluxes to quiet Sun surface fluxes.

DISCUSSION

The _ CMi surface fluxes are about aZfactor of 6 times larger than the

quiet Sun, whereas those of _ Cas are lypically 30 times larger than the

quiet Sun. Brown and Jordan (1980) estimate transition region pressures for
CMi consistent with pressures at the top of the chromospheric model de-

rived by Ayres et al. (1974). Since transition region surface fluxes in

solar plages are typically 10 times the quiet Sun, the nonradiative heating

rates in the outer atmosphere of B Cas exceed those of solar plages by a
factor of 3. We know that chromospheric nonradiative heating rates are well

correlated with stellar rotational velocities for stars of similar spectral

type (e.g. Kraft 1967, Skumanich 1972), and there is growing evidence of a
correlation between nonradiative heating rates in transition regions and

coronae as well (Ayres and Linsky 1980, Linsky 1980). The significant in-
crease in emission line surface fluxes from _ CMi to B Cas is consistent

with this picture. An alternative explanation for the large heating rate
in the outer atmosphere of B Cas is dissipation of shock waves excited by
the stellar oscillations.

We feel that the upper limits on the surface fluxes for emission lines

in _ Car and y Boo are significant. For example, if one added emission lines

with surface fluxes comparable to those of _ CMi to the observed spectrum of

Car, these emission lines would be extremely hard to detect against the

bright absorption line spectrum of _ Car. Similarly, emission lines with

surface brightnesses even as large as those of B Cas would be undetectable
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against the bright absorption line spectrum of y Boo. Thus, with IUE we are

unable to determine whether or not chromospheres and transition regions cea_e

to exist as one proceeds from the early F to hotter stars. All we can say
is that our data and those of B_hm-Vitense and Dettmann (1980) show that

chromospheres and transition regions cease to appear spectroscopically in
the ultraviolet as observed with an instrument like IUE.

It is important to recognize the instrumental and astrophysical reason_
behind the latter statement. The instrumental limitations of IUE are its

limited signal-to-noise, sensitivity of the short wavelength cameras to

scattered long wavelength light, halation in the image converters, and the

potential for SECVidicon damage when oversaturating the long wavelength por-

tion of an image to bring up the relatively weak short wavelength portion of

the spectrum. As a result, We would caution future observers against taking

even deeper exposures of early F- and late A-type stars, and we expect that

deeper exposures would not be productive in any case. The High Resolution

Spectrograph (HRS) now being built for Space Telescope (Brandt et al. 1979)
will not have many of the limitations of IUE as it will include a solar

blind, photon-counting detector capable of very high signal-to-noise, large
dynamic range, and up to 1.2 x 105 resolution. With this instrument we ex-

pect that chromospheric emission lines will be detected in the late A-type
stars until at some spectral type we will run into the fundamental astro-

physical limitation of detecting weak emission features against a very
bright photospheric absorption line spectrum.

Finally, we expect that most stars hotter than spectral type F0 probably
contain nonradiatively heated outer atmospheres. This is based on the detec-

tion by Einstein of X-rays from many types of hot stars including O-type and

WR stars, the A-type dwarfs Sirius A and Vega, and _ Car (Vaiana et al. 198(!).

Also, Underhill (1980) has presented evidence for nonradiatively heated outer

atmospheres (mantles) for O, B, and A-type supergiants. Thus nonradiatively

heated outer atmospheres can be produced even in the absence of deep convec-

tion zones. Linsky (1980) and Underhill (1980) argue that magnetic fields,
both remnant and dynamo regenerated, are responsible for nonradiative
heating in most if not all stars.

We wish to thank Dr. A. Boggess and the staff of the IUE Observatory
for their assistance in the acquisition and reduction of these data. We

also wish to thank Dr. C. Jordan for permission to use her IUE fluxes of
CMi prior to publication.
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Table I

STELLAR PARAMETERS

Star HD Spectral Va V-R a Ang. Dia. F/fb v sin ic

Type (milliarcsec) (km s-I)

CMi 61421 F5 IV-V 0.37 0.42 5.94 4.82(15) 6

8 Cas 432 F2 IV 2.27 0.31 1.99 4.29(16) 72

Car 45348 F0 Ib -0.75 0.24 6.97 3.50(15) 0

y Boo 127762 A7 III 3.02 0.14 I.O1 1.67(17) 145

aFrom Johnson et al. (1966).

bRatio of surface flux to flux observed at Earth.

CRotational velocities from Uesugi and Fukuda (1970).
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Table 2

SIIMMARY OF IUE OBSERVATIONS

Star Spectral IUE Exp. Time Aperture a Dlsperslon b
Type Image (Min. )

CMI F5 IV-V SWP 1306 30 S L

SWP 1317 30 S HI

SWP 1318 6 S L

SWP 1319 i0 S L

SWP 1320 20 • S L

Cas F2 IV SWP 2372 26 L L

SWP 2373 6.5 L L

LWR 2156 ii L HI

Car F0 Ib SWP 2302 30 L HI
SWP 5439 i L L

LWR 2083 0.67 L HI

LWR 4703 3 L HI

Boo A7 III SWP 2395 24 L L

LWR 2172 16 L HI

= small, L = large.

= low, HI = high.

Table 3

SUMMARY OF OBSERVED FLUXES a

Wavelength Ion _ CMi B Cas _ Car e y Boo c

1175 C III 1.1(-12)

1206 Si III 3.5(-12)

1216 H Ib 4.1(-11) 1.6(-11) <8(-12)

1239 N V 1.5(-12) 3.2(-13) <5(-12) <2(-13)
1253 S II? 3.9(-13)

1273 C I 2.8(-12) 4.4(-13):

1304 O I 3.1(-12) 2.3(-12) <5(-12) <4(-13)

1316 6.9(-13): 3.5(-13):

1335 C II 7.5(-12) 2.0(-12) <5(-12) <4(-13)
1354 O I 1.2(-12): 5.5(-13)

1371 O V 1.0(-12):

1394 Si IV 1.1(-12) 7.3(-13) <5(-12) <4(-13)

1403 Si IV+O IV 6.6(-13) 1.1(-12) <5(-12) <4(-13)
1440 2.0(-12) :

1466 C I 3.8(-12)

1549 C IV I.I(-II) 4.7(-12) <i(-I I) <8(-13)

aFluxes at Earth (ergs cm-2 s-i).

buncorrected for interstellar absorption.

CUpper limits.
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Table 4

STELLAR SURFACE FLUXES AND STELLAR/QUIET SUN SURFACE FLUX RATIOS

CMi b 8 Cas _ Car c _ Booc

Feature Quiet a
Sun SF SF/QS SF SF/QS SF SF/QS SF SF/QS

N V 1239 8.6(2) 7.2(3) 8 1.4(4) 16 <1.8(4) <21 <3.3(4) <38

C IV 1550 5.8(3) 5.3(4) 9 1.8(5) 31 <3.5(4) <6 <1.3(5) <22

Si IV 1394 1.7(3) 5.3(3) 3 3.1(4) 18 <1.8(4) <ii <6.7(4) <39

Si IV+O IV 1403 9.4(2) 3.2(3) 3 4.6(4) 49 <1.8(4) <19 <6.7(4) <71
C III 1175 1.6(3) 4.5(4) 28

Si III 1206 3.4(3) 1.7(4) 5

C II 1335 4.6(3) 3.6(4) 8 8.6(4) 19 <1.8(4) <4 <6.7(4) <15

O 1 1304 4.0(3) 1.5(4) 4 1.4(5) 35 <1.8(4) <5 <6.7(4) <17

O 1 1355 3.2(2) 5.8(3): 18: 2.4(4) 75

H 1 1216 2.1(5) 2.0(5) d I 6.9(5) d 3 <2.8(4) d <0.I

aQulet Sun fluxes cited by Linsky et al. (1978). Units ergs cm-2 s-I.

bAbsolute flux calibration by comparison with C II %1335 and C IV %1549 low dispersion fluxes in

Brown and Jordan (1980).

Cupper limits estimated as equal to typical "noise" features in the spectra, which are probably
sections of continuum between absorption features.

duncorrected for interstellar absorption.
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Fig. 1. Composite low dispersion spectra in absolute flux units at Earth.
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about 1600 A, and scattered light is probably a major contributor
to the apparent continua.
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THE STRUCTURE OF CHROMOSPHERES AROUND LATE-TYPE

GIANTS AND SUPERGIANTS

A. Brown_ M. Ferraz and C. Jordan

Department of Theoretical Physics

Oxford University, I Keble Road

Oxford, OXI 3NP, England

ABSTRACT

Observations _ Tau (K5111) and _ Gru (M211) made at high resolution have been
used to confirm line identifications of features blended at low resolution.

The high resolution spectra allow selected pairs of lines to be used to find

the electron density, Ne, and the opacity, T. These can be used together
with the emission measure to place constraints on the structure of the atmo-

sphere. The llne formation processes are briefly discussed. Photo-exclta-

tion by strong lines appears to be important in these late-type atmospheres.

INTRODUCTION

Previous observations made with the IUE satellite have shown that giants and

supergiants later than about K2 do not have significant emission in lines
which in the sun would be formed in the chromosphere-corona transition region

(Refs I-5)% Instead, the observed spectra are dominated by lines formed at

Te <2 x l0T K. In particular strong Ol resonance line emission is observed,
which in the sun and _Boo has been shown (Ref. 6,7) to be produced via H Ly

excitation to a higher Ol level.

High-resolutlon spectra have now been obtained of _ Tau (K5111) and _ Gru

(M211) in order to study line fluxes and profiles and also to confirm identi-
fications of lines blended at low resolution. These spectra show that the

strong Ol lines themselves excite lines of SI (uv 9) (Ref. 8), and confirm the

importance of SI as a contributor to other features in late-type stars, as

noted previously for_Ori (M2 Ib) (Ref. 2). A line at 1641.2A is attributed

to Ol pumped by the Ol resonance lines.

In thls paper methods of determining the opacity, and electron density in ad-
dition to the usual emission measure are presented. The mechanisms by which

particular emission lines are excited are briefly discussed.

OBSERVATIONS

The dates, exposure times and resolution of spectra used in the analyses are

given in Table i. All were obtained using the large slot. The observations
were made at the ESA VlLSPA Satellite Tracking Station with the assistance of
the Resident Astronomers.

The low-resolution spectra and samples of the high-resolution spectra have

been previously published (Refs. I, 8) and are not illustrated here. The
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GPHOT image provided by VILSPA is the basis of the further data reduction in

which spectra can be summed and Overexposed pixels removed. An algorithm

provided by Gondhalekar was used to correct for the error in the original
intensity transfer function for the SWP camera. The flux calibration used

is that provided by Bohlin and Snijders (Ref. 9) and by Cassatella and
Selvelli (Ref. I0).

METHODS OF ANALYSIS

The q_antlty usually derived from absolute llne flux is the emission measure,

f NeZ dh. For lines of neutral and singly ionized atoms the contribution

function may be broad, _nd the region of formation not clearly defined.
Also, below Te _ 2 x I0 K, where hydrogen is not fully ionized, the relevant

quantity is f NeN H dh. Thus it is preferable to find f NeNHg(T ) dh, where

g(T) is the temperature dependent part of the contribution function, as a

function of temperature, and build up a self-conslstent model by using sev-

eral lines and independent determinations of Ne and r (_ f NH dh).

The electron density Ne may in late-type giants and superglants be found
from the re_atlve intensity of lines within the 2s22p 2 2p'2s2p3 4p multi-

plet of CII around 2325A. The transition probabilities have been _alculat-

ed (Ref. 11) but cross-sectlons are available only by extrapolating data

for OIV (Ref. 12) and NIII (Ref. 13). 8These approximate values lead tocritical densities in the range 4 x I0 cm-3 to 6 x 107 cm-3. With more

accurate cross-sections the ratio of the Cll multlplets at 1335_ and 23254

may be used to determine Te, providing colllsional excitation is the dominant
mechanism.

The opaclty may be determined from the relative intensities of lines from

a common upper level, where one of the lines is optlcally thin (Ref. 14).

Using a simple probability of escape approach the ratio Qf the fluxes F,
in two such lines is given by

FI/F2 ffi A2blql / Xlb2q2 (I)

where _ is the wavelength, b is the branching ratio, and q is the pro-
bability of escape, which is I for an optically thin line. Then since for

a Gausslan llne profile (Ref. 15),

- 1 - erf_in to) 1/21
q (2)

where 7 o is the opacity at llne centre, q and then T o can be found•
The total opacity 7 =2 7o is given by

7 - 1 2 x 10-14 A(A)f MI/2 N

• 12 f_HN1 _N_ion _.f ds (3)Nion 1/2

where f12 is the absorption oscillator strength, M is the atomic weight,

NE, NI, Nio n and NH are the number densities of the element, lower level,

ion (or atom) and hydrogen, respectively. Ti is the temperature corre-
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sponding to the Doppler width of the line. Although some approximations

are necessary initially, the quantity fN H ds can be determined, providing
checks on models such as that by Kelch et al. (Ref. 16) for _ Tau. Table

2 gives some examples of pairs of lines which can be useful. The method

may also be applied to numerous lines of Fell above 2000_. The oscillator

strengths required for CI are given in Ref. 14; for Ol values by Garstang

(Ref. 17) have been used; for SI values are tabulated by Wiese et al. (Ref. 18).

It should be noted that the analysis of emission llne fluxes and profiles

in these late-type stars may be complicated by the long ionizatio_ and_

recombination times expected at Te < 2xlO_ K and densities of <i0 _ cm-_;
times of i03-I04s are estlmated for neutral and singly ionized species.

RESULTS

The present paper emphasizes methods since further work on the atomic models
and atomic data is required before quantitative analyses are possible. Some

preliminary results are given below.

In _Tau the Ol 1304/1641 ratio leads to fNH ds N 8 x 1021 cm-2, and the

CI 1657.4/1994 ratio to f NH ds < 6 x 1021 cm-2, assuming all the popul-
ation to be in the ground term. The Sl lines at 1296.17_ and 1302.87A have

approximately the same intensity indicating _ >llin these lines, and giving
NH ds >2 x 1019 cm-2. These values of 6-8xi02 are larger than expected

from the model of the chromosphere of _ Tau based on the Mgll and Call lines

(Ref. 16). Also the absolute flux of the CII 2326_ line leads to an emission

measure of N 1028 cm-5 at 104K, a_ain an order of magnitude larger than

predicted. H_wever, the CII 1335_ llne is observed to be weaker than expected
from CII 2325A and improved excitation cross-sectlons are required before

drawing definite conclusions regarding the temperature of formation. The
Sill lines at 1808_ and 1817_ indicate other problems with the atomic model or

cross-sections. They give an emission measure a further order of magnitude

greater than found from CII 2326_. It has been pointed out than in the sun
the 2D level can be excited predominantly from the metastable 4p level rather

than the 2p level (Ref. 19). Cross-section calculations by Roberts (Ref. 20)

supported this suggestion. However in _ Tau and _ Gru where Ne<109 cm-3,
the 4p level does not acquire sufficient population for this explanation of

the strength of 2p-2D to be appropriate. Either the cross-section for 2p-2D
is still underestimated or other processes such as recombination or ionization

are populating the metastable level. The absence of Silll at 1892_ suggests

however that the population of Silll is low.

Simple estimates show that the Ol emission in _ Tau is too strong to be
accounted for by colllsional excitation or recombination but that the H Ly

excitation process could provide sufflclent emission as in _ Boo (Ref. 7).

Similar results are de_ved for _ Gru. The opacity for Ol is even larger,

gi_ng f NH as _ 3x_ _ c_-z. The Sl lin@s provide limits of
I0_< f NH ds < 4x10 cm- . The CII 2325_/1335 ratio again suggests a low
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Te or an overestimate of the 2325_ emission measure. The Sill 1808, 1817
lines require an emission measure an order of magnitude larger than that

for CI12325_. For _ Gru _he C_I 2pU4p line ratios can be used to determine
Ne, giving a value of ~I0 cm-_.

The relative intensities of the Fell lines above 2000_ allow some general

conclusions to be drawn. Although the Fel (mult. 44) lines pumped by the

Mgll emission (Refs. 21, 22) are observed in both_Tau and _ Gru these lines
are apparently not broad enough to pump Fell uv 32 or uv 373. Mult. uv 32

is present and its strength can be attributed to pumping by uv 1 which has all

opacity of _ 103. There is similar interlocking between the other multiplet_

observed. In _ Gru uv 399, which terminates on the upper level of uv 63 is

particularly strong, and the population of the upper and lower levels of uv

399 are comparable, indicating a selective population mechanism. It has beeu

pointed out previously (Ref. I) that H Ly _can excite levels in the 5p con-

figuration of Fell, the classifications of which have been extended by

Johansson (Ref. 23). These 5p levels can then decay to the 5s levels giving
rise to uv 399 and similar multlplets. (Penston has privately pointed out

the strength of uv 399 in RR Tel. and suggested recombination as a cause).

Johansson found that charge exchange with Nell is important for Fel-_Fell

in laboratory sources. Since the Fell multiplets are important not only for

stellar spectra but also for quasars and Seyfert galaxies it is of interest

to investigate these possibililes further.

Finally, the possible ro_e of H Ly _ in photo-excltlng (or effectively ion-

izing) high levels of Sl is pointed out. The relative strengths of the Sl

1425 and 1475 multlplets do not appear to be consistent with collislonal

excitation, using f-values and solar relative intensities as a guide to the
cross-sectlons. The strong lines of SI observed ie. mult. uv 3, uv 2, uv I_

and uv 9 originate from the lowest terms formed by recombination from the

three possible SII parents. The strength of the SI emission suggests a
recombination or cascade spectrum following photo-lonlzatlon (or excitation)

by radiation around H Ly _.
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Table 1

Spectra Obtained

Star Type Date Exposure Time (min) Resolution Camera

Tau KSIII 78/9/29 20 LO SWP

78/10/1 40 LO SWP

79/1/25 90 LO SWP

79/1/27 150 LO SWP

79/9/29 390 HI SWP

78/1/10 i0 LO LWR

79/9/29 I0 HI LWR

Gru M211 79/10/1 175 LO SWP

79/10/7 370 HI SWP

79/10/1 20 HI LWR

Table2

Opacity Sensitive Line Sets

Atom Transition AJ %(A)

CI ,2p2 3p_2p3s 3po 2-1 1658.1
l-1 1657.4

0-1 1657.9

2p2 ID_2p3s 3po 2-1 1993.6

2p2 3p_2p3s ipo 2-I 1614.5

I-I 1613.8

0-i 1613.4

2p2 1D_2p3s 1po 2-1 1930.9

Ol 2p4 3p-2p33s 38° 2-I 1302.17

I-I 1304.86
0-i 1306.03

2p4 1D-2p33s 3S° 2-1 1641.30

Sl 3p4 3p_3p34s,, 3po 2-1 1296.17
i-i 1302.87

3p4 3p-3p34s 3S° 2-1 1807.34
I-I 1820.36

0-i 1826.26
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THE CHROMOSPHERIC AND TRANSITION LAYER EMISSION

OF STARS WITH DIFFERENT METAL ABUNDANCES

Erika BShm-Vitense I)

University of Washington

ABSTRACT

We report preliminary results on observations of chromospheric and tran-

sition layer emission of stars with different metal abundances. Metal defi-

cient stars generally show reduced emission in the Mg II resonance lines and

also in the other chromospheric and transition layer emission lines. This is

interpreted as showing that energy fluxes other than acoustic fluxes must at

least be co-responsible for the coronal and transition layer heating.

INTRODUCTION

Let me state in the beginning that this is not the final word on the

subject matter but rather a progress report. We are continuing our observa-
tions.

To date we have looked at 13 metal poor stars of varying metal abundances

and at one super metal rich star 31 Aql. By means of this study we want to

get information about the heating mechanisms for the chromospheres, the tran-

sition layers and the coronae.

If only acoustic flux is responsible for the heating, we expect very

little difference for population I and population II stars. The noise gene-
ration in the convection zones should be nearly the same since the convective

velocities are hardly influenced by the metal abundances (BShm-Vitense I) 1971).

l)Guest Investigator with the International Ultraviolet Explorer satellite,

which is sponsored and operated by the National Aeronautics and Space Admini-

stration, by the Science Research Council of the United Kingdom and by the

European Space Agency.

Under NASA Contract No. NSG 5398
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If, however, we observe that the heating in the chromospheres and trans-
ition layers is different for metal poor stars then some other mechanism must

be responsible for it. Judging from solar observations we would assume that

it is the magnetic field. This may decay with increasing age of the stars.

THE OBSERVATIONS

GENERAL DESCRIPTION

13 metal deficient stars were observed up to now, excluding the two meta%

poor horizontal branch stars HD 109995 and HD 161817 which did not show any

signs of chromospheric emission. Since for a given electron density and tem-

perature the line emission is proportional to the metal abundance Z we pur-

posely selected mainly stars of moderate metal deficiency.

A comparable number of normal metal abundance stars was also observed.

For most stars we have studied the cores of the Mg II resonance lines as

well as the short wavelength chromospheric and transition layer emission llne
spectrum.

THE EMISSION IN THE MG RESONANCE LINES

In order to determine the absolute fluxes we used the absolute calibra-

tion of Castella and Selvelll 2) (1980) for the high resolution spectra, which

gave somewhat lower values than a calibration of our measured average inten-

sity at 2740±50A by the absolute intensities measured by Thompson 3) et al.
1978 for _~2740_.

The results of our measurements for the k2 emission line fluxes are dis-
played in Figure I where we have plotted the ratio RF of the flux in the Mg 11

k2 llne to the total flux G T_ff. We find generally lower Mg II emission for

the metal deficient stars anal0guous to the decreased Ca II K2 emission. The
reduction is about a factor three, surprisingly independently of the amount of

metal deficiency.

THE SHORT WAVELENGTH EMISSION LINES

We have restricted this discussion to the intensities of the carbon lines

at 1657_(CI), 1335_(C II) and 1549_(C IV), which span nearly the whole range

of temperatures observed.

The results of our measurements are given in Figures 2-4. We have not

seen with certainty any shortwave emission lines in any of the metal deficient

stars except some emission in the CI 1657_ line which often appears as a broad
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feature. We do not quite know what we see. We have tried to estimate upper

limits from little humps that may be real or not, or from looking at the noise

of the tracings and estimate how large the intensity could be without being

recognized as a line.

Unfortunately the upper limits are not as low as we would like them to

be. We have to take still longer exposures of the brightest of the metal de-
ficient stars.

We do not consider for the moment the 1657_ lines for HD 140283 and D

Cas, since we do not really know what they are. From the figures it is then

clear that the higher the necessary temperature for the line emission, the
steeper is the intensity decrease of the line with decreasing temperature.

One gets the impression that the normal metal abundance stars break up into

two branches. The high intensity branch being mainly populated by stars with

some peculiarity. 31 Aql which appears to be super-metal rich, but is a high

velocity star, does not know on which branch it belongs. The branches, though

not very obvious, are still somewhat preserved on Figures 3 and 4.

We also see that the metal poor stars show less emission than the normal

metal abundance stars. Again the reduction of the intensity is present for

low metal deficiency as well as for large metal deficiencies.

Even for slight metal deficiencies we do not see with certainty any emis-
sion lines.

THEORETICAL IMPLICATIONS •

The fact that the intensity reduction of the emission lines in metal de-

ficient stars is not correlated with the degree of metal deficiency tells us
that it is not a direct effect of the reduced metal abundance but rather due

to a common property of all metal deficient stars which presumably is their

large age. Since apparently metal enrichment happened fast the ages of all
metal poor stars and the oldest normal metal abundance stars do not differ

very much. We therefore conclude that the reduced chromospheric emission of

metal poor stars tells us that the energy input into the chromospheres de-

creases with increasing age of the stars. Since the convection and therefore

the acoustic flux do not change with time there must be an important addition-

al energy input mechanism which does change with time. Solar observations

suggest that it is the magnetic field even though the details of the heating

mechanisms are not yet well understood. With increasing age of the stars

rotation and with it the magnetic fields of the stars may decay (Kippenhahn 4)
1972).

We might ask is this conclusion not drawn too hastily? Could not the

same amount of energy be fed into the outer layers of the stars, and we would

not see the radiation because of the lower metal abundances or because of

stratification differences like a lower electron density in the chromosphere

and transition layer or a steeper temperature gradient?
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If the same amount of energy is fed into the outer layers then the energ_

balance requires that it must come out somewhere. If it would come out as a

stellar wind we might not see it. This wind would then have to he stronger

than for stars with transition layer emission. A stronger wind however re-

quires either higher coronal densities and/or higher temperatures. Both woul4
lead to higher X-ray emission than for normal metal abundance stars, which is

not observed. As Dr. Vaiana 5) (1980) points out, the X-ray emission of metal

deficient stays is at the lower end of the observed X-ray flux distribution
for stars.

A steep temperature gradient in the transition zone could lead to a large

conductive heat transport back into the chromosphere, but since Mg II and

Ca II emission is weak we do not see it being radiated away from the chromo-

sphere either.

It then appears that less energy input into chromosphere, transition lay-

er and corona is required for old stars, telling us that magnetic fields are

important for the heating.
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Figure _: The Mg II (2795) k2 emission line intensities fF%d% divided by the

bolometric flux Fb are plotted as a function of B-V for the stars.
x mark stars with normal metal abundances or apparently super metal

rich stars. Dots mark metal deficient stars. The log Z-log Z

values are given at the points. Luminosity classes are also ®
indicated.
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Figure 2: The emission line surface fluxes in the CI line at 1657A divided

by the total flux _ T_ff are plotted as a function of B-V of the
stars. Notation as in Figure i.
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Figure 3: The emission line surface fluxes in the C II lines at 1335_ divi-

ded by the bolometric flux _ T_ff are plotted as a function of
B-V. Notations as in Figures _ and 2.
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Figure 4: The emission llne surface fluxes in the C IV lines at 1549A

divided by _ T_ff are plotted as a function of B-V. Notation as
in Figures 1-3.
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INTRODUCTION

We undertook a survey of F supergiant stars to evaluate the extension

of chromospheric and circumstellar (CS) characteristics commonly observe_ in

the slightly cooler G, K and M supergiant spectra. In the optical re-

gions, the usual diagnostic spectral features are swamped by the brighter
photospheric light in F stars. Therefore, an ultraviolet survey was elected

since UV features of Mg II and Fe II might persist in revealing outer atmos-

phere phenomena even among F superglants. Our survey encompassed spectral

types F0 to GO, and luminosity classes Ib, la and la-O.

PROFILETYPES

Four generic types emerged from our limited survey -- two indicative of

chromospheres, one strictly photospheric and one indicative of CS envelopes
(Figure I).

CHROMOSPHERICPROFILES

Optical and UV observations of the Sun and other G, K and M stars have

revealed that the emission cores of the Ca II "H&K" (3933,3968 _), and Mg II
"h&k" (2795,2802 _) resonance lines are valuable indicators of the existence

of and conditions in stellar chromospheres. Such lines are very optically
thick at line center and collisionally coupled to the excitation temperature

(Te) in the stellar atmosphere to heights above the temperature minimum
and into the chromospheric temperature rise [cf. Stencel et al. (i)].

Doubly reversed emission is seen in the F8 Ib and GO Ib stars surveyed,

including yCyg, G UMi and _ Aqr. However, the F8 profiles are strikingly

different from the GO type, despite a very small difference in Te. _ Aqr
shows a strong longward dominated emission with substantial CS absorption

superposed on the shortward emission component. In contrast, yCyg and

UMi show far weake_ doubly reversed central emission features. In YCyg
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it is difficult to be certain that the shortward emission component is not

affected by CS absorption. B_hm-Vitense and Parsons have described 7Cyg as

lacking in Mg II emission, suggesting to us that chromospheric or CS varla-

bility is at play, possibly as has been now seen for GAqr (G2 Ib).

Among more luminous late F supergiants we find another Mg II profile

type, characterizedby _ CMa (F8 la), which shows strong shortward emission

near llne center, but no longward emission. This profile type is reminis-

cent of an inverse P Cygnl profile and has been seen also in HD 96918 (GO

la-0) and pCas (F8p la), where it is even more pronounced. To avoid the

difficulties of invoking global chromospheric collapse (inverse of the

standard P Cygni explanation), we could explain the appearance of such

profiles by noting an excess longward absorption component, perhaps due to

large scale downflows along the edges of giant cells (as seen in the solar
network). This could obscure the longward emission and leave us with the

observed inverse P Cygnl profile. It is noteworthy that we find this chro-

mospheric profile type only for stars of the highest intrinsic luminosity.

PHOTOSPHERICPROFILES

As _e look to F stars of warmer Te, evidence in Mg II for chromo-

spheric emission vanishes, presumably due to the increasing degree of ioni-
zation. For spectral types F0 to F5 we find repeatedly a smooth broad

absorption feature with strongly damped line wings and a narrow Doppler core

of essentially zero residual intensity. Examples of this include GCar (F0

Ib), pAql (F2 IB) and G Per (F5 Ib), all objects of comparable Mv. Among

objects of greater intrinslc luminosity we find a hybrid profile -- strong

damping line wings with a boxy, non-Doppler core. This boxy dark core is
probably CS in orlgin and is seen in i_ Sco (F2 la), HD 74180 (F2 la) and

in 89 Her (F2 la), except that 89 Her also reveals a trace of longward

emission next to the CS absorption at llne center. Again we find a distinct

luminosity difference in the Mg II profiles.

CIRCUMSTELLARPROFILES

Finally we detected one object which may provide the llnk between

strong mass-losing stars like _Cyg (A2 la) and _ Aqr (GO Ib) in having
qualitatively similar Mg II profiles. GLep (F0 Ib) was found to have a

pair of strong CS components shifted by -1.24 and -1.73 _ from llne center.

No chromospheric emission is obvious, although strong interstellar absorp-

tion at line center could obscure this. This CS structure suggests a sub-

stantial envelope and extensive mass loss. Alternately, one might identify

the region between CS and line center absorptions as due to emission, but

rather arcane radiative transfer effects might be required to verify such a

picture. Success in CS profile modeling of GCYG by Kunasz should help to

clarify the meaning of the GLep profile.

THE OUTER ATMOSPHERESOF FSUPERGIANTS

With the IUE observations of our survey, it is possible to make some

general comments regarding the atmospheric structure of F superglant stars.
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DETECTIONOF CHROMOSPHERES

We have obtained high dispersion Ca II K line spectra for many of the

stars in our UV study and find in general that outer atmospheric structure
is far more apparent in the Mg II k line than in Ca II K. Hence the neces-

sity for UV observations in this area is now clear. Deep exposures of the

Ca II K line center for _ CMa and _ Lep revealed only photospheric absorp-

tion without a hint of the striking profile structure seen in Mg II k. This

occurs because the abundances and ionizations are different, but the general

lack of significant chromospheric emission in Ca II K and Mg II k places

strong constraints on the geometric extent of chromospheres since radiative

losses in these lines (dominant sinks for G, K and M chromospheres) are

minimal. Either the losses are confined to resonance lines of higher ions

(hot chromospheres) or the chromospheres are "thin." Additional far UV and

EUV observations will clarify this matter.

FAILURE OF THE WILSON-BAPPUEFFECTS

One of the aims of our survey was to determine the usefulness of the

emission line wldth-to-luminosity correlation in use for the G-M stars in

both the Ca II and Mg II lines [Wilson and Bappu (2), Weiler and Oegerle

(3)]. In Table 1 we collect relevant information on our survey stars and

present measured widths and infer Mv where possible. Inspection reveals

that only the F8-G0 la-0 stars are even approximated in this way. We con-

clude that the Wilson-Bappu and Weiler-Oegerle correlations are probably not
suitable for stars earlier than GO, because of significant physical differ-

ences in emission core formation as compared to cooler stars. We have

already noted the striking difference between F8 and GO Ib stars despite the
small change in Te. Some combinations of rotation, pulsation, evolution

and magneto-acoustic effects makes the respective chromospheric signatures
quite different. Whereas the wing emission lines of Ca II [Stencel (4)] are

useful among F-M stars in evincing mass loss and indicating Mv, we found
no comparable features in the Mg II line wings among F supergiants.

VELOCITYFIELDS

Where Mg II emission cores are seen, asymmetries can be interpreted as
indicative of globally averaged motions. The near symmetric profiles of

Cyg and _UMi suggest that inflow and outflow roughly cancel -- as they

would in large scale convection-like motions. The inverse P Cygni profile
of the F8 la-0 stars is more difficult to understand, but could arise from

extensive network-like structures which are the sites of material downflow,

vis-a-vis the Sun. A height dependent ionization transition could help

accomplish this, i.e., hot (Mg III) matter wells up at the centers of large
cells and cools (Mg II) as it begins its descent along the cell boundaries

(the network). The alternative explanation for an inverse P Cygni profile,

that of a collapsing envelope, might have its place in the evolutionary
scenario for such volatile objects, but it is difficult to reconcile with

other indicators for substantial stellar winds and mass loss, especially for
p Cas.
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Where CS core absorption is seen, assuming one can disentangle the in-

terstellar component, the width and/or displacements from llne center argue

for significant stellar winds, mass loss and CS envelopes. As has been

described by Lamers et al. (5) for GCyg, stars llke GLep may provide

additional evidence for the sporadic, non-continuous or "puffy" mass loss

since we clearly detect a pair of outward moving shells.

FUTURERESEARCH

With the limited time available for our survey, we didnot have the

opportunity to explore the SWP (1200-2000 _) region of F supergiant spectra,

nor the detailed comparison between Cepheld and non-Cepheld objects in this

region of the HRD. Because of increasing continuum brightness, it will

probably be difficult to clearly identify emission lines arising from any

analog of the solar 'transition region' (TR: 100,000 to 250,000 K), or from

cooler coronal hole outflow sites (CH: <25,000 K). Representative lines

would include: TR -- N V 1240 _, Si IV blend at 1400 _ and C IV 1550 _;

CH -- 0 1 1300 _. Again, B_hm-Vltense and Parsons have surveyed similar

stars and hopefully will describe their findings at this conference and

elsewhere. A comprehensive survey would clarify the distribution of

chromospheres, TR, coronae and CS material among the F supergiants.

We thank A. Boggess and his dedicated staff for assistance in obtaining

and analyzing data under program LFBSW, as well as for contractual support.

Mg II region spectral plots of stars mentioned herein will be available on

request for a limited time from the first author.
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TABLE i. - Comparison of Mg II k and Ca II K in F Supergiants

Mg II k Ca IIK

Sp. UV Fe II

...... _a b c Profile Wo c >Iv(K)e Emission?Star Type .w_r Exp. Mv Profile Wo Mv(k)d

Car F0 Ib 4703 3 -4.8 No em. -- -- No obs. No

Lep F0 Ib 5021 16 -4.5 CS&IS 1.2CS -- No em.+CS 1.0a -- No

Aql F2 Ib 5015 70 -4.7 Wk.em? .... No era. 0.9CS? -- No

tI Sco F2 la 5046 25 -8.4 CS core 1.4CS -- No em. 1.1CS? -- No

!{D 74180 F2 Ia 5043 60 -g.4 CS core 1.0CS -- No. obs. No

p89 Her F2 Ia 5047 i00 -8.4 _S+em. 2. ICS -- CS+w.e.* 2.2CS -- Yes

Per F5 Ib 5018 14 -4.6 No era. -- -- Wk. era. 1.5e? -2.g No

_o 8 CMa F_q la 5020 20 -7.5 Inv. P Cyg 2.3_ -5.0 No era. 0.3core -- Weak?

UMi FS_Ib 5017 15 -4.6 DR era. 1.8 +0.3 No era. 0.6core -- No

y Cyg F8 Ib 5016 25 -4.6 DR em+CS? 2.3 -1.3 No em.+w.e. 0.6core -- No

p Cas F8p la 5014 447 -9: Inv. P Cyg 2.1HW -5.3 CS+w.e. 1.8CS -- Yes

HD 96918 GO laO 4702 75 -9: Inv. P Cyg 2.9FIW -7.4 No obs. Yes

6 Aqr GO Ib 4446 18 -4.5 DR em.+CS 3.8 -4.6 Wk.em. 2.0 -4.7 No

aLarge aperture, high dispersion; exposure time in minutes.

bData from Patterson and Neff, 1979 Astrophys. J. Suppl. 41, 215.

CEmission base width (AXk 1), half width (HW) or CS absorption width, in A.

dMv(k) = -15.15 log Wo(km/sec ) + 34_93.

eMv(K ) = -15.0 log W (km/sec) + 28_0.

Wing emission lines, cf. Stencel 1977 Astrophys. J. 215, 176.
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"One in Five Stars is Remarkable" -- O. Struve

INTRODUCTION

We present the central results of a survey of the Mg II resonance line

emission in a sample of over 50 evolved late-type stars, including spectral-

luminosity types F8-M5 and la-lV. Observed and surface fluxes have been
derived and correlations noted. The major findings include: a) Mg II k

emission core asymmetry transition near K1 III, analogous to that known for

Ca II K; b) a small gravity and temperature dependence of the _ II chromo-

spheric radiative loss rate. These results and others are fully discussed

in a report in press in the Astrophysical Journal Supplement Series [Stencel

et al. (I)], encompassing _!E second year programs CCBDM, CMBRS and LFBSW.

MESSAGES IN T]_ MG II PROFILES

We posit that asymmetry in the doubly-reversed emission core of colli-

sionally-dominated resonance lines (e.g. Mg II k, Ca II K) can be used to

infer chromospheric velocity fields, once the interstellar component is ac-

counted for. We recognize the uniqueness problems of inhomogeneous atmo-

spheres with arbitrary relative motions. However, the thrust of the observed

asymmetry transitions and Occam's Razor provide us with some degree of con-

fidence in the interpretation we choose.

A SHORT HISTORY LESSON

A fascinating observational connection between chromospheric velocity

fields, mass loss and the existence of stellar coronae has developed over the

past few years. The extensive high dispersion work on cool stars by Olin

IGuest Observer with the International Ultraviolet Explorer (IUE) satellite.

2Staff Member D Quantmn Physics Division, National Bureau of Standards.
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Wilson has been re-surveyed by Reimers (2) and Stencel (3) who discussed

evidence for mass loss in Ca II K4 features and the occurrence of Ca II "wing

emission" features, respectively, in the Hertzsprung-Russell Diagram (HRD).

Both found evidence for mass loss above a locus in the HRD running between

mid-K giants and early-G supergiants. Stencel (4) also pointed out that the

Ca II K core emission asymmetry was K2R* dominated above a similar locus.
Contemporaneously, Mullan (5) described his seminal STL (supersonic transi-
tion locus) theory which predicts a significant increase in mass loss rate

for stars above a locus similar to that just described observationally. In

addition to velocity information, temperature information has been added by

Linsky and Haisch (6)and Vaiana et al. (7) who looked for high excitation

(i00,000 K) UV lines, and soft X-ray flux, respectively, and found that stars

cooler and more luminous than K1 III rarely exhibit evidence for outer atmo-

sphere material much hotter than about 20,000 K. The anti-correlation of

coronae and strong mass loss seemed established. The analogy with solar

coronal holes and active region loops was irresistible. But the simplicity

of the scenario may also prove to be its downfall, as we shall see shortly.

STUDY OF THE MG II EMISSION ASYMMETRY

We undertook a survey of cool stars to establish whether Mg II might

exhibit an asymmetry bifurcation in the HRD comparable to that known for

Ca II K. Our initial sample of over 40 late-type stars (G and K, luminosity

classes II, III and IV) showed that a rough segregation does exist along the

lines of that seen for Ca II [Stencel and Mullan (8)]. However, the asymme-

try locus was "fuzzy" with several discrepant stars on either side of the

dividing line. Initially we considered these discrepancies as due to small

number statistics, but careful analysis of the strength of interstellar (IS)

_ II absorption by B_hm-Vitense has clarified the situation. IS Mg II
column densities are much larger than Ca II and result in superposition of

non-negligible IS absorption features on the intrinsic chromospheric Mg II
emission profile, even for stars closer than I00 pc. When we screen our

asymmetry data to remove IS effects (accept only S/L > I for vr > 0, and

S/L < 1 for vr < 0) the resulting 19 stars show a very clear asymmetry seg-
regation as is seen for Ca II K, but now occurring among slightly warmer

stars (KI III rather than K3 III). See Figure la. We compare these transi-

tion loci in Figure ib and note a plausible scenario emerging vis-a-vis the
STL theory; as a star evolves from the main sequence, it retains a corona

until it reaches the early K giants where it crosses the temperature dividing

line (TDL) due to the encroachment of the sonic point of the stellar wind

into the upper chromosphere, disrupting the global corona. As stellar
evolution to the right in the HRD continues, the stellar wind appears first

as outflow in the Mg II core-forming regions, and then in the deeper Ca II
core-forming layers. Finally as the mass loss becomes substantial and sus-

tained, circumstellar (CS) features begin to appear in the cores of neutral
optical lines.

We adopt the conventions that K2R or R refers to the _ line long wavelength
peak and K2V or V refers to the K line short wavelength peak. The corre-

sponding features in the Mg IIk line are L and S, respectively.
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CORONA - MASS LOSS ANTI-CORRELATION?

Despite the appeal of such scenarios, re-evaluation of theory and new

data give us pause. The foundations of the STL theory have been challenged

by Ilolzer (9). A larger sample of IS effect-free Mg II profiles would be
desirable. Recent correlation studies between Mg II and C IV 1550 A flux by

Ayres and Marstad (i0) -- see paper by Ayres in these proceedings -- reveal

a strong functional dependence between fluxes in these two lines. The sense
of the correlation is that for a ten-fold decrease in _ II surface flux for

a given Teff, a 30-40 fold decrease occurs in C IV surface flux in normal
cool stars. Since, as we will shortly discuss, Mg II surface flux ratioed to

bolometric flux decreases with decreasing Tef f across the TDL of Figure ib

(cf. Fig. 2), C IV flux would rapidly vary across a similar range in Tef f.

Given detection sensitivities, C IV might appear to be present on one side
of the TDL and absent on the other. In addition, hotter material might be

confined to magnetic flux tubes in the chromosphere and corona, while the

cooler outflowing matter might follow magnetic open regions between loop

structures (analogous to coronal holes). The point is that for different

Teff, log g combinations, as well as age, rotation, chemical composition,
pulsation and whatever, the filling factors for either temperature regime
could vary significantly, as is evidenced by the observations. Thus, cool

stars showing strong mass loss might also possess small patches of coronal

plasma. This surface detail study may prove to be the major use for UV

spectra of cool stars. Hartmann et al. (ii) argue that Alpha Aqr (G2 Ib).
may be a good example of this, as C IV is bright but obvious CS absorption

features are seen in Ca II K and Mg II k. The lack of soft X-rays in this

case could be due to self-absorption in the CS envelope (i0). Additional

"hybrid" stars like Alpha Aqr are also found among the K giants, and pos-

sibly all along the STL locus (third year IUE work in progress). If the

Mg II-C IV-soft X-ray correlations are valid, then all stars are "hybrid"

in possessing both coronal and mass loss features to varying degrees, and

the usefulness of the term "hybrid" becomes very limited.

TALES FROM THE SUPERGIANTS

Late-type supergiants are too often considered in aggregate as cool

mass losing stars with few other individualizing characteristics. Our Mg II

survey has revealed some differences in kind between stars with Tef f differ-

ences as small as a few hundred degrees K. Also, we find a 3 to 4 times

greater chromospheric radiative loss rate in Mg II emission for cool super-

giants than is typical for higher gravity cool giants of similar Tef f.

MG II PROFILE DIFFERENCES

At least four distinct profile types are seen among F8,M5 Ib superg i-

ants. F8 supergiants like Gamma Cyg and Alpha UMi show weak doubly-reversed

Mg II emission cores. G0-G5 supergiants (Beta Aqr, Alpha Aqr, 9 Peg) exhibit
very strong emission with S>>L and substantial CS absorption at -125 km/sec.

The G5-K5 supergiants also show strong emission with S>L but with more moder-

ate strength CS absorption shifted generally less than -50 km/sec (Xi Pup,
Epsilon Peg, Lambda Vel). Finally, the coolest supergiants we have surveyed
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(M2,M5: Alpha Ori and Alpha Her) again show strong Mg II emission with a

strong CS or selective absorption (Fe, Mn?) feature superimposed on the k2

emission component. The _ II surface flux ratioed to bolometric flux
(oTeff) appears to peak at spectral type GO and fall off steeply toward

F8, and only gradually toward M5 (Fig. 2).

EVIDENCE FOR ACOUSTIC HEATING?

Following Linsky and Ayres (13), we define the chromospheric radiative

loss rate in Mg II h & k, Rhk , as the ratio between integrated surface flux

of the h & k emission, divided by bolometric flux of the star (see also Ayres,

proceedings of this conference). In Figure 2 we present derived Rhk values
for the sample of cool stars we obtained during second year IUE programs and

note that the supergiants tend to lie a factor 3 or 4 above giants and bright

giants with comparable Tef f. Proponents of acoustic wave heating of stellar-

chromospheres have computed several orders of magnitude difference in acous-

tic flux over a similar range of gravity and temperature, in contrast to our

observational findings. However, Ulmschneider (private communication) note_

that first-order corrections to the acoustic heating theory greatly reduce

this predicted _ravity dependence, toward the observed amount. This matter

deserves further attention. We were able to find the small gravity depen-

dence in Rhk because of the uniformity of the data used, in contrast to pre--

vious studies by Linsky and Ayres (13) and Basri and Linsky (14), which
relied on UV data of varying resolution and signal-to-noise.

THE PROBLEM WITH 56 PEG

Our survey has defined observationally a subgroup of stars falling be-
tween Mg II and Ca II asymmetry dividing lines that challenges our supposed

understanding of emission line formation and chromospheric velocity fields.

56 Peg-type stars have the unique defining property of discrepant asymme-

tries between Ca II K (V/R > I) and Mg II k (S/L < i). 56 Peg (K0 Ib-llp)

is the archetype, and Sigma Oph (K3 II), Alpha Boo (K2 III) and Gamma Aql
(K3 II) are examples. Stencel and _llan (8) first called attention to 56

Peg by virtue of the nearly 4 magnitude discrepancy between Mv(Ca K) = -1.6,

and Mv(Mg k) = -5.3. SWP spectra of some of these show substantial C IV
emission line flux, indicative of a hot outer atmosphere. A more complete

report on 56 Peg itself is in preparation [Basri et al. (15)], but we wished

to provide a status report at this time.

SEMI-EMPIRICAL MODELING

In terms of the STL theory, 56 Peg-type stars have outer atmospheres in

whlch the supersonic stellar wind penetrates only into the upper chromosphere

where Mg II is formed, but not as deep as where Ca II is formed. We have

begun to derive semi-empirlcal models to match the surface flux and asymme-

tries in various UV lines, using the computation methods of Basri and Linsky

(16) for Ca II and Mg II, and of Lites and Cook (17) for C II, III and IV.

To date, experiments with meso-scale waves [Basri and Linsky (16)] are prom-
ising, but far from adequate. To produce the asymmetries observed, we need
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to increase the physical segregation in height of formation between t1_e I¢3

and K3 features. One way of accomplishing this spread in the respective op-
tical depth scales is to assume a Mg/Ca abundance ratio much different from
solar. Alternately, CS _ II could be more pronounced than for Ca II due to

STL effects in the upper chromosphere.

INTE RPRETAT IONS

Waves or global pulsations remain a possible mechanism for production

of the discrepant asymmetries in this portion of the HR_, since the Pop. II

Cepheid-like RV Tau irregular variables frequently are assigned spectral

types like early K, class II. For 56 Peg itself, profile variability has

not yet been observed in the Ca II K line over several years of monitoring,
hut additional _ IIk observations are being pursued. _otospheric analysis

does not support an unusual "%/Ca ratio. If the asymmetry loci are as sta-

tistically significant as we believe they are, then a non-negligible fraction

of the HRD, early to mid K giants and early K bright giants, exhibit an un-
usual atmospheric structure characterized by fine structure in chromospheric

velocity fields, and selective CS absorption. These might be expected to
show Ca II K variability and sporadic mass loss as reported by _liu et al.

(18) for Arcturus.

We thank A1 Boggess and his dedicated staff for assistance in obtaining
and analyzing the data discussed here, as well as for support under contracts
NAS5-23274 to the Univ. of Colo. and NAS5-25762 to Bartol Research Foundation.
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IUE - ULTRAVIOLET AND OPTICAL CHROMOSPHERIC

STUDIES OF LATE-TYPE GIANTS IN

THE HY&DES CLUSTER •

3. L. Baliunas, L. Hartmann, and A. K. Dupree

Harvard-Smithsonian Center for A_trophyslcs

ABSTRACT

We present ultraviolet and opUcal observations of four bright,
late-type giants in the Hyades cluster detected wlth IUE in order to
study chromospheric and coronal activity in stars of the same age.
Two of the giants, 77 Tau and T Tau, clearly exhibit emission in
the high-temperature ions such as N V, C IV, and Si IV at levels
several times larger than the upper limits for the other two giants,

Tau and E Tau. Comparison of the Mg II h and k fluxes and the
Ca II K emission strengths shows that 77 Tau and y Tau have

larger chromospheric radiative losses than a Tau, E Tau, and
Gem, a field giant which also displays low upper limits to emis-
sion from 1Ligh-temperature ions. Coronal X-ray emission has been
detected from the Einstein Observatory (HEA0-Z) in 77 Tau and 6

Tau. Obviously both 77 Tau and 6 Tau have hot coronae, but the
surface flux in X-rays is an order of magnitude brighter in 77
Tau than in 6 Tau.

The Hyades giants are similar in age, temperature, gravity, and

metallicity;none are known to be close binaries. Thus, our results
indicate that another parameter detemines the amount of chro-

mospheric and coronal emission in late-type giants.

INTRODUCTION

The study of stars in the galactic cluster nearest the Sun, the Hyades,
presents a unique opportunity to explore chromospheric and coronal emission in

late-type stars. For the cluster stars, which are coeval, certain parameters
which are thought to affect the chromospheric emissions can be controlled.

The Hyades cluster is several hundred million years old and the main
sequence stars ere younger on the average than corresponding main sequence
field dwarfs in the solar ne_ghborhood. Among the optically brightest members
of the cluster are four stars near spectral type KO HI. In addition to similar
effective temperatures, gravities, and metalLicities, their ages are all alike. The

* Supported in part by NASA grants NSG 5370 to the Harvard College 0b-
servatory and NAG-5-5 to the SmithsonJ_u Astrophysical ObservatOry
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photospheric similarity of these stars is borne out in detailed analyses of spec-

troscopic and photometric observations (ref. I, P.). The cluster giants occupy

similar positions in the H-B diagxam. We have also chosen to compare the four
H3rades giants with fl Gem (KO liD, a field star with photospheric properties

resembling those of the Hyades giants, with the possible exception of a some-

what lower, more solar metallicity (ref.2).

OBSERVATIONS

We observed both the optical Ca II K and ultraviolet Mg II h and k chro-
mospheric emission cores in these giants (Figure 1). The optical data here are

high-resolution echelle spectra obtained at Mr. Hopkins With the image-
intensified, photon-counting Reticon array (ref.3). The spectral resolution is
approximately 40 m_. From these Ca II K profiles we have measured the nor-

malized emission in excess of a quadratic baseline fit to the bottom of the pho-
tospheric absorption core. The Ca II K cores show a factor of three range in this
normalized emission. The two Hyades giants 77 0 1 Tau and _/ Tau both show
stronger Ca H emission than _ and e Tau. For comparison, the field giant fl Gem
has a Ca II emission strength comparable to those of e and _ Tau.

The Mg II h and k profiles were obtained at high-resolution with IUE. The
scales have been adjusted to allow the intercomparison of surface fluxes
between the Hyades and _ Gem. The fluxes of the Mg H chromospheric emis-
sion cores behave similarly to those of Ca II K: the surface fluxes of the

integrated emissions have a range of about a factor of two. Again, the Hyades
giants 77 Tau and _ Tau are brightest in _ II, while 6 Tau and e Tau, along
with fl Gem, have lower integrated surface fluxes.

The low-dispersion, short-wavelength IUE spectra also show this same trend
in the solar transition=region emissions. The lines formed above a temperature

of about 20,000 K, such as C II, C IV, Si IV, and N V are clearly visible in 77
Tau and _ Tau (Figure 2). The surface fluxes are higher, by factors of 2-5,
than detections or upper limits of non-detection for the same lines in _ Tau,
Tau, and fl Gem. For 77 Tau and _ Tan, which show stronger chromospheric Ca
II and Mg II emissions, the surface fluxes of the transition-region lines are
enhanced. The stars 5 Tau, e Tau, and fl Gem are weak in both the high-
temperature transition-re.on lines and in the chromospheric Ca II and Mg II
emissions.

DISCUSSION

Several interesting conclusions can be drawn from these data:

(1) The solar transition-region fluxes are strongest in 77 Tau and _ Tau,
compared to _ Tau, e Tau, and _ Gem. This is correlated with the strength of
the Ca 17 and 1Vlg II emissions. Thus, the surface fluxes of the transition=region
lines are enhanced as the chromospheric mechanical energy deposition increases,
as evidenced in the increased radiative losses observed in Mg II and Ca H. This
result has also been found in late-type dwarfs (ref. 4).
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(Z) The Hyades giants _ Tau and 77 Tau have been detected, with the Ein-

stein Observatory, as X-ray sources (ref.5), while _ and 7 Tau have no_ yet
1_een observed. The X-ray surface flux of 77 Tau is about a factor of 10 largaT

than in _ Tan; the C IV emission is about 6 times higher in su.rfaceflux L-t77

Tau compared to the UPl_erlimit in _ Tau. Thus, the X-ray emission strenEth is

corre/a_cedwith the strengths of the h_h-temperature Iransi%ion-reEion Lines

and the larger _ H and Ca II cb_omospherlc radiative losses. The weak-

chromosphere stars e Tau and _ Tau presumably also have solar-llke_ansition

regions, but at a level below our detection limit in the IUE spectra. The u/tra-

violet and optical spectra may be used to predict the level of X-ray activity
from _hese stars. On the basis of our spectra, we predict X-ray emission from T
Tau at a level comparable to that of 77 Tau, while _ Tau will show a lower X-

ray lunflnoslty, similar to that of _ Tau.

(3) The Hyades giants are located in a region of the H-R diagram in the
vicinity of the onset of mass-loss Indicators. For example, the Mg II and Ca II
profiles can show a violet-to-red emlssion-peak asymmetry with V < 11, the
vlolet peak depressed relative to the red. For stars which show this asymmetry,
often outflows and mass-loss may be inferred (ref. 6).

However, in the Hyades spectra V/R asymmetries of Mg ]I and Ca II chro-
mospheric emission cores are not simply related to the strength of chromos-
pheric and coronal emission. In fact, Mg II asymmetries showing V ( R
(corresponding to outflows) occur here for the more chromospherically active
stars. Additionally, the Ca II K profiles all show V > R, which can be opposite
the Mg II asymmetry. As an explanation for the apparent inconsistency in the
Ca II and Mg II asymmetries, variability may be invoked because the optical and
ultraviolet spectra are not simultaneous. However, we have monitored the Ca II
profiles In these stars over 6 months and we observed no changes in the shapes

or the strengths of the line profiles. No changes are present, either, in two sets
of ultraviolet spectra of the Hyades giants over the past year.

(4) Finally, chromospheric scaling laws which predict Ca II and Mg II
fluxes as the basis of effective temperature and gravity alone (ref_ 7, 8) are
insufficient to explain the wide range of emissions among these Hyades giants
which are all similar in effective temperatures, gravity, chemical composition,

and age.

SUMMARY

The study of the Hyades giants, with extremely similar photospheres, has

pointed out that chromospheric and coronal emLssion from these Eiants can be
quite dissimilar. Present predictors of chromospheric emissions, which depend
simply upon location in the H-R diagram, are insufficient to explain the wide

range of chromospheric emissions observed here. Among the Hyades giants,
large age differences may be ruled out as a cause of the range of chromospheric
strengths. Additionally, none of these giants are known to be situated in close
]_inary systems. Another parameter, such as rotation, may well be important for
refinLug theories that predict the chromospheric emissions from these giants.
Further, the ultraviolet and optical chromospheric data presented here may be
used to predict the X-ray luminosity from these giants.
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3tencel. Your Mg II proflles are fascinatinE. The X-ray source 77 Tau seems to
have no oen_ral reversal. Assuming interstellar Mg H doesn't obscure the intrin-
sic information, what do you make of the "discrepant" asymmetries between Ca
II K and Mg II K in these Hyades giants?

_q_Lfun_: The interstellar contribution to Mg H profiles is an inconsistent
explanation for the asymmetries. The radial velocities of these stars are all
within a few km/sec, and the assumption of homogeneous cloud projected
across the Hyades would produce similar ME H asymmetries. Here, however,
the asymmetry of ME II in _ Tau is clearly opposite from the remaining Hyades

giants. Differential flow velocites between the 1[3 and 1[3 line-foming regions
may be a possible explanation.

Garrison: These four giants do have sUghtly different visual classifications,
ranging from G8.6 HI to K1 In. I'm sorry that I don't remember which is
which, but it would be interesting to know if the emission line differences are
in the same sequentL_ sense.

Ba/lunu: Let us list the photospheric data for the Hyades giants as given by,
say, Ref. 2.-

Star Te££ Spectral Type log g

_, Tau 4900 K0 HI _-.3
t

a Tau 6000 K0 HI Z.8

Tau 6000 K0 HI _-.8
o

77 81 Tau 6000 K0 HI 3.0

The largest discrepancy here is that of T Tau vs. 77 Tau. In fact, for these
two stars with the largest range in temperature and gravity, the chromospheric
emissions are quite similar. We should look elsewhere for an explanation of
the spread in emissions.
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IUE ULTRAVIOLET OBSERVATIONS OF W lima STARS*

A. K. Dupree and S. Preston

Harvard-Smlthsonian Center for Astrophysics

Q

ABSTRACT

Four W UMa eclipsing binary systems have been observed
with IUE: 44 Boo, VW Cep, W UMa, and _ CrA. They generally
show large surface fluxes of high temperature lines [C II, C IV, N
V, Si IV) which may result from the high rotational velocities
forced by synchronous rotation. High dispersion spectra of the 44
Boo system in, the MglI line enable the individual stellar com-
ponents to be identified. The line widths and phase variations are
consistent with the optically determined spectroscopic orbit. Ctr-
cumstellar ahsorptlau of Mg II may be present at selected phases.

INTRODUCTION

The W UMa systems are eclipsing binaries composed of late-type dwarf stars
with an orbital period of less than one day. Their high spatial frequency means
such a configuration is an important phase in the main sequence evolutionary
process. The two components of these systems are of unequal mass implying
that mass transfer has undoubtedly played a role in the evolution of these sys-
l_,as. There are indications of sudden changes in orbital periods over a few

months as well. Light wave effects are found in some systems suggestive of
stellarsurface activity.

Early results from IUE (ref. 1, ref. Z) showed that these systems are rich
sources of ultraviolet emission and suggested that binaries of shorter orbital

period had a higher surface flux of UV lines than those of longer period. Most
recently the discovery from HEA0-1 (ref. 3) that one member of this class is an
X-ray source and the subsequent detection of many of these systems with the
Einstein Observatory (ref. 4) show that these stars contain extensive coronae as
well.

Much theoretical work has been done on structural models for these sys-

toms. It is generally thought that a large flux of energy is transferred from the
more massive primary to the secondary star. Models suggest that the com-
ponents share a common envelope in which transfer of energy from primary to
secondary must occur by the action of circulation currents in a manner similar
to convection.

Since we believe that convection plays a crucial role in generating solar

chromospheric activity, we might well expect enhancement over single stars.
These binaries are rapidly rotating and enhancement and concentration of mag-
netic fields must occur. This may well lead also to increased heating and radia-
tive losses. In addition, one structural theory - the thermal relaxation

*Supported in part by NASA grants NSG 5370 to the Harvard College 0b-
servatory and NAG-5-5 to the Smithsonian Astrophysical Observatory
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oscillationtheory , (ref. 5, 6) predicts phases of mass exchange between com-

ponents. So in the ultraviolet we might search for the spectroscopic signatures
of circumstellar material _md mass flow.

These W UMa systems are valuable objects with which to investigate
coronal structure, stellar ,mrface activity, and the dynamics of mass transfer or

mass loss. It is also important to pursue the effect of rotation on chromospheric
structure. It has long been known that the Ca K flux is enhanced in binary

• systems and apparently the extension of such enhancement is found in high
chromospheric and coronal regions as well.

OBSERVATIONS - LOW DISPERSION

IUE spectra have been obtained of several W UMa type systems listed in
Table 1. Short wavelength spectra (figure 1) exhibit the typical spectral
features of high temperature chromospheric and transition region lines, namely
0 I, C H, Si IV, C IV, and N V. In _ CrA, the strong continuous emission at long
wavelengths results from the high effective temperature of the components.
Similar continuous emission is found in the system 44 Boo. This is a visual
binary with one component being the W UMa system (G2 V) and the other an

F4 V star. The continuum in this case arises from the F dwarf which is only ~
R,, away from the W UMa system at present and hence unresolvable with IUE.

The strong He II CA1640) line is notable in all of these systems. Its presence
underscores the X-ray detections as the _1640 transition can be increased

through photolonization of He I by X-rays followed by recombination (ref. 7).

Surface fluxes in the emission lines (figure 2) are substantially higher than
those found in the quiet solar spectrum and display an increasing enhancement
with temperature of formation. Although the enhancement is more than an
order of magnitude higher, this behavior is similar to that found in solar active
regions suggesting a structure dominated by a constant conductive flux. Since

we assume that the flux is homogeneously distributed over the stellar surface,
these values may well be a lower limit to the true surface flux above active
areas.

The surface flux of the C IV transition (_1550) is a convenient index of

enhancement and radiative losses in the stellar atmosphere at temperatures of
R x 105 K. Inspection of the relation between emergent flux and stellar rota-
tional velocity (figure 3) shows a clear correlation. The four W UMa systems
have velocities _ 100 km s -1 , and exhibit the hlghest surface flux in the C IV
line. Both the velocities and fluxes are higher than those of the BS CVn sys-
tems included for comparison. The correlation suggests a continuity in the
effect of rotation upon the radiative losses; however there are still substantial

variations in fluxes at a given rotational velocity. Some of this variation may
result from activity on the stellar surface similar to that found for _ And (ref.

8) in which the ultraviolet flux correlates with the V light modulation. The
extreme values found for e CrA may be associated with the earlier spectral type
of the system or the larger mess ratio (ref. 9) between the components.
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0BSERV&TION_ - HIGH DISPEI_ION

The system 44 Boo has been observed at various epochs with h_gh disper-
sion at long wavelengths (figure 4). In this figure, the continuum and photos-
pheric lines arise In the F dwarf companion and the central emission reversal
from the W UMa component. The sample spectra at four phases show the vari-
ation of tnctividual profiles with phase; the central emission reversal shows the
orbital motion of the members of the W UMa system with an amplitude in
agreement with the optical spectroscopic orbit (ref. 10, ref. 11 ), The breadth
of each emission component at elongation (phase 0.28) is consistent with the
rotational velocity expected from synchronous motion, namely ± 1.5_ and
± 1.1 _ for the primary and secondary star respectively. The flux ratio is con-
sistent with the surface area presented at elongation and supports a relatively
uniform distribution of surface flux. There are phase changes in the profile
from epoch to epoch; the flux attributed to the primary star remains approxi-
mately constant, whereas the secondary appears to fluctuate by 10 to 20% in the
ME H k line flux. This seems reasonable if the secondary is merely the reci-
pient of the luminosity generated principally on the primary star.

There is a suggestion of absorption features in the ME H k profile that have
a variable velocity of about-100 km s-l; these appear to be present at various
epochs and may indicate the presence of circumstellar material in the system.
Confirmation of this, and in particular its appearance with orbital phase, sug-
gests that mess transfer occurs between the components of contact systems.
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TABLE 1

Observations and Parameters of W UMa Systems

System Spectrum Period Image • Phase Exposure References
(days) (minutes)

44]3oo G2, F4 (p_mary) 0.268 Average of Many 23 to 45 11
9 SWP

LWR3197 0.28 25

LWRfi834 1.00 19

LWIIfi836 0.40 15

LWR5838 0.78 15

VWCep G2 0.278 SWP6534 0.84-0.46 150 11

W UMa F8 0.334 SWP6881 0.45 75 13

CrA F0 0.591 SWP6830 0.79 _ 9

SW3P6831 0.85 40

z All exposures were made using the Large Aperture.
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Figure 1. Short wavelength spectra of 4 W UMa systems. The spectrum of 44
Boo represents an average of 6 images. The spectrum of W U_a is underexposed

and serves only to provide an upper Limit to the C IV lines at _1550 _. The
spectrum of E CrA is a composite of a long exposure (40 n_ln.) to detect the high
temperature lines at short wavelengths and a shorter exposure (20 rain.) to
measure the con_inuum near _1800.
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Figure 3. The surface flux in the C IV (A1550) transition as a function of velo-
city of the components for several binary systems. Synchronous rotation was

assumed for those systems with__rbltel period less than O days. The four %V
IrMa systems have V _ 100 km s % Upper limits for the components of %VUMa
itself are shown. Several RS CVn systems are also included. The triangles indi-
cate the position for Capella with attribution of the total flux to the secondary
(ref. 12) or to the primary star.
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expected from the optically determined spectroscopic velocity curve (ref. 10,
ref. 11) marked by the solid lines. At phase 0.28 the prlmary star has the
._Da6_,x-'lm.l,tmredshift! at phase 0.78 the primary star is approaching.
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NOTES ON THE EARLY-TYPE COMPONENTS OF W Cep, o Cet,

CH Cyg, AR Mon, and BL Tel

Robert F. Wing and Kenneth G. Carpenter

Astronomy Department, The Ohio State University

ABSTRACT

Low-resolution IUE spectra in both spectral regions have been used to

clarify the nature of the warmer components of several binary systems. W Cep,

the primary of which is a luminous K-type supergiant, shows an ultraviolet

absorption spectrum of type B0 or BI; this system is heavily reddened. The

hot companion of Mira (o Cet) is surprisingly faint in the short-wavelength

region, but it excites a rich emission spectrum from the surrounding gas.

The ultraviolet-active M7 giant CH Cyg is shown to be a binary with a hot

companion. This system has also been observed at high resolution and shows

variable Fe II emission and well-separated circumstellar and interstellar

absorptions within the broad Mg II emission profiles. The eclipsing binaries

AR Mon and BL Tel are shown not to have hot companions.

INTRODUCTION

Ultraviolet spectroscopy can add an important dimension to the study of

binary stars. In many cases, a hot secondary component whose presence can

only be indirectly inferred from optical observations can be accurately
classified in the ultraviolet. In other cases it may be important merely to

be able to show that no hot component exists. Furthermore, the presence of

strong transitions of many abundant ions makes the ultraviolet especially

suitable for studying the interactions between components of a binary system,

which may take the form of emission from a surrounding nebula or absorption
from a circumstellar shell.

RESULTS

W Cephei

This semi-regular variable is a luminous K-type supergiant with a hot
companion which fills in the spectrum shortward of about 4000 _. The system

has been classified K0ep la + O? (Bidelman 1954; Cowley 1969) and has been

discussed with the VV Cephei stars (whose primaries are mostly of type M) by

Cowley (1969). Since no lines are clearly seen in the near-ultraviolet spec-

trum of the companion, satellite observations in the far ultraviolet are

needed to determine its spectral class.

Exposure times of 15 and 30 min were used to record the long- and short-

wavelength regions, respectively, at low resolution. The energy distribution
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is strongly affected by interstellar reddening, and the 2200 _ feature is

prominent. The spectrum of the hot component is featureless in the long-

wavelength region but filled with strong absorption lines below 2000 _. The

strongest of these are the doublets of Si IV and C IV near 1400 and 1550 _,

respectively; their relative and absolute strengths indicate a spectral type

of B0 or BI. This result should be considered preliminary for two reasons:

we have not yet secured an adequate set of spectra of spectral-type standard

stars; and the contributions of interstellar lines to the observed absorp-

tions cannot be determined at the resolution employed.

o Cet (Mira)

Mira is a close visual binary whose companion was first discovered

spectroscopically (Joy 1926). When the red variable is near minimum light,

the companion dominates the spectrum below 4000 _. Its near - ultraviolet

spectrum, however, is not classifiable, as it shows only broad hydrogen lines

with P Cygni profiles. The companion is sometimes called an 0 star, some-

times a B star; in any case its faintness compared to the M giant primary
indicates that it lies below the main sequence. The companion undergoes both

slow and rapid variations (see Yamashita et al. 1978) and has been named
VZ Cet.

Normal (i.e. single) Mira variables show a wide variety of emission

lines in the optical region and hence might be expected to contribute some

features in the ultraviolet. However, our IUE exposures on R Leo, R LMi,

and R Hya do not show any definite features except the Mg II doublet at

2800 _. We were expecting, therefore, that the ultraviolet spectrum of Mira

itself would be essentially that of the companion. This is indeed the case

in the long-wavelength region, where the spectrum is continuous with super-
imposed Mg II emission. The short-wavelength spectrum, however, is not that
of a star but that of a nebula.

The spectrum of Mira from 1200 to 1950 _ is shown in Figure i. Many

strong emission lines are present, while the continuum from the hot star is

relatively weak and surprisingly red. This 60-min exposure was made on

January 28, 1980 when the primary was a bit past maximum light (the Fine Error

Sensor registered a visual magnitude of 4.4 ). Since the long- wavelength

region was well exposed in only 5 min, one might have expected the continuum

of the hot star to be greatly overexposed in one hour in the short-wavelength

region. Either the companion is not as hot as usually thought, or it is

strongly reddened by circumstellar or interstellar material.

Most of the emission lines in Figure 1 are readily identifiable with the

strongest transitions of abundant ions. What is remarkable is the wide range

of excitation present. All the lines normally seen in high-excitation nebulae

(N V, Si IV, C IV, He II, etc.) are there, but in additipn there are strong

lines of 0 I, C I, and Si II, which characterize the low-excitation chrpmo-

spheres of K and M giants. Clearly there exists a wide range of tem-

perature in the gas producing the emission. We note also that the semi-
forbidden lines of 0 llI], C III], Si III], and probably N III] are quite

strong, indicating that at least some of the emitting gas is at low density.
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Since it is likely that the primary star is losing mass with each annual

cycle of its light variation and that this material fills a large volume of

space around both stars, it is easy to see how a wide range of temperature

and density could arise. Nearly all of the circumstellar gas can be illumi-

nated by the hot star, and this radiation is most intense near the hot star

while the density is probably highest in the immediate vicinity of the cool
primary star.

Models of the Mira system will have to account for the relatively red

color of the hot companion and its faintness in the short-wavelength region.

It does not seem likely that it is as cool as it looks if it can excite the

nebula so effectively. The great strength of the emission lines would tend

to argue against interstellar absorption, or absorption from a dust shell

surrounding the entire system, as the mechanism responsible for suppressing

the spectrum of the hot star. At the Same time, absorption occurring closer

to the hot star would reduce its efficacy in exciting the emission spectrum,

and in any case it is hard to understand how grains of any kind could exist

near the hot star. A quantitative study of the relative emission line

strengths might show whether or not they suffer selective absorption.

CH Cygni

This semiregular variable of type M7 III has gone through several epi-

sodes of "activity" -- notably in 1963, 1967, and 1977 -- during which the
near-ultraviolet spectrum has become covered by a hot continuum, and emission

lines of relatively low excitation (mainly Fe II) have appeared throughout

the optical region. Both single - star and binary models have been proposed

for CH Cyg. Recently, Yamashita and Maehara (1979) have detected changes in

the photospheric radial velocity of the M star and have suggested that it is

a binary system with a period of 5750 days (about 16 years) and a velocity
semi-amplitude of 6.8 km/sec.

The spectrum obtained with IUE in the short-wavelength region leaves no

doubt that a hot secondary star is present. Not only is the spectrum very
bright (the optimum exposure time proved to be 5 min for low-resolution SWP

images) but also the spectrum contains absorption lines of C IV, Si IV, etc.

which presumably arise in the photosphere of the hot star. A spectral

classification should be possible when more standards have been collected.

The most conspicuous feature in the short-wavelength region, however, is one

that does not belong in the spectrum of a hot star at all -- a very strong

emission line of O I_ Since this line at 1300 _ can be pumped by LyB pho-

tons (Bowen 1947),it seems that CH Cyg must represent an unusually favorable

case for the operation of this fluorescence mechanism, with the hot star

supplying the LyB photons and the cool star supplying the neutral gas. On
the other hand, the absence of detectable Ly_ emission may make it hard tO

maintain that an adequate supply of LyB photons is available.

In the long-wavelength region, after overexposing the spectrum in 2 min

at low resolution, we took subsequent exposures at high resolution (optimum

exposure time 40 min). Three plates were obtained, separated by intervals of

several months; all show a large number of rather weak emission lines, but on
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the most recent plate the Fe II emission is decidedly weaker than on the

other two. Sections of two of these spectra are shown in Figure 2. The

upper panel, which covers the interval from 2600 to 2650 _, shows that the

Fe II lines of multiplet (i) were much stronger in May 1979 than in January

1980. The lower panel covers the region from 2750 to 2800 _ on the same two

dates and includes the 2795 _ line of Mg II. This line is broad and strong

in emission and contains two distinct absorption components separated by

if0 km/sec; the other member of the Mg II doublet at 2802 _ has a similar

profile. Since the systemic velocity of CH Cyg is -58 km/sec (Yamashita

and Maehara 1979), the longward absorption component has nearly zero velocity

and is probably interstellar, while the shortward component is produced in a

circumstellar shell that is expanding outward at about 50 km/sec with r_spect

to the star. A similar expansion velocity was observed at the K line of

Ca II by Yamashita and Maehara. On the other hand, the Ha profile, recently

studied by Anderson, Oliversen and Nordsieck (1980), is very different, with

only a single absorption component dividing the emission into nearly equal

parts. In that case no interstellar llne is involved, and the absorption

feature is at approximately the center,of-mass velocity -- perhaps, as sug-

gested by Yamashita and Maehara, because the Balmer absorption is associated
with the circumstellar shell of the hot star, which in recentyears has been

in front of the M giant and moving across the line of sight.

AR Monocerotis

This 21-day eclipsing binary has a spectral type of K0 II; no evidence
of the secondary star is seen spectroscopically. The secondary must be a

fairly large star because the primary eclipses are about 0.8 mag deep (Payne-

Gaposchkin 1944). The strange thing about this system is that the primary

eclipse occurs when, according to the radial-velocity curve, the K star is
in front (Sahade and Cesco 1944).

To check the possibility that the companion might be of relatively early

type, AR Mon was observed at low resolution with exposures of 30 and 90 min

in the long- and short-wavelength regions. The spectrum seems normal for an

early K giant, with chromospheric emission lines of Mg II and O I and tran-

sition-region lines of C II, C IV, and N V. A weak continuum was recorded

down to about 1700 _, and its color is approximately normal for a K star.
We conclude that the companion is no hotter than type G and probably is

cooler than the primary.

BL Telescopii

This 778- day eclipsing system has many peculiarities. Although the

primary has been classified as an F8 supergiant (Cousins and Feast 1954),

the system has a large radial velocity, high galactic latitude, and appre-

ciable proper motion. The primary eclipses are 2.0 mag deep, and the spec-

troscopic orbit (Wing 1963) indicates that the secondary must be at least as

massive as 2 M@.

At minimum light, weak TiO features have sometimes been recorded in the
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red, and this suggests that the companion is an M star ( Cousins and Feast

1954). On the other hand, Feast (1966) has offered the suggestion that the
TiO features are produced near the limb of the F supergiant and that the

eclipses are caused by a dense H II region ionized by, and surrounding, a
hot subdwarf secondary.

%

We have observed BL Tel both outside eclipse (1979 February ii) and in
eclipse (1979 May 26). Readings taken with the Fine Error Sensor indicate

that the eclipse was 1.3 mag deep visually at the time of our second obser-

vation, while the fluxes at representative wavelengths in the ultraviolet

showed changes of 1.0 to 1.5 mag. The spectrum seen in the ultraviolet is

that of an F star, with a strong absorption feature due to the Mg II doublet

and weaker absorptions as far shortward as 1700 _. No chromospheric emission

was recorded, and no significant changes in the spectrum (other than its in-

tensity) occurred as a result of the eclipse. It would appear that spectro-

scopic evidence of the companion should be sought not in the ultraviolet but
in the infrared.
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Figure l.--The spectrum if Mira (o Cet) in the short-wavelength

region. The continuous spectrum from the hot companion is sur-

prisingly faint and is probably obscured. The rich emission-line

spectrum shows a wide range of excitation and probably arises in a

large volume of gas which surrounds the entire system and is illu-

minated by the hot secondary. The Ly_ line is largely geocoronal,

but a stellar component comparable in strength to O 1%1300 is also

present. The feature near 1500 _ marked with an 'X' is spurious.
In the long-wavelength region, the spectrum is dominated by the con-

tinuum of the hot star with superimposed Mg II emission.

/

346



|

St III]
i

] tt -

• o Cet
C IV C III]

• _,o \ /
10 - / Cl SiII

FIBSOLUTE II
FLUX o_ :v]?

x1014 - I _l x o_Hj _

• / fSI IV N III]?

6 - li / J
• I

2 -

. I

1200 lqO0 1600 1800 2000

HQVELENGTH
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than on January 30, 1980. (b) The region 2750- 2800 _ containing the
2795 _ line of Mg II, which shows both interstellar and circumstellar

absorption components.
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ABSTRACT

IUE observations of the high excitation symbiotic star RWHya (gM2 + pec)
have been obtained. Analysis of the intense UV continuum observed between
II00 A to 2000 A suggests this star is a binary system in which the secondary
is identified as a hot subdwarf with T _. _I0 D K. We deduce a distance to the
system of _ I000 pc. The UV spectrum c_ists of_mainly _emi-forbidden and
allowed transition lines of which the ClV (1548 A, 1550 A) emission lines are
particularly strong, and UV continuum at both shorter and longer wavelengths.
Strong forbidden lines seem to be absent suggesting the p_esence of a nebula
of high densities, in the approximate range'lO 8 - 109 cm-3. Tidal interaction
between the red giant primary and the hot subdwarf is suggested as a likely
means to form the observed nebula. RWHya is suggested as a possible source
of soft X-ray emission from material accreting onto the surface of the hot
subdwarf. Detection of such emission with HEAO-B ("Einstein") would give us
information if this accretion is taking place via Roche lobe overflow or via
capture from a stellar wind emitted by the primary. A general discussion of
elemental and ionic abundances in the nebula is also presented.

INTRODUCTION

RWHydrae consists of a star of gM2 spectral type with lines in the vis-
ual characteristic of higher temperatures than would be expected for a late
type giant;Merrill (ref. I) observed H, He I, He II,_0 lll},_Ne lllJ, and
[Fe V], _Fe VIII. A 376 day orbital periodwas determinedfrom radial velocity
observatlonsof emissionand absorptionlines by Merrill (ref. 1).

Our IUE resultsconfirm the binary hypothesisof Merrill.The star system
consistsof the late type giant and a hot companionwhich we classify as a
centralstar of a planetarynebula.The two stars are immersedin a dense
nebulawhich gives off intenseallowedand semi-forbiddenlines, the strongest
ones being the C IV doublet. IUE is particularlyuseful in observinglate type
stars that have compositespectra, since the luminosityof the primaryM giant
does not overwhelmthe emission from the companionin the far UV.
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UV OBSERVATIONS

Ultraviolet observations were obtained of RWHya on July 29 and Septem.,
ber 1 1979 over the wavelength range 1100 A to 3200 A using exclusively the i0"
x 20" large aperture of the IUE spectrometer. Virtually no change was seen in
the spectrum observed during the two observing sessions. In Figure laab we
show the short and long wavelength observations of RWHya. Ly _ 1216 A is ob-
served in absorption. The C IV lines are so strong that subsequent exposure_;
of 30 seconds obtained on September I saturated one pixel! High dispersion

(_ 0.I A resolution) spectra obtained on September 1 in the short wavelengl;h
region revealed a number of allowed and semi-forbidden lines. Wehave identi-
fied 39 lines in the spectrum of RWHya and have possible candidates for 12
others. In Table I we show line identifications and fluxes for the stronges_
IUE features. Other numerous lines of the ions in Table_l were also observed
(e.g the ClII 1174.9 - 1175.8 A lines, the 0 I]1355.6 _ line etc.). Moreover,
we identified lines of the (43) and (68) mu_tiplets of Fe II, the Si II 1808 +
1817 A lines and the A1 III 1854.7, 1862.8 A lines.Twelve possible lines that
we observed are a number of Fe II features, a Si III feature and some forbidden
[Ne II_ ,_Ne IV],[O II_,_ lll]lines. These are very tentative identifica-
tions and we are very s_<e#tical whether in fact any forbidden line was seen.

In contrast to the short wavelength region which is rich in lines we only
detected definite lines ClU, Mg II and 0 III in the long wavelength region
(see Figure 1 and Table I). The short wavelength continuum drops as the Ray-
leigh-Jeansoblack body tail of _ hot star emission would be expected. Beyond
about 2000 A,F_ is essentially constant with wavelength.

DATAANALYSIS

From equivalent width measurements of the Ly _ absorption line we obtain
a column density of H I in our line of sight NH i_6.4xi018 cm-2. Using the
interstellar extinction relationship (ref. 2), we find E(B-V) _I.3xI0-3. This
low value of extinction is consistent with the 1200 A to 1700 A Rayleigh-Jeans
excellent fit to the observed continuum. Weestimate a lower limit to the
temperature of the hot component T2 _50,000 K (if, for example, the sta_ had
a temperature of 30,000 K, the bla_k body maximumwould be in the I000 A re-
gion of the spectrum and would not follow the observed Rayleigh-Jeans tail_.

We estimate the absolute magnitude of the primary as MV_0.0, althouah it
could be slightly smaller. From the observed apparent magnitude of mV _i0_ we
obtain a distance of _I000 pc and a height above the galactic plane of_ 600
pc. The corresponding stellar parameters are MboI _ -2.2, log L,/L e _2.8 and
log R./Rg _I.9.

The apparent magnitude of the secondary was obtained from the observed
Rayleigh-Jeans tail, mV _14.75, and therefore the secondary is much fainte_ _
than the primary in the visible. We estimate an upper limit to its temperature

T2 _200,000 K in order not to violate the Eddington limit for a star of I Me.
The stellar parameters for an intermediate temperature T2 = I00,000 K are Mbo1

-3.0, log L,/L® _3.1 and log R,/R e _-0.9. Such a star is in the middle of
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the centralstar of planetarynebula region (ref. 3).

Between2000 _ and 3200 X the continuumcontributionby the companionis
assumed negligiblein comparisonto'the nebularcontinuum.We attributethe
continuumin this range to Balmer recombinationfor reasonsthat will be made
evidentfurther in the text. At 2400 A the measured continuumflux is F_
5X10 -lj ergs cm-Z s-1 A-I and yields a relationfor continuumemission for an
ionizednebula which is (ref. 3)

ne2 (L/Lo)3 -2DIO00 3.45 x lOl8cm-6 (I)

where n_is the electron density in the nebula and L the linear size of the
nebula _caled to L_ _ ao, aQ is the semi-major axis of the elliptical orbit
for a mass ratio o_ the two stars MI/M2 _2, M2 _ I M_ and an assumed orbital
period _ 376 days (ref. 1).On the other hand, from _he Stromgren sphere
relation we have

ne2 (L/Lo)3 _1.26 x 1019 N47 cm-6 (2)

wh re N is the number of ionizing photons emitted per sec in units of 1047
s _. Accordingly,_ 47 . taking the distance to the system as DIO00 = I, we require
N47_ 0.3 and therefore T2 _ I00,000 K.

The strength of all the observed lines is proportional to ne2 L3 since
collisional de-excitation would have to be negligible because of-the existence

of the semi-forbidden l_nes. The estimated upper limit to the electron densitywould then be _ I0 cm-°. Using the atomic data (ref. 3,4,5,6) we computed
the theoretical line strengths. Taking all the ions present, one may estimate
the elemental abundances for different nebular temperatures, Te. We find the
most reasonable abundances for T_ _12,500 K, otherwise some elements are too
overabundant or too underabundan_ with respect to the solar values. Using a
number of arguments involving the absence of forbidden lines in the UV, the
presence of the forbidden lines observed in the visible (ref. 1), the C III /
C ll_ratio, the ratios of lines in the 0 l_multiplet and the absence of the

two photon continuu_, we _stim_te the approximate range of the densities in
the _bula to be I0 ° - I0 cm- and the corresponding range of linear sizes
3x10_ - 6.5xi013 cm. Weobtain reasonable ionic abundances from the observed
line fluxes, with one exception, He III being underabundant by a factor of I0.
It may very well be that the temperature of the secondary is in the low part
of th_ range we estimated, T9 < 50,000 K The observed flat continuum above_ " °

2000 A would then have to be due to somethlng other than photoionization by
the hot companion.

The low excitation lines of 0 I, Si II, Mg II and Fe II may be originating
from different regions than the compact, ionized nebula. A cool chromosphere
is possible, although the various possibilities cannot be distinguished.

TIDAL INTERACTION

It is interesting to note that for ne _ 109cm"3, the size of the nebula
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would only be about five time_ the primary radius. Using an escape velocity
from the primary of I00 km s-_ we estimate the stead_ state mass loss from .
the primar X required to be 6xlO"b M yr -I for n_ _I0 _ cm-_ and 3xi0 -b Ma yr -z
for n_ _10_ cm-_. These rates seem _o be high f6r the primary in the geBeral

regio_ of th_ H - R _iagram (ref. 7), which we would have expected to be less
than _ 3xlO- Ma yr- . It is interesting to note that the symbiotic star GX

1+4 seen to emi_ X-rays (ref. 8) has a nebula with radius and density_imilar
to,that of RWHya. Its luminosity, however, at X-rays is high, _ 4xlO_ ergs
s-_. HEAO-2 ("Einstein") observations of RWHya would be very useful. If Roche
lobe overflow-a likely possibility-is occurring, we expect an X-ray luminosity

of RWHya comparable to GX I+4; if capture from a stel1_r wind i_ occurring,more modest X-ray luminosities would be observed (_ I0 _ ergs s- )
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TABLE 1.- LINE IDENTIFICATION AND FLUXES

Ionic Transition Wavelength (A) Wavelength of Flux (ergs cm"2 s-1)

IUE Feature (A) 10_12S V] 1199.180 1"199.200 1.56 x
N V 1238.82+1242.8 1238.836+1242.82 2.73 x I0 -II

0 1 1302,169 etc. 1302.468 etc. 1.83 x I0 "II

Si IV 1393.755 1393.930

0iV] 1399.774 _399810
0 IV] 1401.156 1401.198 5.08 x 10-11

Si IV 1402.770 1402.928

siv]+0i_ 1404.770+1404.811404.770
S I_ 1406.000 1406.084

0 I_ 1407.386 1407.414

N IV] 1486.496 1486.512 5.59 x I0 -II
C IV 1548.185+1550.77 1548.448+1550,97 3.89 x I0 -I0

-11He II 1640.332 1640.412 2.07 x I0

0 II_ 1660.803 1160"9141 4.10 x 10-11

0 Ill3 1666.153 1666.248
NiI_ 1748.610 1748.840_

N II_ 1749,674 1749.794 1 8.27 x 10-12
N II_ 1752.160 1752.378

N II_ 1753.986 1754.164

Si II_ 1892.030 1892.172 4.27 x 10-12

C II_ 1908,734 1908.922 5.76 x 10-11

C I_ 2325+2327+2328 2332.4 2.43 x 10-11
Mg II 2796+2803 2799.4 1.00 x I0 -II

0 III 3047 3040.0 9.70 x 10-12

0 III 3193 3141.6 2.62 x 10-11
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IUE OBSERVATIONSOF CIRCUMSTELLAREMISSIONFROMTHE LATE
TYPE VARIABLER AQR(M7 + pec)

Robert W. Hobbs and A.G. Michalitsianos
Laboratory for Astronomy and Solar Physics

NASA-Goddard Space Flight Center

M. Kafatos
George Mason University

ABSTRACT

As part of a program to observe circumstellar emission from late type
stars, IUE observations of R Aqr (M7 + pec) have been obtained in low
dispersion. Strong permitted, semi-forbidden and forbidden emission lines
are seen, superimposed on a bright ultraviolet continuum. We deduce that
the strong emission line spectrum that involves C III], C IV, Si III],
[0 II] and [0 lll]probably arises from a dense compact nebula the size of
which is comparable to the orbital radius of the binary system of which
R Aqr is the primary star. The low excitation emission lines of Fe II,
Mg II, 0 1 and Si II probably arise in the chromosphere (T_IO,O00 K) of the
R Aqr. The secondary is probably a white dwarf, comparable to or somewhat
brighter than the sun, since such a star can produce enough ionizing photons
to excite the continuum and emission line spectrum and yet be sufficiently
faint as to escape detection by direct observation. We attribute the UV
continuum to Balmer recombination from the dense nebula and not to blackbody
emission from the hot companion.

I. Data, Analysi s , and Introduction

Ultraviolet spectra (Figures I and 2) of the late type, star
R Aqr (M7 + pec) have been obtained with the International Ultraviolet
Explorer (IUE) and reveal intense emission lines and continuum. This is

consistent with earlier optical observations of Merr_lll., 2, 3 which
indicate that the system consists of hot stellar companion and a relatively
cool ]ate type star. In low dispersion the spectrum between 1200 _ to
3200 _ shows s_rong permitted emission lines of C IV (1548 A, 1550 A),
Si III (1883 A, 1892 A), C III (1907 A, 1909 A)_and Mg II (2796 A,
2803 A_, forbidden emission lines of 0 II (2470 A) and probably [0 IIII
(2321 5). The UV observations are thus consistent w_th lin_s of [0 III]
(4929 A, 5007 A) observed in the optical spectra of Merrill and [0 II]
(3726 _, 3729 _) of llovaisky and Spinrad4.

The strong lines of He II, C II, C IV , 0 I, 0 III , 0 IV, S II, Si IV
and Fe II are evident in the spectrum. The identification of N V and Si II
1304 _, 1309 _ is ambiguous because other lower excitation lines of nitrogen
are not present, and similarly for silicon, Si II 1265 _ is not observed. A
number of Fe II features in various multiplets are also identified.
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In addition to the bright emission line spectrum there is a general
ultraviolet continuum, the intensity of which appears independent of wave-
length over the spectral range observed. We attribute the origin of this
continuum to hydrogen recombination rather than H I two-photon emission.

Of particular interest in our observations is the distinct lack of a
stellar UV continuum that should be present if an 0 or B type main sequence
star is the source of excitation in the nebula, as has been suggested by
Merrill3. Weconclude that the continuum observed most likely originates

not from a stellar source, but from a low excitatio_5nebula with an electron
temperature T.-15,000 K and characteristic size I0 cm. The source
excitation is a sub-luminous central planetary nebula star or bright white
dwarf of T,_ 50,000 K, whose orbit about the prima_y M7 star is comparable
to the size of the ionized nebula, i.e. 1014 - 1017 cm. The details of
our conclusions are discussed in the following sections.

The low excitation lines of Fe II and Mg II have been previously
observed in the spectra of single late type stars by Carpenter and Wing 5,
and the presence of the above lines as well as 0 1 and Si II lines in the UV
spectrum of R Aqr _rgues strongly for a cool chromosphere T,_IO,OOOK for
the primary M7 star U. However, we assume from our analysis that
other high excitation lines observea In our data do not arise from the
companion directly. Weattribute the formation of the majority of strong
lines to a compact nebula that is excited by emission from the hot companion

The observed continuum flux can be used to obtain the general
parameters of the nebula. These parameters can then be checked against
those derived from our analysis of the continuum spectrum. For that purpose
we have used the combined strengths of C II (2325, 2327, 2328 R), C IV
(1548, 1551A), C III] (1907, 1909 A), [3 II] (2470 A), _0 III] (2321 _) and
0 IV] (1400, 1401, 1405, 1407 A). Wehave selected these lines because they
consist of various ion species, they are the strongest features in the
spectrum, and because there is little ambiguity in identification. However,
it is not clear if the 1402 A feature is due entirely to 0 IV], and what
portion of the broad 2328 X feature is due to [0 III] or C II.

The observed continuum is essentially fl'at and rises slightly toward
long wavelengths. The continuum, therefore, cannot be due to a star since a
stellar continuum would vary with wavelength by more than an order of
magnitude over the spectral range observed. Balmer recombination and H I
two-photon emission arising from a nebula are possible mechanisms to explain

this continuum. However, shortward of 3200 A the two-photon cont_nuum3of
hydrogen will dominate if the densities are sufficiently low (_10 cm- ),
and will produce a prominent peak in intensity around 1400 A (Bohlin,
Harrington and Stecker7); this peak is not observed in our data, and we
conclude that the two-photon process is not the dominant mechanism. On
the other hand, the Balmer recombination continuum depends only weakly on
temperature for T-15,000 K and the expected flux varies only by a factor of
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two between1200 to 3200 X. We concludethat this mechanismdominatesand
that the densitiesinvolvedmust be_105 cm-3, since densities

appreciablylower than thisovaluewould result in a conspicuoustwo-photon
continuumpeak around 1400 A. Given this lower limit in densitywe can

calculatea correspondingupper limitfor the diameterof an ionizednebularesponsiblefor the observedflux, 5 x 1014 cm.

A further argumentin supportof a nebula with this characteristicsize
and density as that found above can also be made from observationsof
emission lines in the visibleby Merrill3. Merrill3determinedan
orbitalperiod for the hot companionof approximately27 years from radial
velocitymeasurements. The correspondingsize of the semi-m_joraxis for an
ellipticalorbit with this period is 1.7 x 1014 to 2.1 x 1014 cm, for a
mass ratio of the primary and secondaryof 1:1 and 3:1, respectively
(assumingone solar mass for the secondary). If the ionizednebula was
appreciablylargerthan the separationof the stars one would not expect to
observesubstantialvariationsin line strengths. However, Ilovaiskyand
Spinrad4 have comparedtheir visual spectraldata of R Aqr to earlier
observationsof Merrill and found no evidencefor a hot stellarcompanion
whatsoever. From this they suggestthe emissionpropertiesof the spectrum
are probablytime-dependent. Merrill3 also found that the apparent
positionof the nebularemission appearsto vary with time. Accordingly,
this is consistentwith our model that suggeststhe ionizednebula is
comparablein scale to the size of the binary orbit. At a distanceof
260 pc a central ionizedcloud of scale size L = 2 x 1014 and electron
densityof ne = 1.5 x 107 cm-3 is sufficientto explainthe observed
recombination continuum.

The densitieswe obtained above from observationsof the UV continuum

can also be roughlycheckedby thR [0 III] line strengthsobserved by
Merrill3 who found that the 4363 A line is unusuallystrong,and that
prior to 1934 "the ratio of its intensityof 4959 A is equaled or exceeded
in only one other nebula,IC 4997". The intensityof the hydrogen lines
relativeto those of [0 IIIl R Aqr is similarto that observed in most
planetarynebulae,H_ being about equal to 4959 A prior to 1922. After this
time the hot componentstartedto dominatethe spectru_for a few years
reachinga maximum in 1933-34°. From All_r and Lil!er_ we
estimat_the intensityratio of the 4363 A to 5007 _ and 4959Ri.e.
I(4363A)/I(4959_, 5007 X) 0.1 for the planetarynebula IC 4997 observed
in 1922. Based upon theobservationsof IC 4997 (Allerand Liller9 and
the statementof Merrill3 concerningthe similarityof this ratio of
R Aqr to that of IC 4997 prior to 1934 (i.e. 1922), it followsthat the
strengthof the 4363 A line agrees with densitieslOb_ne_lO 8 cm-3
for temperatures3 x 104<T_8 x 103, respectively(Kafatosand Lynch10.

Moreover,as deducedfrom our continuummeasurementsthe nebulardensity
cannot be more than_108 cm-3 since the [0 II] and 0 [III]lines would
be suppressed,and the 4363 _ line would be even stronger. Additionally,if
densitieswere much higherthe nebulawould be comparablein extent to the
size of the primaryM7 star, which is unrealisticon physicalgrounds. It
follows that the nebularparametersfrom the foregoingargumentsare in the
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range 105<n es108 cm-3, 1014<L51015 cm, and 104_<T<3 x
104 K. We adopt a model ne<107 cm-3, L-2 x 1014 cm and
T- 15,000 K.

b.) Emission Lines

We have also deduced the nebular parameters and the relative ionic
abundances by two different methods, i) by using the carbon line strengths,
ii) by using the oxygen line strengths. We have assumed that the scale size
of the nebula is L ~ 2 x 1014 cm; although the general trend of our results
appears somewhat insensitive to this parameter, we have assumed normal
cosmic abundances for the various elements under consideration 11.

i) carbon line strengths (model A)

The semi-forbidden lines of C II and C III and the allowed lines of

_5!V can be used with one another to find the p_oduct n2 L3 12, 1,3, 14,It is essential that we identify the 2328 A feature as C II]
otherwise no self-consistent model can be constructed using the carbon lines
(even if the [0 III ] were present it would not be more than 0.1 of the
total intensity of the feature). The results of this calculation are shown
in Table I (Model A). The ionic abundance N(O II) and N(O III) can then be
obtained (the latter is an upper limit since some0 IV could also be
present). We can also obtain the ionic abundance of He III from the 1640
line using this carbon line strength analysis. However, the ionic abundance
of the He III is found to be large in this case and all of the helium would
have to be doubly ionized. We have deduced the H-_ (6563 X) and[O III]
5007 _) as well as the flux of the continuum in Table 1 (Model A). Although
Model A is not unique it does indicate a general trend in our data.
Reasonable ionic abundances for the oxygen ions can be obtained if we use the
carbon line strengths to n2 L3. However, the densities would have So be
generally lower than might be suggested by the strong [0 III] 4363 A line
observed by Merrill3. Additionally, the computed flux level of the
continuum from Model A is too low to explain our data.

ii) oxygen line strengths

Assuming the 2328 A feature is mainly due to [0 lll]and the 1402
feature is mainly 0 IV], one can obtain values of ne and T10. Since
collisional depopulation becomes important above I0 b cm-j, the
forbidden lines values of ne obtained from a single temperature are not
unique, but are relatively insensitive to temperature. A typical case is
shown in Table I for T : 15,000 K and L = 2 x 1014 cm (Case B). The
continuum deduced from the line strengths of oxygen agree well with the
observed continuum. Moreover, the deduced ionic abundance of He III agrees
with the ionic abundance of 0 III (helium is essentially singly ionized,
whereas oxygen is mostly doubly ionized).

On the other hand, if we use the cosmic abundances of carbon in this
analysis, the line strengths should be a factor of -50 larger than what is
observed. The only alternative is to assume that atomic carbon is under-
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abundant by a factor-50 in the ionized nebula. The depletion of carbon
could be the result of the precipitation of carbon into grains. The
relatively low abundance deduced in our analysis appears generally to be
the case since this result will not change even if parameters in Table i are
varied (say the temperature is varied, between I0,000 K to 15,000 K). At
this point, however, it is not possible to distinguish between either Models
A or B. It suffices here to say that Model B appears more attractive since
it does account for the continuum,

It is of interest to note that the values of the nebular parameters
deduced in our analysis, i.e. L : 2 x 1014 cm, ne_lO5 - 107 cm-3
and T~15,000 K agree with the general parameters for nebular emission in
symbiotic stars of zD.

The compact nebula could be entirely the result of mass loss from the
primary star. Applying the equation _f continuity and estimating the escape
speed of the M7 giant to be 24 km s-z, that was obtained using the
period-density relation for a period = 387 days and an assumed stellar mass
of1_Mo to 3Mo , we find M = lO-l_M®yr_ z for a nebula of radius r-L/2
I0 '" cm and density no_l.3 x I0" cm"j. This mass loss rate is
I)robably a lower llmi_ since, as will be shown later on, the hot companion
is too faint to ionize the entire nebula. It is also unlikely that all the
material lost by the star is still ionized.

c.) properties of the stellar companion

We have already seen that the observed continuum cannot be due to a star
and most likely arises from a nebula. However, since we have assumed that
the source of nebular excitation is a sub-luminous white dwarf, the nebular
continuum flux observed of 10-13 ergs cm-2 s-I A-I places an upper
limit of flux that is contributed by the companion. In Table 2 we show the
stellar parameters for the unseen companion if its flux contribution in the
continuum is this upper limit.

In the first column of Table 2 we assume a temperature for the hot com-
panion. The second column gives the corresRonding _tellar radius if the
continuum at the detector is I0 -±_ ergs cm-L s-± A-± at 1200 X. The
third column gives the luminosity in solar units. Columns 4 and 6 give the
absolute flux and apparent visual magnitudes, respectively. The last column
indicates the number of ionizing photons Ni(s -z) emitted by the star.

This upper limit of continuum flux suggests a star whose apparent
magnitude is too faint to be observed today. However, in 1934 it attained
mv~8 magnitudes. In order for it to be observable today the continuum
would have to be 104 times greater. The 1934 event appears, therefore, to
have been en eruption of the hot companion that was not sufficiently strong
to be classified a nova. It is possible that this eruption was triggered by
mass transfer from the primary to the secondary.
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We also note that the companioncan ionizethe dense nebula in the

system. The stellartemperaturesrequiredare in the approximaterange of
lOb to 1.5 x 105 K, althoughtemperaturesas low as 5 x 10_ K could be
assumedif the densityof the nebulawas slightlylower than that shown in
Model B. It is most likely the case that the compact ionizednebula is
"ionization"bound ratherthan "density"bound and therefore,the mass rate ,
for the primary of 10-7 Me yr-1 is likelya lower limit. We also find
that nebulartemperaturesgreaterthan 15,000K are required,otherwisethe
density impliedby the analysisbased on the oxygen line strengthswould be
high, and a much brighter star would be requiredto ionizethe nebula.

We find that the nebularparametersdeduced from our oxygen line
analysis,ne_lO7 cm-3, 1.5 x 104<T<2.5 x 1014 cm, and the companion
5 x 104_T_ 1.5 x 105 K, 0.7 _ L,_ 7L can accountfor the nebular
continuum,explainthe observed emissionlines, and providesufficiently
low stellar luminositythat the companioncould not be seen directly.

Ill. Summary

The UV emissionobserved in our data and the forbiddenline emission
observed by Merrill3 and llovaiskyand Spinrad4 are most likely the
result of the excitationof a nebula by a white dwarf. If an 0 or B type
main sequencestar is postulatedas the excitationsource of the nebula,
such a model could not reconcilethe continuumpropertiesof the ultraviolet
spectrum. Accordingly,our model is constrainedto adopt a model in which a
bright white dwarf (fewLe) is the companionto the M7 giant. The fact
that a white dwarf is capableof supplyingenough ionizingphotonsto excite
the emission lines observed further strengthensthis interpretation. We can
summarizethe generalpropertiesof our model as follows:R Aqr is a
symbioticstar system that most likelyconsistsof an M7 primary and white
dwarf companion. The 27 year periodwe have adoptedfrom Merrill3 for the
companionstar is such that for reasonablemass ratios of 1:1 and 1:2
(assuminathe dwarf to be a 1Me ) the physicalseparationof the stars is a
few x 1014 cm, which is also the approximatedimensionsof the ionized
nebula. The faint hot companionstar is itselfnot sufficientlyluminousto
be observabledirectly. Its presence,however, is manifestedin the ionizing
effectswhich it has on its immediatesurroundings,which create a low
excitationnebula. Further observationsin the radio, visible and ultra-
violetwould be useful in monitoringthe time-dependenceof the different
emitting regions.
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Figure 1:

Low dispersion (~6 A resolution) spectrum of RoAqr obtained on
July 25, 1979 in the wavelength range 1200 A to 2000 X using the large,
aperture (10" x 20") of the IUE spectrometer. The exposure time on the
SEC Vidicon camera was 10 minutes. The Lyman-_ line at lZl6 X has a
combined intensity of the geocoronal and stellar
Lyman-_ emission. The spectrum is deconvolved and geometrically and
photoele6trically corrected. The absolute flux scale is accurate to a
factor two using the standard IUE reduction program.
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Figure 2:
Low dispersion spectrum of R Aqr between 2000 _ and 3200 _ obtained with the
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identified with a question mark is probably an artifact in the detector.
The continuum level is seen to rise slightly toward long wavelengths.
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TABI._.it

NebuZar Parameters

L = 2 x lO14 cm, T = 15,000K

Case A Case B

Carbon Line Analysis Oxygen Line Analysis

ne2 L3(cm-3) 4.4 x lO55 n2e L3 (cm'3) 1.25 x lO57

N(C II) 0.53 N(O II) 0.06

N(C Ill) 0.32 N(O III) 0.86

N(CIV) 0.15 N(OIV) 0.08

ne(C-m'3) 2.3 x 106 ne(Cm-3) 1.25 x 107

i _ N(O II) 0.81 N(C II)* 0.09

N(O III) 0.19 N(C III) 0.55

N(He III) l N(C IV)*• 0.36

6563A 1.2 x lO"12 N(He III) 0.02Flux (H-_ -l)(ergs cm-2

FluxEOII_]5007AISx10"12 Flux(Hm_)s_1 3.3xlO-II(ergs )
(ergs cm-2 s-l)

Flux[O I!I ].5007A 5.5 x lO"ll

Fcontinuum(2OOOA) lO-15 (ergs cm-Z s-I)

(ergs cm"2 s"l A"l) Fcontinuum(2OOOA) 2.0 x lO-14
(ergs cm-2 s-l)

see discussion in text



TABLE 2
HOT COMPANION

l
N (s-

T. (K) R*/R(1) L*/L(1) MV mv i
)

1.5 x lO5 4.1 x lO-3 7.4 12 19.1 4.3 x lO44

lO5 5.6 x lO-3 2.8 ll.4 18.5 2.0 x lO44

5.0 x lO 4 1.2 x lO -2 0.75 lO.1 17.2 5.0 x lO43

T, : stellar temperature

R, : stellar radius

L, : stel la r lumi nos i ty

Mv : absoulte visual magnitude
m : apparent visual magnitudev
N. : number of ionizing photons emitted by companion
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IUE OBSERVATIONSOF TWO LATE TYPE STARS BX MON (M4 + pec) AND
TV GEM (MI lab)

A.G. Michalitsianos
R.W. Hobbs

Laboratoryfor Astronomyand Solar Physics
NASA Goddard Space Flight Center

Greenbelt,MD

M. Kafatos
Departmentof Physics
George Mason University

Fairfax,Virginia

ABSTRACT

IUE observationsof two late type stars BX Mon and TV Gem have been
obtainedthat reveal the emissionpropertiesin the ultravioletof sub-
luminous companions. Analysis of the continuumemissionobservedfrom
BX Mon suggeststhe companion,is a middle A III _tar. High excitation
emission lines observedbetween1200 A and 2000 A (C IV, Si Ill], C IIIl )
that generallydo not typify emissionobserved in either lateM type
variablesor A type stars are also detected. It is suggestedthat these
strong high-excitationlines arise in a large volume of gas heated by
non-radiationprocessesthat could be the result of tidal interactionand
mass exchange in the binary system. In contrastto stars such as BX Mon
that are observed in the visibleto have emissionlines superimposedon the
strong absorptionof the M giant_ the luminousMI supergiantTV Gem shows
unexpected intenseUV continuumthroughoutthe sensitivityrange of IUE.
The UV spectrumof TV Gem is characterizedby intensecontinuumwith broad
absorptionfeaturesdetected in the short wavelengthrange. Our analysis
shows that the companioncould be a B9 or A1 Ill-IV star, althougha fully
self-consistentmodel includingthe observedcolor index has as yet not been
fully developed. Alternatesuggestionsare presentedfor explainingthe UV
continuumin terms of an accretiondisk in associationwith TV Gem.

INTRODUCTION

IUE observationsof two late type giants BX Mon (M4 + pec) and TV Gem
(M1 lab) were obtainedthat reveal strongemissioncontinuum. BX Mon was
selectedfor IUE observationsbecauseearlierground-basedspectraobtained
by Minkowskishowed broad emission in H_, H_, and H: that are superimposed
on a strong absorptionspectrum1. As such, the visiblespectrumsuggests
the presenceof a hot companionthat is not sufficientlyluminousto dom-
inate the integratedlight of the binary system. Followingthe observations
of Minkowskifurtherwork by other observerswas not pursued, leavingonly
sparse referencesin the literaturethat collectivelyindicatethis star
could possiblybe an intensesource of ultravioletemission,and possibly a
symbioticsystem. Our UV observations,however, indicatethat the companion
is most likelya middle A luminosityIII-IV star. The generalappearanceof
the UV spectrumfrom BX Mon is not representativeof UV spectrumobserved in
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classicsymbiotics,which suggeststhat BX Mon most likely does not undergo
tidal interactionor mass exchangewith its companionto the same extent as
currentlyenvisagedfor symbioticstars. This follpwsbecaus_the ultra-
violet spectrumin the long wavelengthrange (2000 A to 3200 A) is dominated
by blackbodyemissioncontinuumthat can be explainedby an A main sequence
star, and accordingly,does not typify the generalmodels presentlycon-
sideredfor symbioticstars that have as companionswhite dwarfs or central
stars of planetarynebulae. However,the high excitationlines in emission
that are observedsuggesta large volume of gas is presentthat is not
heated by photo-excitationprocesses.

On the other hand, the detectionof strong ultravioletcontinuumfrom
TV Gem is unexpectedbecause earlierground-basedspectralclassification
observationssuggestthis star is only a normal M type supergiant3,4 .
Similarly,photometricobservationsof TV Gem5,6 do not show a blue excess
in the continuum,which is a resultconsistentwith earlierspectraldata
obtained from ground-basedobservations.

Low dispersionUV spectraobtained in both short and long wavelength
camerasshow strongcontinuumthroughoutthe IUE spectralrange. The
continuum is for the most part featurelesswith the exceptionof a number of
broad absorptionfeatures in the short wavelengthspectrum. These features
might be identifiedwith Si, A1 and Fe absorptionfound in early B or A
luminosityII-III stars7. However, a fully self-consistentmodel that
explains our UV spectra and earlierground-basedphotometricobservationsof
TV Gem has as yet not been fully developed. We discussthe detailscon-
cerningour observationsand analysisof both stars in the sectionsthat
follow.

BX Mon: Observationsand Analysis

Mayall8 determinedthe intrinsiclight period of BX Mon --H.V. I0446
of 1380 days; that designatesthis star as the longestrecordedintrinsic
variable. It is listed in the Catalogueof EmissionLine Stars of
Bidelmanl. IUE obserxationsof BX Mon were obtainedon 31 August 1979 in
low dispersion(-. 6 A spectralresolution)using 60 minute exposuresin
both the short and long wavelengthcameras and the large (lO" x 20")
entrance apertureof the IUE spectrometer. The FES white lightmonitor
obtained a visual magnitude_,ll,which places the luminosityof the primary
star near maximum light at the time of these observations. The observed
extremes in mv are II to 13 magnitudes8. IUE spectra in high dispersion
are not possibleowing to the unreasonablylong exposuresrequiredto
achieve adequatesignal-to-noise.

The short wavelength_spectralr_nge exhibitsboth continuumand line
emissipn. Between 120pA ands2000A the spectrum is characterizedbY 0 I
(1302A), C IV (1548,A 1550 A), Si III] (1892 A) and C Ill] (1906A)
emission (Figurel). The absolute line fluxesmeasured for the strongest
emission lines are shown in Table l, and were obtained usingthe data
reductionroutinesin FORTH developedby Drs. Klingle}mithand F_hey at
NASA/GSFC. The long wavelengthspectralrange (2000 A to 32000 A) is
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generallydominatedby the continuumpf the hot companion. The absorption
feature at 2800 A due to Mg II (2800 A) is found typicallyin 8000 K to
lO,O00 K A type main sequencestars12.

The continuumof the hot companionin the long wavelengthrange was
found to be best approximatedby line blanketedcontinuummodels that
correspondto A type luminosityclass Ill stars around9000 K9. As such,
we adopt an A4 or A5 III star as the companionto BX Mon. From the observed
continuumdistributionwith blanketing,we deduce an EB.v~+O.25 for the
interstellarabsorptionll. A lower limit of distancecan be approximated
if we supposethat the A type companionhas a visualmagnitudesufficiently
less than the primaryat minimum so that it does not dominatethe integrated
light of the system. Accordingly,as an upper limit we assumemv >-14,
whose correspondingabsolutemagnitudeMV from Allen (ref. 12) is MV =
+2.5, appropriatefor an A4 type III star. A lower limit of distance
d _1400 pc is obtainedassumingthese conditions.

The high-excitationlines emission observedin the 1200 X and 2000
range are, however,more difficultto explainin terms of emissionfrom

either an M4 or A main sequencestar. It is unlikelythat the high excita-tion line emissionsuch as C IV (1548 X, 1550 A)is explainedby a late A
type star becausethe appearanceof such lines is inconsistentwith UV
spectraof AI V to A7 IV-V stars obtainedby OAO-212. Analysisof
Ca II K line core emission in A1 V to A7 IV-V stars suggestsalso that
chromosphericemission is minimal for these spectraltypes"°. Chromo-
sphericemissionfrom the cool M4 giant atmosphereis also unlikelybecause
IUE spectraobtainedof late type M variablesand Mira variablesand even M
supergiantssuggest only a warm chromosphere(TchromosDhere~10,000 K) is
present±,,lo; that is not sufficientlyionizingto producethe observed
line emission.

It is likely that mass loss commonlyassociatedwith late type
M stars16 forms a circumstellarshell aroundthe binary system. Photo-
excitation and recombinationprocessesare not appropriatehere for exciting
circumstellarmaterial becausemiddle A type main sequencestars cannot
provide sufficientUV ionizingphotonsin the circumstellarenvelopevolume
(r _1015 cm) to explainthe observedexcitation. As such, invokinga form
of mechanicalheatingthroughshock waves, tidal interactionor possibly
strong stellarmagneticfields providesspeculativeideas for model develop-
ment. More spectrain the visual,UV are requiredto developa general
model that encompassesall aspectsof emissionfrom this interestingobject.

UV Observationsof TV Gen = HD42475

IUE observationsof TV Gem were obtained in low dispersionusing 10 minute
exposuresin both short and long wavelengthcamerason November 25, 1979.
Observationswere repeated in the same manner on January16, 1980, with
essentiallysimilar results. The spectrumis characterizedby strong
continuumthat is devoidof emissionlines but which has broad absorption
features in the short wavelengthspectralrangeo(Figureo2).The absorptions
featuresobs_rved are centered at 1400 A, 1540 A, 1604 A. The low resolu-
tion of _-6 A makes precise identificationof these absorptionfeatures

P
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difficult. The feature centered around 1400 _ is possibly explained by the
presence ofoSi IV lines that appear blended in low dispersion spectra.
3i IV 1400 A absorption would typify middle B type main sequence stars 17
as we have found by examining low resolution spectra from OAO-2 of early
standard stars. The features identified in Figure 2 persist even if the
spectra from different observing dates are averaged together, supporting the
view that these features are real and not detector noise.

Broad features, centered at 1540 _ and 1604 _, that are _ x_ 40 _ and
x_20 _ in width, respectively, are Also observed. The feature at 1604

is possibly explained as Fe III (1601 A, 1611 A, UVlIS) or AI III (1600 -
1612 A) observed in early 0 and B stars. Generally, B5 to B7 V stars
exhibit weak absorption due _o Si IV and C IVI7. As seen here the
features at 1400 A and 1604 AoWOUldbe consistent with this interpretation.
However, the feature at 1540 A cannot be attributed to C IV because its
measured wavelength (even in low resolution) is tpo far r_moved from the
rest wavelengths of the resonance doublets (1548 A, 1550 A). It could,
however, be possibly attributed to Fe III.

Observations that were kindly made available to us by Dr. J.B. Oke using
the multi-channel scanner of the 200-inch telescope confirms the _xistence
of large excess continuum in the near UV between 3500 A and 3200 A. The
visible spectrum is characterized by normal MI or MOtype I supergiant
emission in which TiO bands dominate the absorption. Early spectral classi-
fication work has classified TV Gemas a normal MI supergiant. Emission in
the hydrogen lines, ionized and neutral species are not observed 22,
although^this star is noteworthy for having particularly weak Ca II H and K
emission _z .

Comparing the general properties of the UV continuum in the short
wavelength range with OAO-2 spectra of standard early type stars, we find
that the continuum might be explained if the companion is a B9 - A1 (Ill-IV)
star. An 0 or B supergiant is immediately ruled out because such a star
would be sufficiently luminous that earlier spectral classification obser-
vations 20, 21 would have detected its presence. On the other extreme, a
bright white dwarf or central star of a planetary nebula is also ruled out
because the expected UV continuum flux based on stellar parameters 12 would
be_102 times less than observed for a star at 1400 pc.

Based on the adopted distance to TV Gem, a B9 Ill-IV star would have an
apparent magnitude uncorrected for absorption mV : 10.35 (absorption
correctedmV = 9.15), and correspondingabsolutemagnitudeMV = -2.8 and
bolometricmagnitudeMboI = 3.4. Similarly,an A1 Ill - IV type would
have mV = 9.8 uncorrectedfor absorption(absorptioncorrectedmv =
-2.8) and Mbol = -3.1.

If we postulatethe existenceof a B9 or AI III- IV type star the dif-
ference in apparentmagnitudebetweenthe two stars is 2 to 3 magnitudes.
Although the MI supergiantis brighterthan a B9 or A1 star by approximately
3 magnitudes,one would expect that some level of flux contributionto the
photometriccolor of the MI be made by an early companion,especiallyin the
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blue band. For TV GemB-V = +2.3023 and B-V = +2.2524 , that is con-
sistent with typical photometric colors of normal M1 supergiants. For
comparison an MI supergiant similar to TV Gemsuch a_Sco (MI lab + B), but
known to have an early companion, has a B-V : +1.82 L,. The difference in
magnitudes between primary and secondary in _Sco is _M _ 4. Accordingly,
the B-V color index of TV Gemdoes not indicate an abnormally high level of
blue continuum but in fact suggests a color typical of only a cool star,
even though the estimated magnitude difference between primary and secondary
is_M_3. The B-V in TV Gemshould in fact be even smaller than that
measured for _Sco on the basis of this analysis.

An observational test to determine if in fact an early companion is
associated with TV Gemwould consist of a UBVmonitoring program. TV Gem
has a variable designation SRc and as such has irregular excursions in
luminosity that occur on timescales of 182 days. If the companion is
assumed to have constant brightness, the B-V color index of TV Gemshould
become smaller as the M supergiant approaches minimum light. If a corre-
lation is established between color and brightness in the manner described
here, this would argue in favor of the presence of an early companion star.

An alternative explanation of our IUE data might be found if we consider
the presence of a high energy source in close proximity to the extended
envelope of the MI supergiant. If F_or even F_a_-l, then Fv_u-2.
This frequency dependence is similar to the properties of the high energy
spectrum ±n soft X-rays observed in well known X-ray sources. Emission
from an accretion disc onto a compact object may thus explain the strong
UV continuum. This interpretation immediately explains the general absence
of blue excess in the spectrum of TV Gemand an absence of strong or weak
emission lines. As such, an accretion disk could form from the material
exchanged from the extended envelope of the primary that falls on a condensed
object that would heat infalling material to temperatures in the 106 K range.
Observations in the visual, UV and X-rays are required to further discern
the properties of the companion to TV Gem.
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"_able

ABSOLUTELINE INTENSITIES

(x 10-13 ergs cm-2 s-1 )

Ion Laboratory _(A) BX Mon

N V 1239, 1243 0.6

0 I+si II 1302, 1309 1.B

0 V 1371 O.l

Si IV + ]394, 1401 0.2
0 IV] 1403, 1407

N IV] 1487

C IV 1548, 1550 1.2

[Ne IV] 1575 0.2

He II 1640 0.7

0 III] 1661, 1666 0.7

N III] 1749, 1750, 1752, 1754 I.]

Si III] 1892 0.5

C III] 1907, 1909 0.5
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Figure1
IUE lowdispersionspectrumof BX Mon obtainedusingthe I0" x 20" entrance
aperture. Exposuresof 60 minuteswere usedin bothlongand short
wavelengthcameras. Continuumand absorptionfeaturesin the LWR range
are explainedby a middleA main sequencestar. Highexcitationemission
linesdominatethe shortwavelengthrange.
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Figure 2
UV spectrum of TV Gem between 1200X and 3200X obtained in low dispersion
using lO minute exposures. Continuum dereddened (dashed line) by applying
an E_ = +0.40 to the observed continuum. The error bars denote the
uncertainty of the dereddened continuum if we consider the extreme
uncertainty of the measured continuum level.
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ABSTRACT

Observations of the system ; Aurigae made around primary eclipse are
described, and their significance is discussed in a preliminary fashion.

THE OBSERVATIONS

High-dispersion, long- and short-wavelength spectra of the atmospheric
eclipsing binary star system ; Aurigae (K2II + B8V) have been obtained during
a total of ten observing sessions between September 15, 1979 and March 31,

1980. Dates of observations, corresponding to numbered positions in Figure I

are: (I) Sept. 15, (2) Nov. i, (3) Nov. 13, (4) Nov. 15, (S) Nov. 18,

(6) Nov. 22, (7) Dec. 16, [8) Jan. 29, (9) Feb. 29, (10) Mar. 31. The

spectrum obtained on Sept. 15 resembles the spectrum of a single late B-star

[e.g. the B6V star o Eri). Atmospheric effects are present and increasing

in strength between Nov. i and Nov. 18. To a first approximation, the

spectrum changes appear to be an increase in strength and number of

absorption lines with changes in the undisturbed continuum being small. This

point requires further study, however. On Nov. 22, the B star had passed

second contact, and the spectrum of the system was a pure emission line

spectrum. At mid-eclipse, on Dec. 16 the spectrum had changed but little

from its appearance on Nov. 22. The egress spectra obtained in 1980 are not

significantly different in appearance from the ingress spectra. A study of
differences in detail is being undertaken now. Figure 2 shows the behavior

of the Fe II resonance lines in three spectra.

Ionic spectra which are increasing in strength during the ingress
atmospheric phases of the eclipse include: A111, A1 III, Cr II, Mn II,
Fe I (?), Pe II, Fe III, Co II and Ni II. The Fe I identification remains

in doubt since only multiplet UV7 has been identified so far.

DISCUSSION

The analysis of the _ Aurigae spectra are still being carried out, and
these remarks should be considered preliminary. The volume of data to be
digested turns out to be quite large, and final conclusions will not be
available for some time.
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First, there is no evidence for the chromosphere of the K supergiant in

our spectra--except possibly in the Mg II resonance lines. Estimates, based

on observations of single late type supergiants by other IUE observers, led

us to conclude that the exposure times required to obtain high dispersion

spectra at mid-eclipse were in excess of 30 hours. In fact, good exposures

were obtained in 2-3 hours. Furthermore, as mentioned earlier, the spectrum

changed only slightly in the month from second contact to mid-eclipse,

indicating that the physical conditions in the emitting plasma did not chang_

significantly in the time period. We conclude that the emitting plasma is

illuminated by the B star even at mid-eclipse. Thus, the emission probably

arises in an extensive circumstellar shell which would appear as a bright

"halo" around the supergiant.

In addition to the lines due to once ionized metals, both C IV and Si IV

lines are present in the spectra. _le C IV lines are typical of the two

ions, (see Figure 3). Each of the C IV lines consist of a narrow line, near

the rest wavelength, and a redward shifted broad line. The narrow line

remains unchanged through the sequence of spectra, while the broad line

increases in strength into the eclipse, and decreases in strength through

egress, though its strength during egress is greater than during ingress.

The narrow, constant component of each line is probably interstellar, while

the broad component may be formed in a shock wave where the winds from the

two stars interact. Highly turbulent motion in the shock wave can account for

the breadth of the line profiles. We will continue to follow the system

around its orbit to test this hypothesis.
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VISIBLE-BAND AND IUE OBSERVATIONS OF _.SAGITTARII

J. D. Dorren

Biruni Observatory, Shiraz, Iran

E. F. Guinan and E. M. Sion

Villanova University, Villanova, Pennsylvania 19085

ABSTRACT

Hol and u band photometry and IUE spectra of the binary system _ Sagittarii are
discussed. An estimate of mass-loss is made from the observed P Cygni profiles.

There are indications of pulsation in the supergiant B8 component.

We present Ha intermediate and narrow-band and u photometry, and IUE obser-

vations of the bright (V = +3.86) variable star _ Sagittarii (HR 6812, HD 166937,
ADS 1169A), spectral classification B8 Iap.

Spectroscopic observations (ref. 1) suggest that it is a single-line spectroscopic
binary of period 180.45 days with a highly eccentric (e = 0.4) orbit and with a mass

function of f(m) = 2.64M$, indicating massive components. The relative orbit is
shown in figure 1 in which the supergiant component is at superior conjunction, de-

fining 0.0 phase. Morgan and Elvey (ref. 2) reported an eclipse of the B8 supergiant

lasting about 20 days with a depth of _ 0, 14 mag in V and constant light lasting _ 11

days. The phase of minimum light coincided with the spectroscopic phase of super-

ior conjunction of the B8 star.

No further photoelectric observations were available until those of Dorren and

Guinan (ref. 3) at Biruni and Villanova Observatories, near the expected time of su-

perior and inferior conjunctions of the B8 Ia component. Following Copernicus and
IUE observations by Plavec and Polidan (refs. 4, 5), in which a UV flux excess indi-

cated the presence of a component hotter than the B8 star, photometric observations
in Hot intermediate and narrow-band and u filters made by Dorren at Biruni in June

1979 near the expected time of eclipse of the B8 star revealed light variations simi-

lar to those found by Morgan and Elvey, suggesting an eclipse lasting about 20 days

with depths of ~ 0.14 mag at k 6585 and ,_ 0.16 mag at £3500. Observations at Villa-
nova were made by Dorren and Guinan during September and October 1979 at k 6585
to investigate the possible eclipse of the unseen component. A decrease in light of
about 0.08 mag was observed with minimum light occurring at orbital phase 0.57,
calculated from the revised ephemeris:

T (Min) = JD2444035.0 + 180d55.E

which corresponds to the time of light minimum observed near the expected superior
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conjunction of the B8 supergiant component. The phase (0.57) at which the above min-

imum occurs is consistent with the published values of e and _ . However, observa-

tions made in April and May 1980 starting at orbital phase 0.75 reveal departures

from the expected outside-eclipse light variation and suggest the presence of minima

near phases 0.75 and 0.83. A re-evaluation of the photometric data indicates the t,os-
sibility of a __26 day quasi-sinusoidal light variation with an amplitude of about 0ml 0.

This 26 day light variation is of the order of magnitude expected for the radial pulsa-

tion of the B8 supergiant star (ref. 6). It is interesting to note that there is evidence

for pulsation in fl Orionis, which is of the identical spectral type (ref. 7). A check
star, 16 Sgr was observed on 6 nights; no variation above the level of 0. 015 mag was
found, indicating that the comparison star 15 Sgr is not the source of the variations.

The situation is further complicated by the fact that in an orbit of such high eccentli-
city and with a supergiant component of radius _ 70Re, most of the light variation near

zero orbital phase would be caused by the tidal distortion of the B8 star (see fig. 1::,
while an eclipse of the unseen component would be responsible for the light variation

at phase' 0.57, if the orbital inclination is sufficiently high for eclipses to occur.

The ),6585 light curve is shown in figure 2, together with the Ho_ index, form{,d

in the usual way. The index is about 0.1 mag more negative than typical values for
stars of the same spectral type, indicating strong Hoz emission which, however,

shows little phase dependence.

Two IUE high-dispersion long and short wave and 4 low-dispersion long and
short wave IUE spectra were obtained by Guinan and Sion on 1979 September 24 UT

near the expected time of the eclipse of the unseen component. The flux distribution,

de-reddened using EB_ V = 0.3 derived from the &2200 feature (ref. 8) is shown in
figure 3 together with fluxes at B and V wavelengths (ref. 9), and in the infrared out

to 10 tt (ref. 10). A fit using a model atmosphere of Kurucz (ref. 11) with blanketing
included for the filtered wavelengths, corresponding to a temperature of Teff =

11,000°K and log g = 2.0, appropriate for a B8 supergiant, is also shown. The agree-
ment is good and there is no indication of flux due to a hotter component, suggesting

that if the system does contain such a component, it was either eclipsed at the time of

the IUE observations, or the smaller component contributes little to the total light of
the system. A better fit to the data could be obtained by assuming Teff = 11,500°K

and log g = 2.0 using the Kurucz model. It is interesting to note the strong deviations

from black body behaviour in ultraviolet wavelengths exhibited by a star of a tempera-
ture appropriate for the B8 Ia spectral type. The Copernicus spectra* show the pres-

ence of a hot component at orbital phases 0.9 and 0.26 and its absence at phase 0.5.
Skylab UV observations at phase 0.7 (ref. 12) indicate a maximum flux level ofO

~ 1.7 X 10-10ergs cm-2sec-lA -1 at h 1800, a factor of ~ 6 below the observations

shown in figure 3.

The UV spectrum of t_ Sgr is extremely rich in absorption lines. Those of Fe II

are most numerous, and the MgII h ahd k lines are particularly prominent. Line_ of

* Polidan, R.S., private communication
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FeI, SiII, AIIII, MgI, HeI, HeII and Lyman ¢g have also been identified. P Cygni

profiles of SiIV and C IV with blue-shifted absorption components are also present,
indicating mass loss, and are shown in figure 4. From the measured terminal velo-

city, v_ ~ 200 km/sec, obtained from the shortward edge of the absorption profile,
an upper limit of lVImax = 1.0 X 10-5M_/yr for the mass loss rate is found using the

relation (ref. 13):

where c is the velocity of light and the total luminosity, L, of the B8 star is
,,_ 3.7 X 1038ergs/sec if an absolute bolometrie magnitude of,--7.7 is assumed.

Such a rate would only be achieved if there were a complete transfer of photon mo-
mentum in a single scattering. Thus the mass loss estimate that we obtained is con-

sistent with the value of 1.1 X 10-6Mo/yr obtained by Barlow and Cohen (ref. 10}
from IR observations.

The presence of a 9m9 B3 companion of pSgr, if assumed to be a main-sequence

star, provides a second estimate of the B8 star's luminosity, yielding a value close
to the above, and hence a distance to the system of ,,,1 kpc.

Photoelectric observations of /_Sgr are continuing in an effort to improve our

understanding of this unusual binary system. A more detailed study will be published
with Plaveo and Polidan.
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DISCUSSION - PART Ill

Dupree: In the Capella system, it is somewhat puzzling that the surface
flux of N V is ~I00 times the solar flux when attributed to the B

component and yet your evaluation (A_res and Linsky, 1980 preprint) of
the rotational velocity is 40 km s-_ for Capella B. Such large surface

fluxes have been found in late type systems, but only in stars with 3 to

4 times this rotational velocity.

Stencel: Your solar-like ratio of Hg IIk to Ca II K (2.5) is interesting

in light of a ratio nearer unity for supergiants where strong circumstellar

absorption could hide preferentially Hg II emission. But GL 380 showed
0.4 for the ratio--is it known for strong flaring?

Giampapa: GL 380 is not known for flaring, although it has a high RHW

value and H absorption, indicating a "strong" chromosphere. The oth-4r

point is that the Ca II and Hg II data were not obtained simultaneously.

Due to change in stellar surface features, the comparison of line ratios
for lines observed at different times can be deceptive.

Jordan: What are the underlying assumptions in your expression for the

area of active regions?

Giampapa: I) The star with the largest Rh_ (or R_) value is assumed to
have A _ I; the star with the smallest is"Essumed'To have A _ 0; 2) the

character of an active region is the same for all the stars, and 3) the
center-to-limb behavior of the Hg II lines (or Ca II lines) is ignored.

The resulting filling factor is a relative value, not an absolute measure-
ment.

Bb_m-Vitense: I agree that on the main sequence we cannot say with

certainty whether an A9 V star has less chromospheric emission than

observed for F0 V star, however, I feel sure that an F2 II star has much

less emission line flux than an F2 V star, otherwise we would have seen
it.

Linsky: It is clear that the ultraviolet continuum flux is rising

rapidly for stars earlier than F0 and that the surface fluxes of chromo-

spheric and transitio n region emission lines vary from star to star due
to rotational velocity, magnetic fields, and perhaps luminosity differences.

For these reasons, our inability to "see" an emission llne spectrum

against the ultraviolet continuum will not be a precise line in the H-R

diagram but rather a diffuse line which may well depend on luminosity.

-I
Hartmann: We have seen a 40 km s shift between S I and 0 1 in eTrA

(K4 III). Will the possibility of wind expansion affect the escape

probability of your optical depth method?

Jordan: Yes. This is just an initial exploration of the problem.

Linsky: There is likely an interstellar absorption component to the _ Tau

0 1 1302,4,6 lines. Since the radial velocity of _Tau is
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z50 km/s, would not the observed asymmetry and self-reversal of these

lines be due to interstellar absorption rather than be intrinsic to the

star itself (due to velocity gradients)?

Jordan: Probably both effects occur.

Linsky: Do you see any lines formed at temperatures hotter than C II
in _Tau_ and how certain is your identification of the C II
%1335 multiplet?

Jordan: We find no emission lines hotter than C II in eTau. We believe
that the identification of C II 1335 is real because the C II

%1335/C II %2334 ratio is temperature dependent and indicates a tempera-
ture of 7000K. If the 1335 feature is a blend, then the ratio would
indicate an even cooler temperature.

Ahmad: There is no reason to expect the coronal temperature to be

higher in the presence of a stellar wind. In the case of the sun, in

fact, the corona is cooler where there is a solar wind. Presumably
energy that would have otherwise been thermalized has become kinetic
energy of the wind.

Underhill: Following a remark by Thomas regarding selecting 2 parameters
by which to characterize models of the outer atmosphere, it seems to me

to be unprofitable to model the outer atmosphere of a star by deliberately
taking the mass flux an__dthe local temperature as separable and

independent free parameters. The temperature and rate of outflow of

matter are the results of some physical process which is occurring.

Both are most likely determined by one physical process and they are
unlikely to be independent of each other. Suitable parameters are the

absolute value of the local magnetic field and the amplitude of local

differential motions. These together put into the equations of physics
probably will determine the local rate of mass outflow and the local

electron temperature. Integration over the surface of the star will
result in a model of what we see.

Underhill: Do any of these F supergiants have an IR excess in the I to

I0 _m region? That might be the wavelength region where the extra

non-radiative energy which you mention is finally radiated.

Stencel: IR excess around the most luminous F supergiants would not

surprise me since objects like p Cas are known to undergo shell episodes
(Sargent, 1962) and probably have massive stellar winds. The non-radiative

cooling is not occurring in mid-UV emission lines_ so if there is any,

it might come out in the IR, presuming weak far-UV emission (Parsons,
1979).

Mullan: The velocity dividing line discovered by Stencel and Mullan is

Mg II asymmetry data coincides with the Linsky-Haisch temperature dividing
line. Selection effects discussed by Ayres are not relevant ill our

sample because the Mg II emission shows no gradients in intensity where
we see asymmetry gradient. I conclude that cool coronal and rapid mass
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loss are correlated. Hence, rapid coronal mass loss is driven by a

non-thermal mechanism in late type giants.

Stencel: Certainly possible. Although we can make a preliminary cor-

rection to the effect of Hg II interstellar absorption on the stellar

emission asymmetry, selection effects may be important in the current

sample. The anisotropy of the local ISM dictates that a more complete

sky survey be performed, with cool stars.

B_hm-Vitense: I do not think that there is a discrepancy with convection

theory. The stars actually will not produce as much acoustic noise as

your graph indicates. In those calculations it is usually not considered

that for early F supergiants the convection zones become thinner than

the size of the assumed mixing length and that therefore a smaller

mixing length should be chosen which leads to a thinner convection zone,

etc. until a radiative equilibrium zone with very low convective veloci-
ties is obtained.

Stencel: Yes, the calculations of Ulmschneider and modifications by

Bohn (1980) involve several simplifying assumptions. The thinness of F

star "Hg II and Ca II Chromospheres" will be dictated by the larger

photospheric temperatures, compared to G stars, by virtue of higher .
ionization.

Plavec: Can you say a little bit more about the hot component in CH

Cygni?

Wing: I think the type must be 0 or very early B, but we haven't really

attempted a classification yet because we don't have an adequate grid of

standard stars. Anyway, there's no doubt that it's a star. Also, it's

so bright that I would guess that it's on or close to the main sequence,
rather than sub-luminous.

Guinan: Did you detect any variations in the spectra of CH Cyg with
time?

Wing: We observed CH Cygni three times at high resolution in the long-

wavelength region on 1979 February 12, 1979 Hay 26, and 1980 January 30.

We did not notice any change in magnitude, but the Fe II emission was

definitely weaker on the third plate than on the other two.

Garrison: What was the phase of Mira?

Wing: The spectrum shown was taken in January 1980, when the primary

was about two months past maximum light.

Keyes: Our ground-based spectrophotometric scanner observations from

Lick show that the He II %4686, if present, is quite weak, as are theBowen fluorescence O III lines around 3300 . However, the He I lines

typical of symbiotic stars, e.g., %%6678, 5876, 4471 and others are

easily detected. Therefore_ it seems that a temperature for the hot

subdwarf was obtained assuming that the nebular continuum we see at long

wavelengths is due to photoionization. However, we should point out that
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Merrill saw [Fe VII] emission and very likely even a I00,000 K star

cannot ionize Fe VI. Quite possibly, x-ray emission from the region
close to the subdwarf is responsible for the Fe VI ionization as well as

the nebular continuum (accretion disk).

Sion: What is the outburst history of RW HyR? If, as it seems from

your spectra, the hot component is a white dwarf or degenerate star t the

accretion rate you quote could allow steady nuclear burning which could

produce both your estimated x-ray luminosity and the observed UV continuum.

Kafatos: As far as I know, this object has not shown any outbursts. It

is very similar in the line identifiable to CI Cygni.

Underhill: Many Fe V lines are seen in the spectra of 04, 05 stars. Do
you see any Fe I near 1400 _?

Kafatos: The only strong lines near 1400 _ are the Si IV, 0 IV], S IV]

multiplets. If any Fe lines are there, they are weak.

Wallerstein: The historic ligh t curve of R Aqr by Mattei and Allen

shows that when thehot source was bright the long period variable was

s_ppressed at maximum. Such a phenomenon could be due to a single star,

rather than a binary system, in which magnetic activity excites the

chromosphere during an outburst. The maximum of the long period variable
component could be suppressed when the magnetic field prevents the LPV
pulsation.

Keyes: Concerning the observed arc minute scale shell just mentioned by

Slovak. Could this be the result of past outburst history, perhaps

planetary nebulae shell-like ejection by the star that now appears as a
hot subdwarf? Maybe someone who is more familiar with this system and
planetary nebular evolution could comment.

Kafatos: Very possibly so.

Sion: I should like to point out that according to calculations by B.

Pac_ynski and myself, if the accretion rate onto the white dwarf exceeds

10-" Mo/yr., the white dwarf will evolve into a red giant structure on a

very short time scale, which will produce a shell interacting strongly

with the red giant companion in a symbiotic system.

Wing: The values you quoted for B-V and E(B-V) for TY Gem suggest that

the color excess is based on 'normal' colors for the M supergiant. If

the hot star contributes to B, the reddening may be somewhat larger_ as

suggested by your 2200 _ feature. I can't help remarking on the simi-

larity of BX Mon to o Cet, the spectrum of which I showed earlier today.

In both cases, the hot star is surprisingly red, and faint in the short-

wavelength region, considering its effectiveness in exciting a bright,
high-excitation nebular.

Bolton: You used the phrase "tidal interactions" when discussing possible

sources of energy input for the UV spectrum. Is this a catch Phrase or
do you have a specific physical model in mind?
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Michalitsianos: It is a catch phrase; very little is known about the

physical properties of BX Hon, i.e., the orbit of the hot companion
observed here with IUE is not known. As such, models developed for this

star system at this point can only be speculative. I can say, however,
that the high excitation emission lines that are observed are not produced
by photo-excitation of the A III-IV stars because such a star does not
produce sufficient ionizing photons.

Rakos: Bx Mon also shows interstellar absorption in the region of 2200

_. Have you corrected the observations for this absorption?

Michalitsianos: Yes, Bx Mon exhibits interstellar absorption as indicated

by the broad depression of the continuum at %2200 _. The long wavelength

continuum 2000-3200_ shown in this viewgraph does not have interstellar

reddening removed, although we have done so when we lifted the line

blanketed continuum for a A Ill-IV, 9000K main-sequence star hour models
of Kurucz.

Slovak: How great a disparity is there between the observed (de-reddened)

IUE data as compared to the extrapolation of the Mlab optical flux
distribution into the ultraviolet at % = 2000 _?

Michalitsianos: The hot companion to TV Gem^contributes approximately

60% of the total emission continuum at %3000_. The continuum energy

distribution is declining very rapidly from the M0-MI lab supergiant,

and its contribution in the IUE spectral range is negligible in comparison

to the hot companion in this system.

Kafatos: I would like to say that we had an "Einstein" observing program

accepted and hopefully these x-ray observations will help us decide

whether the UV continuum is due to a late B type star or an accretion
disk.

Guinan: Have you compared your IUE spectra of _ Aur with those published

for 32 Cygni by Stencel?

Chapman: No.
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THE IMPACT OF IUE ON BINARY STAR STUDIES

Mirek J. Plavec

Department of Astronomy, University of California, Los Angeles

ABSTRACT

Every class of binary stars can be profitably studied with IUE, and for
most of them, such observations are of fundamental importance, and have already

yielded extremely valuable results or new surprising facts. Some of the clas-
ses are discussed in this review.

Atmospheric structure and wind complexes can now be studied, in binaries

with supergiant components, much farther out in resonance lines of abundant

elements. A hot component was discovered in _ Sagittarii, and will probably

enable us to study the atmosphere of the B8 la supergiant. A B-type companion

to the F2 la supergiant in e Aurigae was found. A significant portion of the

spectrum of the secondary component in B Lyrae was isolated. A whole class

of objects was discovered with the IUE (the W Serpentis stars), bearing res-

emblance to B Lyrae. The radiation from these objects is probably largely

produced in the process of accretion. Strong emission lines with P Cygni

profiles suggest mass outflow driven by an induced stellar wind. A hot com-

panion of the helium-rich star u Sagittarii was also discovered. We know now,

thanks to IUE, that many if not all symbiotic stars are binaries, in which the

hot component is probably a hot subdwarf. Valuable studies of the energy dis-

tribution and of gas streams in Algols are also reported.

INTRODUCTION

' I would like to claim that the two years of existence of IUE opened a

new epoch in the studies of binary stars. Although the inevitable delay be-

tween observation and publication makes me unaware of many important results,

what I know already demonstrates the enormous impact of IUE. The day when
there will be no IUE or when we get no more time on it, will put us back by

decades, and will be analogous to Galileo Galilei giving up his telescope and

going back to Tycho Brahe's quadrants. Thus I should actually start and con-

clude my talk by first thanking every one and all of those who contributed to
the success of the mission, and then immediately by asking: When do we start

talking seriously about IUE 2, 3 , ...n?

One proof of the enormous impact of IUE will be the fact that I will not

be able to cover some important types of binary stars. My talk should be con-

sidered as a supplement to the excellent review talk given last year by Dupree

(ref. i). She talked mostly about binary stars with active chromospheres, i.e.

the RS CVn stars and W UMa stars, also about X-ray binaries. I must also

relegate the important topic of the cataclysmic variables and novae to other

speakers at this symposium. Also, I can only mention here the increasing dis-
coveries of blue companions to supergiants and Cepheids (ref. 31). They prom-

ise better determination of properties; however, they may imply much more.
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AURIGAE AND VV CEPHEI STARS

Continuum observations in the ultraviolet are particularly important
for binary systems in which one component is a hot star, much smaller in size

than its mate. A classical example are the systems _ Aurigae, 31Cygni, 32

Cygni, and VV Cephei. The optical spectrum is completely dominated by a red
supergiant, spectral type approximately K4 Ib for the first three, and M2 la

for VV Cep. Hopelessly blended with the numerous deep metallic lines and/or

molecular bands of the superglant are the few lines signalling the presence o5

a B star: the Balmer lines and occasionally one or two He I lines. In VV Cep,

the only signature of the hot component are (presumably) co-moving emission
components of the Balmer Ha and HB lines. No wonder, then, that both the

geometrical properties, masses etc. as well as the nature of the hot compan-
ions are poorly known.

These supergiant systems are famous because of the atmospheric eclipses:

as the hot star travels behind the enormously extended atmosphere of the super-
giant, the attenuated gases leave their imprints in the spectrum, and we can

study individual layers in the atmosphere of a late-type supergiant. Orbital

periods are very long, typically several years, so the eclipses are rare.

The system with the longest period (20 years) among them, VV Cephei, was for-

tunately emerging out of eclipse in 1978-79, thereby providing a unique op-

portunity for IUE observers. Hagen et al. (ref. 2), Faraggiana and Selvelli"

(ref. 3, 4) and Dupree et al. (ref. i) have already presented first reports

on the sequence of changes in the emerging B spectrum. The system with the

best determined elements, _ Aurigae, had an eclipse at the end of 1979. I

am confident that it was also adequately covered.

Far ultraviolet observations of the atmospheric eclipses are ndt mere

supplements to optical data. Since many strong resonance lines are observable
in the UV, the outermost atmospheric strata can be traced out much farther
into space, and valuable data on stellar winds can be assembled. This also

implies that such observations are not restricted to the phases adjacent to

the eclipses. Thus, Stencel, Bernat and Kondo (ref. 5) have succesfully stud-

ied 31 and 32 Cygni outside eclipse. The B star is of course not a passive

test particle: it directly influences the supergiant atmosphere by its ioniz-

ing radiation. The system of 32 Cygni, poorly known from optical studies, is

becoming a most interesting case, since the stars are closer together and the

B star appears to move relatively deep in the outer layers of its mate. Sten-

cel et al. (ref. 5) find a hot turbulent region near the B star, and a cooler,

calmer, but faster moving wind farther out of the system. The spectrum is

very rich in prominent emission lines with P Cygni profiles.

I would like to emphasize that the atmospheric eclipses should not be our

only concern and interest in the supergiant systems. The supergiant stage of

stellar evolution is short, so each such system provides a sensitive test of
our theories of single star evolution or of double star evolution -- whichever

prevails. Because of larger separations, the above-mentioned systems are more
likely to follow the single star precept, but we will not be sure until the

hot components are adequately observed. Are they really normal main sequence
stars? Are their massescompatible with the observed differential evolution

in the system? Only refined far UV studies can tell.
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SAGITTARII

One more question comes to mind in connection with the supergiant systems:

Is the combination of a K-M supergiant and a B main-sequence star the only pos-

sible? Does nature discriminate against other combinations, or is it merely

observational selection? Our most recent discovery in _ Sagittarii speaks in

favor of the observational bias. _ Sagittarii is a luminous and fairly hot
supergiant, B8 la. It is a 4th magnitude star in spite of a I mag. interstel-

lar extinction. It has long been known as a single-line spectroscopic binary

with a period of almost exactly half a year. I was most enticed by its large

mass function, f(m) = 2.64. If the mass of the supergiant lies between I0 and

20 solar masses, as is _easonable to assume, then the invisible component must

have 8 - 13 solar masses. When our search at Lick Observatory for a red com-

ponent failed, we started observations in the far UV, using first Copernicus

and then IUE. When a few lines suggesting a hot component showed on Coperni-

cus spectra and the IUE short-wavelength spectrum appeared composite, some

predictions could be made. Fortunately, the system is eclipsing. Elvey de-

tected a shallow eclipse in 1938, but this must be the secondary eclipse, with

the hot component in front. Therefore I predicted (ref. 6) that there must

occur another and deeper eclipse in September 1979. The eclipse was indeed

observed by Polidan with Copernicus, and by Guinan et al. optically and with
the IUE.

Fig. 1 shows my August 1978 spectrum compared with Guinan's eclipse spec-

trum from September 1979. Their subtraction provides the beautiful spectrum

shown in Fig. 2. This, then, is a newly discovered star, hot and bright, yet

never before seen or even suspected. I think Fig. 2 is a tribute to the pho-

tometric qualities of IUE: we don't get a field of scattered points, but rather

a nice, well-defined spectrum° From the steep slope of the continuum, and

also from the absorption lines present, we conclude that the star is quite hot,

about 40,000 K, and is probably an 0 star. Because of its mass, it should be

a main-sequnce object. Yet, again, let's be cautious until good radial vel-

ocities in the UV are obtainable and made. We will then have also a very val-

uable mass determination of a B8 la supergiant. If the companion does not

have the characteristics we anticipate, we may also have another evolutionary
puzzle.

The importance of this discovery may be more far-reaching. Polidan found
additional absorption lines in the combined spectrum about a month before the

September 1979 eclipse: therefore we may well have another atmospheric eclips_

but this time we will probe the outer atmosphere of a much hotter supergiant

than in the "classical" _ Aurigae stars. The B8 la supergiant in _ Sgr is

known to have a pronounced stellar wind: here is the opportunity to study the

wind complex.

e AURIGAE

Also unique among the supergiant systems is e Aurigae, in which we see

an F2 la supergiant periodically eclipsed every 27 years by -- well, by some-

thing! The eclipse appears total but cannot be total since the same F2 spec-

trum remains. The depth of the eclipse appears to be essentially independent

of the wavelength. Many exotic models have been invented ad hoc to explain
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the nature of the mysterious invisible body, including of course an accreting

black hole (which is still possible). Hack (ref. 7) suggested in 1961 that

the eclipse is caused by a very extended atmosphere of a B star, which itself

is not directly involved in the eclipses. Shortly after the Successful launch

of IUE, Hack and Selvelli (ref. 8) announced that they had indeed discovered a

B star spectrum in the far UV. They find that the star has a temperature of

about 15,000 K, radius only about 2 R® , and bolometric magnitude 7 mag. lower

than the F supergiant. The star appears to be either at, or more likely some-
what below, the main sequence.

Thus, possibly, we now know the components in e Aurigae. However, con-

siderable puzzle remains. The eclipse model postulates a huge ionized enve-

lope, some 850 R@ in radius around the B star, to act as a neutral semi-trans-
parent screen. No other ordinary and modest B5 V star is known to have such

an entourage. Hack and Selvelli suggest that perhaps the envelope was pro-

duced in a nova outburst of the hot star. However, postnovae do not look like
B5 V stars. Moreover, what would be then the role of the F star? Just an

accidental silent witness? More likely the supergiant plays a vital role in
the system, perhaps as the ultimate source of the circumstellar material.

Huang's (ref. 9) plausible idea of the eclipse being caused by a flat disk

seen edge-on can be supplemented by the assumption that the disk is formed

by accretion on the B star of the material flowing from the F star. This

idea, already suggested by Morris (ref. I0) runs into the difficulty that the

F star, although large (probably about 175 R_), is still very much smaller

than its critical Roche lobe. Perhaps we do not understand all the ways a

supergiant can lose mass efficiently.

Although my remark will probably not apply to e Aurigae, I would like to

caution that a thick disk can considerably obscure the light of the central

star, but also that accretion can produce B-type continua simulating a genuine
star. In any case, I bet that the next eclipse, due to start in 1982, will

confront us with many surprises in s Aurigae -- if only we have an ultraviolet

telescope then to watch the surprises.

B LYRAE AND THE W SERPENTIS STARS

I would now like to elaborate on my last remark by discussing the group

of interacting binaries which I named the W Serpentis stars. It includes B

Lyrae, SX Cas, RX Cas, W Crucis, V 367 Cygni, AR Pavonis, and W Serpentis.

These are eclipsing binaries of intermediate periods (13 to 605 days), long

known for puzzling anomalies and discrepancies in their light- and radial

velocity curves. B Lyrae was observed by Hack et al. (ref. II, 12) with Co-

pernicus, and found to have a unique spectrum in the far UV, essentially a

set of strong emission lines° Optical observations also signal unusual prop-

erties. The only visible spectrum is B8 II, but the corresponding star is

less massive than the other one which di_ys a continuum (since we observe

two fairly deep eclipses) but no recognizable spectral lines. Again, special

models were invoked, with or without a black hole, with the plausible justifi-

cation that an extraordinary phenomenon calls for an extraordinary model.

Unique objects are undesirable. Almost in all cases, some vital informa-

tion is not accessible, and cannot be replaced by inference from related objects
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if these do not exist. Fortunately, we now know that B Lyrae is not a unique

object. Within one short run in August 1978, R. H. Koch and myself found six

binaries that have the same type of emission-line spectra in the far UV. This

was not an accidental discovery. An important characteristic of the W Serpen-

tis objects is the presence of emission lines (usually Balmer lines, in W
Ser also He I, Fe II) in the optical spectra, which are incompatible with the

optical continuum, belonging to a star too cool (A - G) to excite the emis-
sions. It was therefore natural to search for a hotter source in the ultra-

violet with the IUE. What we found (ref. 13) actually created more problems

than it solved, but also showed that these systems are of considerable impor-

tance for our understanding of binary st_r evolution, in particular for under-

standing of accretion.

AR Pavonis appears to be a system showing the characteristics of both the

W Ser stars and the symbiotic variables, and displays emissions of both types.

For the other five stars, the far UV spectrum of W Serpentis shown in Fig. 3

is fairly representative. We observe strong emission lines of fairly highly

ionized elements (N V, C IV, Si IV, Si III, Fe III, A1 III, etc.) superposed

on a relatively hot continuum. To trace this continuum is not easy because

of the many emission lines, as well as deep depressions caused by severely

blended strong absorptions. In W Ser, SX Cas, and _ Lyr the estimated tem-

perature of this continuum is, within about 1,000 K, approximately 11,500 K.

•he optically observed spectrum in B Lyrae (B8 II) corresponds to this temper-

ature, but the observed hotter components in SX Cas (A6 III) and W Ser (F5 II)

are much cooler than that. Only shortward of about 4,000 _, our scans made at

Lick Observatory with the IDS scanner indicate a weak contribution apparently

coming from the hotter source seen in the UV. The ultraviolet continuum must

therefore come from a region much smaller than the observed stellar surfaces.

Where in the system is the hot region located? Observations of the pri-

mary eclipse of SX Cas in February 1979 gave the answer. Optically, the

eclipse is total. As my Lick scans confirm, the ordinarily seen A6 III disap-

pears completely and is replaced by the spectrum of the cooler component,

G5 III. At the same time, the UV hot continuum disappears as well, while the

emission line spectrum is virtually unaffected (Fig. 4). Thus the hot source

coincides with the hotter component in the system. W Ser, SX Cas, RX Cas,
and B Lyrae are known to display unusually large period fluctuations and some

other symptoms of rapid mass transfer. I suggest that the observed UV phenom-

ena are associated with accretion. The hotter stars seen optically are the

gainers in this process. Matter flows toward them from the secondary star,

which presumably fills is critical Roche lobe. In an ordinary, short-period

Algol semi-detached system (such as U Sge, U Cep), the stream impacts directly

on the surface of the gainer. The W Ser systems have larger dimensions, so

that the gainer is a smaller target, and the on-flowing material carries too

much angular momentum. Therefore anaccretion disk forms first (Fig. 5) and

only its viscosity can eventually bring the gas particles inward to the sur-

face of the accreting star. Thus we have an analogy to the accretion disks in

the cataclysmic variables, but in the W Ser stars the accretion occurs on non-

degenerate stars. We can scale the available models for cataclysmic variables

(ref. 14) to estimate what kind of phenomena we will get in our case (ref. 15,

16). Most gravitational energy is released as a rule in a thin boundary layer

between the disk and the surface of the accreting star, and I suggest that this
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is the source of the UV continuum. In cataclysmic variables, the gainer is

a white dwarf, so that this boundary lies at the bottom of a deep potential

well, and soft X-ray emission is most likely to be emitted by it. For our

main-sequence gainers, the potential well is much shallower, and the boundary

layer will radiate most in the ultraviolet. In SX Cas, the observed temper-

ature of the UV continuum requires a mass transfer rate of about 2 x 10-6 Me/

year, a plausible number which can easily be surpassed in other systems if

the "case B" mass transfer is assumed. A preliminary estimate of the semi-

thickness of the boundary layer indicates that it is about 0.06 of the radius

of the A6 III gainer. However, more spherically symmetrical, albeit less

dense clouds of gas must surround the gainer, since the observed A6 III spectrum

is actually a shell spectrum, i.e. the absorption lines are formed in an ex-

tended atmosphere. In the model I am considering, the gainer has a radius of

6 R® , and the accretion disk could in principle extend as far as some 30 Re.
There is no evidence, however, that a uniform, optically thick disk extends

to any such distance, although some material is probably there and occasion-

ally acts as a semi-transparentscreen during secondary eclipses, which were

in the past reported to be unusually long, but of variable duration. It is,

however, also true that scaling up the models for cataclysmic binaries leads

to a disk which'is always geometrically quite thin perpendicularly to the or-

bital plane, with a maximum thickness of about only I/I0 of the star's radius;

_een edge-on, such a disk would hardly cause more than a perturbation of the

eclipse light curve. With the IDS scanner of the Lick Observatory, we also ob-

served an "ultraviolet excess" of light shortward of 4000 _ at the time when

the UV continuum was eclipsed. I think this radiation may come from a "warm

spot" formed at a place where the in-coming stream meets a denser accumula-

tion of matter in the outer parts of the disk. This would then he an analogy

of the famous "hot spot" observed in the cataclysmic variables, but on a more

modest scale, because of the shallowness of the corresponding potential well

and low density of the disk.

Now, let us ask the important question: How different is _ Lyrae
from, say, SX Cas? I can see two important but not fundamental dlfferences.

Firstly, the accretion disk in 8 Lyrae is really optically thick to a large

distance from its center of gravity, and actually simulates a star (perhaps

it is also geometrically much thicker than some theorists are willing to per-

mit). All this may be due simply to a higher rate of mass transfer_ which
may well be two orders of magnitude larger than in SX Cas, i.e. I0-_ M©/y or
thereabouts. Secondly, 8 Lyrae has an unusually hot and bright loser, which

is a B8 II star. The integrated spectrum of the individual segments of the
accretion disk cannot be assigned one definite temperature, but each spectral

region can well be represented by one value of temperature -- and this tem-

perature happens to be (accidentally) very close to that of the B8 II star

probably everywhere in the accessible spectral range (ref. 12). The B8 II

star appears to dominate the spectrum everywhere and the eclipses are only par-

tial. Yet the case for the detection of the spectrum of the secondary (which

may contain, in addition to the disk, also the genuine contribution of the ac--

creting star if it is not completely hidden in the disk) is not hopeless_

and some progress has already been made. Fig. 6 shows two spectra of B Lyrae,

the lower taken during a secondary eclipse (i.e. the eclipse of the disk by

the B8 II star). We notice a substantial reduction in the flux everywhere

except in the region about 1700 - 2200 _, which behaves as if there were no
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eclipse. The only reasonable explanation I have is that this region of the

spectrum is dominated by overlapping emission lines of Fe III, which are

formed well outside the eclipsed space. If we now subtract the two spectra, we

get (Fig. 7) a fairly well-defined flat spectrum corresponding to a temper-
ature near 10,700 K. I think this is the very first look anyone ever had at

the spectrum of the mysterious secondary object in _ Lyrae.

Perhaps we will also soon be able to better understand the mysterious

absence of the absorption lines of the secondary from the spectrum of B Lyrae,
a mystery augmented by the fact that this object is more massive than the vis-

ible B8 star. We know now that probably everywhere in the accessible spectrum,

the continuum temperature of the disk is about the same, or only slightly low-

er, than the effective temperature of the B8 star. Thus the "effective spec-

tral type" along the spectrum is always about B8 - AI. The very few strong

lines appropriate for such a spectral type in the optical region must be badly

blended with the same lines from the B8 star, and often, as in the case of the

Balmer and He I lines, contaminated by emission on top of that. However, in

the far ultraviolet many more lines are available, and I hope that our high-

dispersion observations at the primary eclipse, planned for this summer, may

well bring us a positive identification. The lines may, of course, be serious-

ly washed out by the differential Keplerian rotation of the disk.

The strong emission lines observed in B Lyrae and all the W Serpentis

stars remain a puzzle. As we saw in SX Cas (and also W Ser), their intensity

is not significantly altered at any phase of the eclipse of the gainer. I

wish we had the same coverage for secondary eclipses, and the rest of the or-

bital phases. Without this direct evidence, it is tempting to associatethe

emissions with the loser, which in SX Cas and RX Cas is a G giant. Since the

observed emissions are indeed similar to those seen for example in Capella,

a chromospheric origin appears the most simple and plausible explanation. Yet

there are serious objections to this hypothesis. The power radiated in the

emission lines in SX Cas is several solar luminosities, i.e. much larger than

in Capella or in the considerably more powerful chromospheric emitters such

as are the RS CVn stars (ref. I, 17). Again, the N V line competes in strength

with the C IV line or is stronger, while in giant chromospheres and in all

parts of the transition region in the Sun, the C IV line is much stronger

(ref. 18). And then, while it is easy to identify the potential carriers of

the chromospheres in systems with G-type secondaries, where is this star in

B Lyrae and V 367 Cygni?

Perhaps the most decisive argument comes from high-dispersion observa-

tions of _ Lyrae. All emission lines are found to have pronounced P Cygni pro-
files (Fig. 8), although the low-dispersion spectra hardly show any indication

of this (Fig. 9) -- Which is a serious warning. The absorption components in-

dicate an outflow at a velocity of about 150 km/s. Absence of most intercom-

bination lines suggest a fairly high density of the line-forming region, N

3 X 1012 cm3. The presence of fairly pronounced absorption components de-e
mands a fairly large depth of the formation region, and lack of eclipses sug-

gests that this region is far outside the space actually swept by the two com-

ponents. Radial velocity observations in B Lyrae with Copernicus (ref, 11,12)
show that the emission lines, with a very few possible exceptions, do not par-

ticipate in the orbital motion of either component. I think that both
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the kinetic energy of this stellar wind as well as the ionization energy are

ultimately derived from the gravitational energy released during accretion,
but the actual mechanism of conversion is not clear. Is ionization maintained

by a flux of soft X rays, generated in shocks near the gainer? Or is the

ionization collisional? The amount of energy involved is not negligible, and

the process must affect the evolution of the system: The line emitting region

seems to have fairly high density (Ne = 3 x 1012 cm-3), it must be fairly

thick to produce the absorption components, and its radius must also be quite

large, as it probably lies outside the binary system. If the outflow is iso-

tropic, fairly large mass loss from the system is indicated.

In order to test the isotropy of the outflow, I attempted to find non-

eclipsing counterparts of the W Serpentis stars. The picture of the system
may actually be less complex when it is not viewed edge-on, with all the ac-.

creting material obscuring the view of the accreting star. It may indeed be

true that the gainer is easier to see, but the consequence appears to be that

the emission lines are much less conspicuous against a stronger continuous

background. The problem is also: how to find the non-eclipsing counterpart,s?

I examined Be stars and shell stars with spectral peculiarities. The stars
KX And (HD 218393), HD 51480, and HD 72754 were indeed found to have UV con -°

tinua (including deep absorptions) quite similar to that of SX Cas. At least

some emissions are weakly present (ref. 19). The last one of the three was

reported to be similar to B Lyrae by Thackeray and Hutchings (ref. 20). The

former two yield a good support to the claim made by myself and my collabor -o
ators (Harmanec, K_f_, Peters, Polidan - ref. 21) that a good model for Be and

shell stars is that of an interacting binary system.

u SAGITTARII

Another bizarre object is v Sagittarii, a single-line spectroscopic bi.-

nary with a period of 138 days. Its spectrum is famous for being extremely

helium-rich and hydrogen-poor. A similar but much milder overabundance of he-

lium with respect to hydrogen has been suspected in B Lyrae, and a certain

degree of similarity indeed exists between these two objects. The invisible

companion to the helium-rich star in u Sagittarii was detected with the IUE

(Duvignau et al., ref. 22; Hack et al., ref. 23), and is probably an 09 V

star. Rather surprisingly, the UV spectrum shows no emission lines. Possi--

bly the period of rapid mass transfer is definitely over in this system.

SYMBIOTIC STARS

This is a group of objects for which, in spite of considerable effort_,
non-controversial models were simply not possible without far ultraviolet

observations. In the optical region, one observes a late-type continuum

with superposed emission lines (H, He I, He II, C III, N III, some forbidden

lines), which require a radiation source much, much hotter than the M or K star

whose absorption spectrum is seen. Single and binary star models were pro-

posed, and indeed both types may still apply, since the group is probably not

homogeneous. However, the spectra I saw (AG Peg, AR Pav -- ref. 24, 25) and

those described in literature (R Aqr, RW Hya -- ref. 26) fully justify their

inclusion in my talk, since these stars are binaries. Z And (ref. 27) can
almost certainly be added. This in itself solves a fundamental problem that
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worried astrophysicists for decades.

An inspection of Fig. 1 in the paper by Keyes and Plavec in this volume

shows why the dilemma was practically insolvable without UV spectroscopy: in
the optical region, the hot component contributes virtually no radiation. The

small "ultraviolet excess", and veiling of absorption lines observed short-

ward of about 5000 _, is more likely due to free-free (and farther shortward

to bound-free)radiation of hydrogen than to the hot component itself. (In-

cidentally, the figure I referred to is another testimony to the very good

photometric performance of the IUE spectrographs. The diagram combines fluxes

measured by the IDS scanner at the 120-inch Shane telescope of the Lick Obser-

vatory with those obtained with the IUE: they match without any artificial
adjustment.)

In the symbiotics, the late-type component is an M or K giant, not a su-

pergiant as in the _ Aurigae stars. Yet it dominates the optical spectrum,

since the hot component is most likely a subdwarf, well below the main sequ-

ence. Bath (ref. 28) suggested that the UV continua may actually be due to

the narrow accretion transition regions on ordinary stars, described here in

the section on the W Serpentis stars. I think there is good evidence that

the hot components are genuine hot subdwarfs; I believe that they may be pro-
ducts of case B mass transfer, and that the symbiotics are systems in which

a little bit of cosmic justice takes place and the companion, which initially
stole part of its mate's mass, is returning it back. Whether the subdwarf can

accomodate it is questionable. In AG Pegasi, Keyes and myself find a similar-

ity between the hot star and a WR nucleuS of a planetary nebula. However, in

the past century, the outflow from this star resembled rather an extremely

slow nova. Yet it is likely that the ultimate source of activity is the M2

III companion. That star seems now to be much smaller than its Roche lobe.

Apparently we do not understand a lot in this case, but when we eventually
will, we may know much more about subdwarfs, planetary nebulae, and novae.

THE ALGOLS

In the large class of the semi-detached binaries of the Algol type, the

optical spectrum is dominated by the hotter, main-sequence component, but a

certain degree of contamination (small in short period systems like U Sge and

U Cep, large in longer-period ones like AW Peg and V 356 Sgr) does exist, due
to the presence of the subgiant or giant, later-type loser. The IUE obser-

vations made so far by me and others will yield a more reliable determination

of effective temperatures. Yet a more far-reaching program is conceivable.

If the high-dispersion spectra are good enough to permit spectrum synthesis,

one could profitably study the abundances and decide if they are anomalous.

At the end of mass transfer, the loser's outer layers contain material partly
processed inside the star. Will it be transferred to the gainer, or dispersed

into space? We need this information badly in order to decide how much matter

is transferred and how much escapes from the system.

Some more direct evidence on this topic is already being obtained from

detailed studies of line profiles, which enable us to study gas streaming in

the system (Kondo et al., ref. 29; Peters and Polidan, ref. 30). They claim

that little is accreted; rather, the gas escapes or falls back on the loser.
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CONCLUSIONS

Although the IUE satellite has been operating for two years only, and

the bulk of results and discoveries is still not accessible, it is already

obvious that studies of all kinds of close binaries will profit considerably.

I have surveyed only a limited number of types of interacting binaries. I

have devoted a fairly large amount of available space to such exotic objects

like B Lyrae, e Aurigae, u Sagittarii, W Serpentis, AG Pegasi, and AR Pa_-
onis. I do not think that they are bizarre oddities far outside the main-

stream of astrophysical research. On the contrary: each of them is trying to

tell us something very important about the fundamental problems of stellar
structure and evolution.

Let me formulate just a few of these problems.

(I) Do stellar black holes exist at all? If they do, do they play any

significant role in stellar population -- or are the____yjust bizarre freaks?
Lyrae, e Aurigae, and u Sagittarii were often in the past invoked as

possible systems harboring a black hole. This hypothesis is all but aban-

doned now, but we should be quite sure.

(2) How are extremely helium-rich, hydrogen-poor atmospheres produced in
binary systems? B Lyrae and, above all, _ Sagittarii hold clues to the an-

swer. Mass loss should bring He-rich material to the surface, but the-theory

does not predict any such extreme helium overabundance as has been reported

for u Sagittarii.

(3) How are the subdwarfs in symbiotic stars related to cataclysmic

variables? What actually determines that a star flares up as a dwarf nova
(like Z And) or as a slow nova (like AG Peg)? Why is the subdwarf in AG

Pegasi similar to the WR nuclei of planetary nebulae, and if it is, why did
it flare up in the past century as a nova? How is a planetary nebula formed

in a binary system? And why are all nuclei of planetary nebulae of the WN

type, not WC (but AG Peg does not seem to be a pure WN)?
(4) The supergiant in e Aur and the giant in AG Peg are much smaller than

their respective Roche lobes, and Reimers' formula gives a small rate of mass

loss through stellar wind, too. Yet they appear to be the ultimate sources

of all the activity and circumstellar mass. Where are we wrong?

(5) A fundamental problem of evolution with mass transfer in interacting

binaries: How do the gainers accrete mass? Do they really swell all the way

to their respective Roche lobes, as current theories postulate? Or can they

reject the surplus material and drive it out of the system? How is it done?

By exceeding locally the Eddington limit? Or does an instability occur, due

to rapid rotation of the gainer? The W Serpentis stars, and B Lyrae in par-

ticular, promise all the answers.

After years of considerable effort, analyses based on optical data could

not yield answers to our queries about the exotic systems, and in many cases

a dead end was reached. IUE opened new horizons in a very dramatic way. We

have now many more facts, and still more are within our reach. We should not

retreat now. We need continued ultraviolet observations, perhaps even more

refined: we need spectrograms calibrated both for spectrophotometry and for

radial velocity work, and at sufficiently high dispersion.
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Fig. 1.: IUE spectra of u Sagittarii taken at'primary eclipse and outside it. 

Ln 

Fig. 2.: Reconstructed spectrum of the hot component in p Sagittarii. 
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Fig. 5. : A schematic model of the system SX Cassiopeae showing disk accretion.
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Fig. 6.: Ultraviolet spectra of B Lyrae, taken in secondary eclipse and

outside eclipse.
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Fig. 7. : Reconstructed spectrum of the secondary component in B Lyrae.

54 -- Si IV (1) Si IV (1) BETA LYRAE 13-JUL-79
1393.8 1402.8 SWP5783

48- I

42- lj. ?

-- ? 7 i 0 OV]

0 iV] 0 IV] _1404.8 ,
_:) 30- 1397.2 1401.16

z ._ 1399;8 0 IV ] FeIII (47)
u. 18 -- _ 1399i_]u I 1407.39 1412.8

6

O -

-5 I I , , I , I, , I , I , I ,,, ,'1 , 1 , I ,, ,I ,
1386 1390 1394 1398 1402 1406 1410 1414 1418 1422 1426

WAVELENGTH (_.)

Fig. 8. : High-dispersion spectra of _ Lyrae show P Cygni profiles of emission
lines.

412



BETA LYRAE
13-JUL-79

10

o8
O

x 6

2

1200 1300 1400 1500 1600 1700 1800 1900

WAVELENGTH (A)

Fig. 9.: Low disPersion spectrum of 8 Lyrae shows virtually no trace of the

P Cygni character of the emissions.

413





HIGHLY=EVOLVED STARS

Sara R. Heap

Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

I. INTRODUCTION

According to current theories of stellar evolution, any star will

eventually exhaust all its sources of energy, and become some kind of compact

object--a degenerate dwarf, neutron star, or black hole. A low-mass red

giant slowly loses its outer envelope, while its core continues to contract,

and it ultimately becomes a degenerate dwarf. A higher-mass red giant under-

goes a supernova event, in which the core coliapses while the outer layers

explode. For a star of intermediate mass, the explosion is powerful enough

to drive off the envelope, and the core becomes a neutron star. For a massive

star, however, the explosion is not strong enough to eject the whole envelope,

and the star as a whole collapses further to form a black hole.

These three end-products of stellar evolution--the degenerate dwarf,
neutron star, and black hole--and their immediate precursors manifest them-
selves in the optical region of the spectrum in a wide variety of species
(Table 1), which I've classified according to whether they are isolated stars
(i.e. single or non-interacting), components of close interacting binaries, or

members of a globular cluster.

Table I

Optical Appearance of Highly-Evolved Stars

Observable Species
_J i i t . l,! . i . , H

Interacting Globular

Compact Object Isolated Binary Cluster
• i I . , . r _

Black Hole X-Ray Binary ?

Neutron Star Pulsar X-Ray Binary ?

Degenerate Dwarf White Dwarf Cataclysmic

Variable
Planetary AM Her Object

Sub-dwarf Sco X-1 Like Object
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Isolated Stars

While isolated black holes, by definition, are unobservable, isolated

neutron stars reveal themselves as pulsars, and isolated degenerate stars a1"e

visible as white dwarfs. Their immediate precursors are believed to be the

central stars of planetary nebulae and other hot "sub.dwarfs".

Interacting Binaries

The compact objects manifest themselves most spectacularly, if indirectly,

as components of close, interacting binaries. Although the compact component

is usually invisible, it makes its presence unmistakably clear in accretlng

material supplied by a nearby "normal" companion, which for one reason or

another (stellar wind, rotational ejection, Roche-lobe overflow) is losing

mass. In the process of infall to the compact object, gravitational energy

is released, some of which goes into radiation. It is not surprising, then,

that all these classes of interacting binaries involving compact objects have

among them at least some objects which are known to be X-ray sources. Cyg X-I

is, perhaps, the most promising black-hole candidate. So far, there are at

least 14 binaries having neutron-star companions known. There are several

types of binaries containing degenerate dwarfs of which I have listed only a

few. One type is the cataclysmic variables (novae, dwarf novae and recurrent

novae) in which the compact companion is a non-magnetic or weakly magnetic

degenerate dwarf. Another type, of which AM Her is the most spectacuIar

example, is the binaries which contain a highly magnetic degenerate dwarf.

Globular Clusters

We'may consider globular clusters as a class of "highly evolved" stars
not only because they contain stars which have exhausted or are close to
exhausting their nuclear fuels but also because they are highly evolved
dynamically, with relaxation leading to very dense central regions. It is now

known that globular clusters are a class of objects in which x-ray emission is

two orders of magnitude more probable than for the galaxy as a whole (ref. I].
Why this should be so is unclear, but this finding has led to suggestions of

massive black-holes accreting stellar debris (ref. 2) and formation of

binaries by capture of field stars (ref. I) in the dense central regions.

All these objects are of great interest, not only because they define the
end-points of stellar evolution, but also because they represent extreme
physical conditions not accessible in a terrestrial laboratory. As a rule,
however, these objects are faint optically, either due to low intrinsic
luminosity or interstellar extinction, and until 1978 they were observed in the
ultraviolet only with medium or wide-band filters, if at all. The IUH,
however, has made it possible to obtain ultraviolet spectra of these
objects, sometimes even at high dispersion. The most promising black hole
candidate, Cyg X-l, has been observed by IUH with full phase coverage. The
IUH has also observed the Crab pulsar; and I believe that Benvenuti will be

reporting the results later in this symposium. The IUB has been used to
obtain ultraviolet phase coverage of six x-ray binaries believed to contain
neutron-star companions, and it has observed dozens of degenerate and pre-
degenerate stars.
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Because studies of highly evolved stars with the IUE have been so

extensive, this review can only describe a few selected topics. The appendix
to this review, however, contains a list of published observations up until
the time of this review.

2. PRE-DEGENERATE HOT STARS

Elemental Abundances

Beyond the statement that subluminous, blue stars are highly-evolved

solar-mass stars in the process of becoming white dwarfs, the evolutionary
status of these stars is not well understood; nor is it understood even to

what extent these objects form a homogeneous group. Part of the problem is

that their physical parameters, particularly surface chemical compositions,
have not been determined. Analyses of IUE spectra, which contain strong

lines of important elements such as He, C, N and Si, however, are now proving

useful in defining the parameters for these stars. The lion's share of the

work has been carried by the Kiel astronomers (ref. 3-6), who have performed

non-LTE analyses of IUE spectra of hot sub-dwarfs. Their results for three
sdO stars are shown in Table II. Note that in all three stars, helium is

enriched, the carbon-to-nitrogen abundance ratio is very low, but the silicon
abundance is normal. As the Kiel group points out, the normal abundance of

silicon, which should well represent the "metals", rules out gravitational

settling of heavy elements. However, the overabundance of nitrogen and helium

and the depletion of carbon indicate prior processing by the CNO-cycle.

Table II

Compositions of 3 sdO Stars

(from Gruschinske, Hunger, Kudritzki, Simon,

Kiel University [ref. 3-6])
L J . ii i i i i i li|i| i. i

Abundances Relative to Sun
Ji

He C N Si
i .i i .

HD 49798 2.8 0.4 25 1.4

HD 127493 3.0 0.02 8 1.4

BD +75°325 3.0 0.4 12 I.I
i , , ., i , J i i i i i.ira ii

Stellar Winds

One of the first discoveries made with the IUE (ref. 7) was that the UV

spectra of some hot, subluminous stars have P Cygni lines, indicating high-

velocity mass-loss very much like that inferred in young OB stars. Subsequent

analyses of the profiles of these lines, as obtained from high-dispersion

IUE spectra, have confirmed the detailed similarities of winds in these two

groups of stars, which are at opposite extremes of stellar evolution. It is
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now clear that these hot, subluminous stars serve as an excellent laboratory
for studying the properties of high-velocity winds, because they provide a

broad range of stellar parameters, like effective temperature or escape
velocity, to correlate with wind characteristics. Figure 1 shows a temper-
ature-gravity plot of some subluminous 0 stars which have been Observed by
IUE. Note that most of these stars undergoing high-velocity mass loss fall
in a well-defined region bounded by particular_/_ratios. These boundaries
are the same asihose for young massive 0 stars (cf. ref. 8). Also as with

young 0 stars, there is a general trend of increasing terminal velocity of the
wind with stellar escape velocity. These similarities suggest that mass-loss
in hot stars is an atmospheric phenomenon, totally unrelated to interior
structure, which of course must be very different for young OB stars and

these old, subluminous stars. The correlation of the presence of the wind
with_/Mand the correlation of terminal to escape velocity are consistent
with radiation-driven mass loss (cf. ref. 9).

There is one outstanding exception to the empirical criterion above for
the presence of a wind. This exception is the central star of NGC 2392,
whose visual spectrum indicates an O6f spectral type but whose ultraviolet

spectrum is continuous. I have been pondering this fact for two years now
and still have no good explanation.

The wind of one particular star, the nucleus of NG 6543, has been

studied intensively. The spectral type of the central star is midway between

Of and WR. Analysis of high-dispersion profiles of_the wind lines (shown in

Figure 2) indicates a rate of mass loss, _7 x 10-'M=/yr., which exceeds
the theoretical maximum mass-loss rate given by radiation-driven winds.

Analysis of the profiles as obtained from low-dispersion spectra via a clever

technique devised by Castor, Lutz and Seaton (ref. !0) yields similar results

for this central star. I mention this technique, since it was developed
specifically for IUE low-dispersion spectra, and shouldprove exceedingly

useful for studying winds in stars too faint for high-dispersion spectroscopy.

3. DEGENERATE STARS

X-Ray Emission in White Dwarfs

About five years ago, it was discovered (ref. i) that Sirius B, the

white-dwarf component of Sirius, is a soft x-ray source. One explanation

(ref. 12, 13) was that soft x-ray radiation produced in the deep photosphere

could escape from a metal-deficient atmosphere and would yield the observed
fluxes, provided that the effective temperature exceeds 32000°K, Another

explanation was that coronal emission from an envelope surrounding Sirius A
or Sirius B provides the observed x-rays. These possibilities are ruled out
by B_hm-Vitense et al.'s (ref. 14) IUE observations which show that (1) the

UV absolute flux distribution yields an effective temperature of only 26,000°K
which is too low for the production of soft x-rays, and (2) no emission lines
indicative of a chromosphere or corona are present in the UV spectrum of

either Sirius A or Sirius B, at least at low dispersion. Escape of deep photo-
spheric emission does appear to be valid, however, for another hot white dwarf,

HZ 45, which is the brightest ultra-soft-x-ray source in the sky. Oke and
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Greenstein's (ref. 13) IUE observations showed that its Teff_,_ 60000°K,
making it one of the hottest white dwarfs known.

The Nature of Cataclysmic Variables (Novae, Recurrent Novae, Dwarf Novae)

It is generally believed that cataclysmic variables are close binaries in

which the red component fills its Roche-lobe and transfers matter, via an

accretion disk, onto a white dwarf (ref. 16). The nature of the outburst

differs among the cataclysmic variables: in novae and recurrent novae, the

outburst is associated with unstable nuclear burning of hydrogen-rich material
accreted on the surface of the white dwarf, while in dwarf novae, the outburst

is associated with a sudden increase in mass trahsfer from the red dwarf.

Observations during the first two years of operation of the IUE have

yielded a great wealth of data concerning cataclysmic variables, including
observations of several novae at outburst. Rather than reviewing all these

data, I shall use studies of Nova Cyg 1978 and the dwarf nova, Ex Hya, as

examples of IUE investigations. Later on in this symposium, we shall be

hearing more on cataclysmic variables (Lambert et al. "Old Novae"; Hartmann

and Raymond, "Cataclysmic Variables"; Fabbiano et al., "Accreting Degenerate
Dwarfs").

Nova Cygni 1978

Nova Cyg 1978 is the first nova for which detailed ultraviolet observa-

tions have been obtained, and it is a tribute to the flexibility of IUE

operations, that it could start observing this fast nova within a day after
it reached (visual) maximum. Figure 3 shows the development of the far-

ultraviolet spectrum of Nova Cyg (ref. 17) from its initial absorption-line

phase to its nebular phase six months later. Once in the nebular phase, the
great strength of the nitrogen lines, NV _1240, NIV] _1486, NIII] _1751,

becomes apparent. Seaton (ref. 18) has made a preliminary abundance analysis
of the nebula and finds a nitrogen-to-carbon abundance ratio of two, that is,

nearly seven times the solar ratio. This enrichment of nitrogen implies that

some of the ejected material has undergone hydrogen burning by the CNO cycle,

as predicted by the nuclear-runaway theory (ref. 19). Also consistent with
the nuclear-runaway theory is the finding of near-constancy of the bolometric

luminosity during visual decline (ref. 20).

Ex Hya

Ex Hya is a dwarf nova having a binary period of 99 minutes and an

interval between outbursts of about 15 months. It also happens to be a soft

x-ray source. Figure 4 shows the flux distribution of Ex Hya during
quiescence as obtained by simultaneous IUE and ground-based observations

(ref. 21). It is immediately apparent from this figure how crucial IUE

observations are in extending spectral coverage of dwarf novae into the

region of maximum flux, and hence, in making adequate comparisons with
theoretical flux distributions. Bath, Whelan, and Pringle (ref. 21) find

that the observed flux distribution of Ex Hya is consistent with that of an

optically thick accretion disk. This fit is a fruitful comparison with

theory, in that important physical properties may then be derived, including
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the rate of mass transfer, M _ 1 x 10 M° per year, as well as physical and
geometrical properties of the disk (R..._ 50 R,, TI.. (R = 1.36 R,) =
34800°K, W...(r_50 R,) = 3700°K) a_S_he white dW_K(T, = 70000°K). Frola
a comparis_S_f the soft x-ray flux with the estimated bolametric flux, Bath

et al. infer that the x-ray flux is generated in the "boundary layer" where
disk material skids to a landing on the stellar surface.

Accretion Onto Magnetic White Dwarfs - AM Her

Earlier I mentioned that there appear to be two types of accreting
degenerate dwarfs - the non-magnetic or weakly magnetic stars, to which most
of the cataclysmic variables belong, and the highly magnetic degenerate dwarfs,

of which AM Her is a spectacular example. In the case of AM Her, the picture
of accretion is one in which material flows from the red dwarf onto the magne-

tosphere of the white dwarf and spirals in to the stellar surface at the

magnetic poles. The predicted spectrum of accretion (ref. 22) onto magnetic

degenerate dwarfs differs from that of non-magnetic dwarfs in the presence of

strong ultraviolet cyclotron radiation associated with strong magnetic field_..

Intense UV emission, however, is not observed in AM Her, according to

Raymond et al. (ref. 23), a finding which presents a severe difficulty for

the theory of polar accretion. Later on in this symposium, we shall be

hearing from Dr. Chanmugan more about this discrepancy and possible resolutiens.

4. X-RAY BINARIES

In the past two years, an international team of IUE observers has

succeeded in observing all known x-ray binaries within the limits of sensiti-

vity of the IUE. The appendix summarizes the IUE data obtained on massive

x-ray binaries and low-mass x-ray binaries. _ The distinction among x-ray

binaries according to the mass of the optical primary is also a distinction

in source of accreted material: in the massive x-ray binaries, the primary

generally loses mass via a high-velocity wind, while in the low-mass binaries,

the primary generally loses mass through overflow of its Roche lobe. IUE

observations have provedto be essential in clarifying the properties of the
'wind of the massive x-ray binaries, and they have proved most useful in

identifying the component mechanisms of x-ray emission of low-mass x-ray

binaries, and hence, in clarifying the process of accretion onto the compact

object.

Massive X-Ray Binaries

Perhaps the most outstanding achievement of the IUE observers in studying
massive x-ray binaries has been the detection of phase-dependent variations

in the profiles of unsaturated wind lines such as the Si IV or C IV

resonance doublets. This phase dependence is evident even in low-dispersion

spectra of Cyg X-I, SMC X-I and LMC X-4 (ref. 24), but it shows up most

markedly in the high-dispersion spectra of Vela X-I (ref. 25). Figure 5

shows how the profiles of the Si IV wind lines vary with binary phase. This
variation was first predicted by Hatchett and McCray (ref. 26) as a

consequence of ionization of the wind in the vicinity of the compact object.

McCray's prediction as applied to VelaX-I is illustrated in Figure 6. In
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the vicinity of the x-ray source, material is so highly ionized that there

are no ions capable of scattering stellar photons. Hence at _ = 0.5, when

the highly ionized cavity lies in front of the primary, the high-velocity
shoulder of the absorption component disappears, while the emission component

is relatively unaffected. Conversely, at _ = 0.0, when the ionization cavity

lies behind the primary, the absorption component is unaffected, but the

emissioD component, arising partly in material receding from the observer, is

diminished. This is, indeed, what is actually observed.

5. GLOBULAR CLUSTERS

The IUE has proved useful both in detecting and in locating ultraviolet-
emitting sources in globular clusters. So far,, six globular clusters,
including three known x-ray emitters, have been observed with the IUE (ref.

27). In general, the UV spectra of globulars indicate a mixed stellar content:
the near-UV emission arises from late-type horizontal-branch stars and giants,

while the far-uv emission usually arises from blue horizontal-branch stars.
The ultraviolet properties of blue horizontal-branch stars, both those in
clusters and field stars, will be described later on in this symposium by
Dr. deBoer.

Dupree et al. (ref. 27) find that in the metal-poor globulars (which are
expected to have blue horizontal-branch stars) the ultraviolet surface
brightness becomes more centrally concentrated toward shorter wavelengths, a
finding which suggests that blue horizontal-branch stars are segregated toward
the center. If this concentration is the effect of segregation by mass, it

may be an indication that these stars are binary (ref. 28). If so, this

would be strong support of the binary origin of x-ray emission in globular
clusters.

One of the clusters studied is the metal-rich cluster, NCC 6624, which is

also an x-ray burster. The IUE observations indicate a point-source of far-UV
emission. Since NGC 6624 is a metal-rich cluster, it is unlikely that this

source is a blue horizontal-branch star. Instead, Dupree et al. suggest it

may be the x-ray source itself.

6. SUMMARY AND ACKNOWLEDGEMENTS

Although it must be apparent from this review, let me list explicitly
some of the ways in which the IUE has proved useful in studying highly-

evolved stars. We have seen how important high-dispersion spectra are for

abundance analyses of the sdO stars and for studies of the wind from the

central star of NGC 6543 and the wind from the O-type component of Vela X-I.

We have seen how important low-dispersioN spectra are for absolute spectro-

photometry of the dwarf nova, Ex Hya. We have seen how important angular
resolution is for detecting and locating UV-sources in globular clusters.

Finally, we have seen how important operational flexibility is in documenting
the behavior of Nova Cyg 1978 at outburst. This is a nice set of features to

have on an ultraviolet satellite, features which should assure continued

fruitful research on highly-evolved stars in the future.
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In closing, I would like to thank all those who sent me reports on thei:c

investigations of highly-evolved stars with the IUE. It is on these reports
that this review is based.
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APPENDIX

INFORMAL BIBLIOGRAPHY OF STUDIES OF

HIGHLY-EVOLVED STARS WITH THE IUE

The following appendix lists reports of IUE observations of highly-

evolved stars. Many of these reports were presented either at this symposium

or at the IUE Symposium at Tubingen in March, 1980. In the following

bibliography, the former papers are referenced as "This Volume," while the
latter are referenced as "IUE 2", which is shorthand for "The Second European

IUE Conference," which will be published and made available from: Scientific
and Technical Publications Branch, ESTEC, Postbus 299, 2200 AG Noordwijk,
The Netherlands.
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HOT SUBLUMINOUS STARS

SdO Stars

BD +75 ° 325 ] _Kudrltzki et al. (1980), IUE2

HD 49798 _ 4Gruschinske et al. (1980), IUE2HD 127493 _Simon et al. (1980), IUE2

HD 149382 Baschek, Scholz, and Kudritzkl (1980),
IUE2

HD 205805 Baschek, Scholz, and Kudritzki (1980),
IUE2

BD +37 ° 442 Rossi, Viotti, Darius, and D'Antona
(1980), IUE2

BD +37 ° 1977 D'Antona, Rossi, and Viotti (1980), IUE2

BD +48 ° 1777 D'Antona, Rossi, and Viotti (1980), IUE2

Helium - Rich Stars

t!

BD -9 ° 4395 Heber and Sch,o,nbern (1980), IUE2
BD +I0 ° 2179 Heber and Schonbern (1980), IUE2

Halo Stars

Feige 86 Hack (1979) A&A 7_5, L4

Hack (1980) A&A 8_, L1

HD 192273 Bromage et al. (1980), IUE2

Hack and Stallo (19801, This Volume.

Central Stars of Planetary Nebulae

NGC 6826 Heap (1979), in Mass Loss and Ev of O Typ£
Stars

Abell 78

------ Pottasch and Gauth_er (1980), This Volume.

Horizontal - Branch Stars de Boer (1980), This Volume
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WHITE DWARFS

_irius B DA BBhm-Vitense et al. (1979) Ap. J. 232,
L189

HZ Her DA Greenstein and Oke (1979), Ap. J. 229,
LI41

HZ 21 DO Greenstein and Oke (1979), Ap. J. 229,
LI41

G 186-31 DA Greenstein and Oke (1979), Ap. J. 229,
LI41

G 261-43 DA Greenstein and Oke (1979), Ap. J. 229,
LI41

LP 145-141 C2 Weidemann et al. (1980) A&A 83, LI3

WD Companions to Ball Stars B_hm-Vitense (1980) This Volume

AM Her-LIKE OBJECTS

AM Her Raymond et al. (1979), Ap. J. 230, L95

Tanzi et al. (1980), A&A 83, 270
Chanmugan (1980), This Volume

Fabbiano, Steiner, et al. (1980), This
Volume

AN UMa Hartman (1980), This Volume

2A0311-227 Hartman (1980), This Volume
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CATACLYSMIC VARIABLES

Novae Outburst Reference

Nova Cyg 1978 Sparks, Wu, Holm, and Schiffer (1979),

' Hishlishts in Ast. Vol. 5

Casatella et al. (1979), A&A 74, LI8
Stickland et al. (1979), Preprint
Seaton (1980), IUE2 ("Gaseous Nebulae '_)

HR Del 1967 Hutchings (1979), PASP 91, 661
Duerbeck et al. (1980), IUE2

Delcina - Hacyan et al. (1980), IUE2

Duerbeck and Seitter (1980), IUE2

RR Pic 1967 Duerbeck et al. (1980), IUE2

Duerbeck and Seitter (1980), IUE2

DQ Her Hartmann (1980), This Volume

V603 Agl. 1918 Duerbeck et al. (1980), IUE2

(old Novae) Lambert et al. (1980), This Volume

Recurrent Novae

U Sco 1979 Sparks et al. (1979), in Highlights of
Ast., Vol. 5

WZ Sge 1978 Holm et al. (1979), in Close Binary

Systems, (IAU Symp 88)
Freidjung et al. (1980), IUE2

T CrB 1946 Duerbeck et al. (1980), IUE2

Duerbeck and Seitter (1980), IUE2

Dwarf Novae

SS Cygni Heap et al. (1978), Nature 275, 385
Fabbiano, Steiner et al. (1980), This
Volume

RU Peg Duerbeck and Seitter (1980), IUE2

BV Cen Bath, Pringle, and Whelan (1980), MNRAS
EX Hya 190, 185
VWHyi -- "
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X-RAY BINARIES (Reviewed by Ha_eschlag - Hensberge (1980) IUE2)

Massive X-Ray Binaries

HD 153919 = 1700-37 06.5f Dupree et al. (1978), Nature 27___5,
400

HI) 77581 = Vela X-I B0.51b Dupree et al. (1980), in press

(Ap. J., June 1980)

HD 226868 = Cyg X-I Treves et al. (1980), in press
(Ap. J., June 1980)

Dupree et al. (1978), Nature 275,
400

Sk 160 = SMC X-1 B_I Bonnet - Bida_d et al. (1980), in

press (A&A)

PH-Sk = LMC X-4 08111 Bonnet - Bidaud et al. (1980), in

press (A&A)

X Per = 0352 +30 09.51V-Ve Hammerschlag - Hensberge et al.

(1980), in press (A&A)

He 715 = 1145-61 BIVe Hammerschlag - Hensberge et al.

(1980), in press (A&A)

LSI +61°303 Hutchings (1979), PASP 91, 657

HD 152667 = 1653-46 Hutchings and Dupree (1980), in

press (Ap. J.)
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Low-Mass Binaries

V 818 Sco = Sco X-I Willis et al. (1980), in press (Ap. J., Jun_
1980)

V 1341Cyg = Cyg X-2 Maraschi et al. (1980), preprlnt

HZ Her = Her X-I A-F Gursky et al. (1980), in press (Ap. J., June
i980)

Dupree et al. (1978), Nature 275, 400

AM Her = 1814 +49 MagWD Raymond et al. (1979), Ap. J. 230, L95

Tanzi et al. (1980), A&A 83, 270

Chanmugan (1980), This Volume.

PULSARS-SN

Crab Pulsar Benvenutl et al. (1980), This Volume

SN1979 in MIO0 Panagia (1980), This Volume

GLOBULAR CLUSTERS

M 15 x-ray

NGC 1851 x-ray

NGC 6624 x-ray, metal-rich Dupree et al. (1979), Ap. J. 230, L89
47 Tuc metal-rlch Hartman (1980), in press, ("Galactic

M92 X-Ray Sources", J. Wiley, 1980)
NGC 6752
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Figure I. Temperature-Gravity Diagram for Hot, Subluminous Stars Observed
with the IUE. The right-hand ordinate is the terminal velocity

of the wind predicted for a one-solar-mass star. Stars whose
UV-spectra show P Cygni profiles indicating a high velocity wind

are denoted by dots, while those showing no evidence for a wind

are denoted by crosses. Those stars for which the atmospheric

parameters have been estimated by a full non-LTE analysis
(ref. 3-6) are denoted by circles. The boundary line to the

forbidden region is the Eddington limit for a one solar-mass

star. The boundary llne to the stable region is an extrapolation

of the boundary found for young OB stars (ref. 8).
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NGC 6543 = SWP 3324
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Figure 2. Wind Profiles in the Spectrumof the Central Star of NGC 6543.
The image from which these normalizedprofileswere derivedhas
been reprocessedto correctfor earlierITF errors.
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SPECTRUM DISCUSSED IN THE TEXT. BOTH THESE LINES HAVE BEEN
DISPLACED DOWNWARDS SO THAT THEY DO NOT INTERFERE WITH
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Figure 5. Si IV lines as a function of phase from high dispersion spectra.
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the appearance of a high velocity absorption feature at phase
0.52 (reproduced from ref. 25).
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the right of the q = 1 locus (reproduced from ref. 25).
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IUE SPECTRA OF A FLARE IN HR 5110:

A FLARING RS CVn OR ALGOL SYSTEM? 1

Theodore Simon and Jeffrey L. Linsky 2'3

loint Institute for Laboratory Astrophysics
National Bureau of Standards and University of Colorado

Francis H. Schiffer 1114

Computer Sciences Corporation

ABSTRACT

Ultraviolet spectra of the RS CVn-type binary system HR 5110 have been

obtained with IUE on May 31, 1979 during a period of intense radio flaring of
this star. High temperature transition region lines_are present, but are not
enhanced above oSserved quiescent strengths. The similarities of HR 5110 to
the Algol system, AS Eri, suggest that the 1979 May-June flare may involve
mass exchange rather than annihilation of coronal magnetic fields.

INTRODUCTION

We report here on IUE spectra of the close binary system HR 5110 (=HD

118216) obtained during a radio flare and subsequently during a presumably

quiescent period. HR 5110 consists of an F2 IV primary and a ¢_K star sec-

ondary in a nearly circular orbit of period 2_61 and mean separation 0.05
a.u. (I); the system is viewed nearly pole-on. Hall (2) includes HR 5110 in

his list of RS CVn variables. The other stars in this group are close bina-

ries with periods of 1-14 days, typically consisting of a chromospherically-

active K0 IV star with intense Ca II H-K emission, and an F-G IV-V star,

which is usually the brighter optical component but whose chromospheric

emission lines are normally the weaker. Photometric light curves of RS CVn
systems exhibit a unique quasi-sinusoidal distortion wave or "wave of dark-

ening," which Eaton and Hall (3) have modeled in terms of dark starspots

covering a large fraction of one hemisphere of the K subgiant star. _ny

RS CVn systems are strong sources of soft X-rays (4-6), with coronal tempera-

tures near 107 K, and have been observed to flare at radio wavelengths (7,8).

These nonthermal microwave bursts are most likely due to gyro-synchrotron

emission (9,10). Ultraviolet observations of the RS CVn-systems HR 1099,

IThis work was supported by NASA through grants NAS5-23274 and NGL-06-O03-057
to the University of Colorado.

2Staff Member, Quantum Physics Division, National Bureau of Standards.

3Guest Observer with the International Ultraviolet Explorer (IUE) satellite.

4Resident Astronomer, IUE Observatory.
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And, and Capella, obtained early during the IUE mission (ii), revealed

bright emission lines indicative of hot chromospheres (T = 4-20 x 103 K) and

transition regions (T = 20-250 x 103 K). Quiescent chromospheric models to

explain these IUE observations have been discussed by Simon and Linsky (12)
for [_R 109g and UX Ari, and by Baliunas et al. (13) for _ And and Capella.

Simon, Linsky and Schiffer (14) have also presented IUE observations obtained

during a flare of UX Ari and, guided by solar coronal loop models, have pro-

posed an interacting magnetic loop model for major flare events in RS CVn
b_nar ies.

HR 5110 is an unusual RS CVn-type system in several respects. The mass

ratios of RS CVn's are typically within 30% of unity, and the more massive

component is also the cooler, more highly evolved star (2,15). In HR 5110,
however, the F star primary is clearly the more massive, since Conti (i)

found m2/m I = 0.28±0.08. He also concluded that the secondary of HR 5110
fills its Roche lobe, unlike the majority of RS CVn systems which are clas-
sified as detached binaries. Thus, HR 5110 resembles mass-exchange Algol

systems, which also exhibit weak X-ray emission (16) and sporadic radio
bursts (17,18). The photometric light curve of HR 5110 (19) shows evidence
of a small reflection effect (om01 in V), but no distortion wave. The ap-

parent absence of a distortion wave could be due to the low inclination of

the system, assuming starspots to be concentrated along equatorial regions

of the secondary, and to the relatively small contribution of the secondary

to the total light of the system in the V band.

OBSERVATIONS

We observed HR 5110 initially On 1979 May 31 at 17huT as a target of

opportunity observation with IUE after notification by Paul Feldman that a

major radio flare was underway in the system. Feldman (20) measured a 10.76
GHz flux of 0.425 Jy on May 29 at 8h26mUT with continued flaring activity in

the range 0.20-0.35 Jy over the next two days. Our IUE observations thus
occurred during a period of intense radio flaring. On February i, 1980 com-

parison spectra were taken at the identical orbital phase when the system

was presumably quiescent. The circumstances of the observations are given

in Table i. By convention, orbital phase 0.5 corresponds to conjunction
with the F star in front of the secondary.

The two SWP spectra have been calibrated in absolute flux units at Farth

using the standard IUE calibration factors and the latest ITF. Longward of
about 1700 A both SWP spectra are saturated due to the rapidly rising photo-

spheric flux of the F2 IV primary. The HR 5110 emission line spectrum looks

qualitatively similar to spectra of _ Cas, a rapidly-rotating F2 IV single
star discussed by Linsky and _rstad (21), and the RS CVn binary UX Ari

(12), if allowance is made for the weak underlying continuum of the cooler

stars (G5 + K0 IV) in the UX Ari system.

Integrated fl_es of the strongest emission features present in these

spectra are listed in Table 2. Probable identifications of the ions respon-

sible for the emission features are given in order of their estimated rela-

tive importance; In proposing identifications, we have been guided by line
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lists for the solar limb spectrum (22) and Capella (23). The line strengths

are presented in the form of surface fluxes, assuming that all of the flux

originates from the cooler star, for which we compute an angular diameter of
0.45 milliarcsec from the Barnes-Evans relation (24). We comment on this

assumption later. At a distance of 52 pc from the Sun, the secondary has

a radius of 2.6 Ro and therefore fills its Roche lobe (I); for simplicity,
we ignore geometrical distortion of the secondary. For comparison with the

HR 5110 data, Table 2 also presents surface fluxes for B Cas, UX Ari in both

quiescent and flare states, and the quiet Sun.

DISCUSSION

The first conclusion that can be drawn directly from inspection of

Table 2 is that the accurately measured strong lines (e.g., those of N V,

C II, O I, C IV, and He II) are fainter in the "flare" spectrum than in the

"nonflare" spectrum. _ile this may appear surprising, it is important to

realize that image SWP 5415 was obtained almost 2 i/2 days after the radio

flare was first detected. HR 1099 was observed on 1978 March i, also long

after the onset of a major radio flare, and the ultraviolet emission lines

showed no enhancement over quiescent values (11,12). By contrast, IUE spec-

tra of the January I, 1979 flare of UX Ari (14) were obtained only26 hours
after the initial detection of the radio flare, while the radio flare was

still active, and showed a factor of 5.5 enhancement of the UV line strengths

These three examples suggest that the time scales of radio and UV flares

in RS CVn systems may be quite different. Since the intense radio flux and

the enhanced ultraviolet line emission may originate at different heights in

the stellar atmosphere and since solar flares exhibit strong radio emission

long after the ultraviolet aspects of the flare are completed, it is not
implausible that stellar radio flares would be of longer duration than the
associated UV flare events. We therefore conclude that both SWP 5415 and

SWP 7834 represent quiescent conditions, and that the different flux levels
observed are representative of normal time variations in the activity of the

system.

The HR 5110 "flare" differs from the earlier UX Ari flare in another

significant detail. In the high dispersion UX Ari flare spectra, we observed

prominent asymmetries in the profiles of the Mg II resonance lines at 2800 A,

corresponding to Doppler velocities of 475 km s-l, and we interpreted those
asymmetries as evidence for gas flowing along a magnetic flux tube coupling

the primary and secondary stars. No similar line asymmetries appear in the

HR 5110 s_ectra, although mass transfer taking place at velocities less than
150 km s-I might be impossible to detect because of the ~13 ° inclination of
the system.

IDENTIFICATION OF THE ACTIVE STAR

A critical question is: Which star in the HR 5110 system contributes

most of the flux seen in the bright UV emission lines? It is not possible to

answer this question directly because the maximum radial velocity separation

between the component stars is only 43.7 km s-1, so the high dispersion mode
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of IUE and an accurate absolute wavelength scale would be needed to identify

the emitting star on the basis of line splitting or absolute wavelength dis-

placement. This approach was followed in our analysis of the UX Ari system
(12), where the maximum velocity difference is 126 km s-I. On the basis of

Doppler shifts of the Mg II lines, we identified the K0 IV star as the domi-

nant contributor in this system. Some caution is warranted because Ayres

and Linsky (23) show that the Ca II H-K emission features and the transition

region lines of the Capella system are contributed by the G6 III primary and

F9 III secondary, respectively. However, the circumstance leading to this

dichotomy for the Capella system, viz. a factor of i0 difference in rota-

tional velocities of the primary and secondary, does not seem to be repeated

in the short-period synchronously rotating RS CVn binaries.

Circumstantial evidence for associating the secondary in HR 5110 with

the strong UV emission lines comes from a comparison of the derived surface
fluxes with those measured in B Cas (F2 IV) and UX Ari (G5 V + KO IV). We

choose B Cas as a comparison star because it has the same spectral type as

the HR 5110 primary and is a very rapid rotator like HR 5110 (25). Despite

its early spectral type, _ Cas exhibits a chromospheric and transition re-

gion emission line spectrum. We assume that the existence of a chromosphere

and a transition region in this star is due to the effectiveness of rapid

rotation in producing a strong hydromagnetic dynamo even though the stellar
convection zone is thin.

Comparing the surface fluxes listed in Table 2, we see that the emis-
sion lines of HR 5110 are a factor of i0 brighter than the corresponding

lines in B Cas. If for stars of the same spectral type the rotational ve-

locity is the dominant variable determining outer atmosphere heating (23),
we conclude that the F2 IV star in HR 5110 contributes no more than ~10% to

the observed emission line flux. Furthermore, the closer agreement between

the surface fluxes of HR 5110 and UX Ari, assuming that the cooler stars in
both cases are the dominant emitters, suggests that the secondary in HR 5110

is the more likely source of the observed line emission.

RS CVn OR ALGOL?

Although different time scales for radio and UV flares may account for
our failure to observe an enhancement of the emission lines of HR 5110 in

May, 1979 we now briefly consider an alternative explanation: namely, that

radio flares in this system are the result of episodic mass transfer from the

secondary to the primary, instead of magnetic field annihilation processes in

large coronal loops, as we proposed for UX Ari (14). We note, however, that

chromospheric models based on the IUE fluxes for HR 5110 would yield approxi--

mately the same surface pressures (0.7-1.1 dyn cm -2) as derived earlier for

UX Ari, and so the hydrostatic coronal loop model of Rosner, Tucker, and

Vaiana (25) would predict loop dimensions comparable to the separation

(NIO Ro) of the components in this system.

To summarize, we have repeated Conti's (I) analysis of UBVRI photometry
of HR 5110, supplemented with new JHKLM data that we have obtained at Kitt

Peak. For this purpose D we required that the radius of the secondary be the

same as the Roche lobe (2.6 Ro, see Ref. I), we adopted a parallax of 0_019,
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and we used the Barnes-Evans relation. With these assumptions, the observed

spectral energy distribution, 3600 %-5 _m, can be matched by a composite spec-

trum, F2 IV + G5 IV, except for a small (0_3) infrared excess which might be

due to intrasystem material (e.g., a circumstellar ring). The magnitude dif-

ference between the components is AV = VG-V F = i_15, while the absolute bolo-

metric magnitudes for the primary and secondary are Mbo I = +1.60 and Mbo I =
+2.65, respectively. In this calculation, the secondary is twice as luminous

as found by Conti.

We now compute the luminosity ratio Lx/Lbo I, where Lx is the X-ray
luminosity. Ayres and Linsky (23) have shown that this ratio is correlated

with equatorial rotation velocity: the more rapid the rotation, the larger
the ratio, and hence the more active the chromosphere-corona. The range of

Lx/Lbo I values for RS CVn binaries is 5 x 10-4 - 2 x 10-3 , with a corre-
sponding spread of 20-80 km s-I in rotational velocity.

Assuming synchronous rotation, we calculate Veq=49 km s-I for the G5 IV
secondary in HR 5110 (but v sin i=10 km s-l). For this rotational velocity,

we then expect Lx/Lbo I _ 5 x 10-4. The observed Lx = 3.0±0.9 x 1030 ergs s-I
(4) and our estimated Lbol, however, yield Lx/Lbo I = 1 × 10-4 , which is a
factor of 5 below typical values for RS CVn systems. An upper limit on this

ratio, based on the implicit uncertainties, would still place HR 5110 at
least a factor of 2 below the least active of the remaining RS CVn binaries.

Despite the large UV fluxes observed for HR 5110, this calculation sug-
gests that the RS CVn designation for this system may be misleading and that

the interacting coronal loop model may not apply to flare episodes of this

star. In view of its Algol-like characteristics, the most attractive alter-

native is mass exchange from the cool secondary to the F2 primary through the

inner Lagrangian point (26). Only a modest flow of material (_5 x 1016 g s-1)
is required to account for the radio, ultraviolet, and X-ray power observed.

HR 5110 closely resembles the AlgOl system AS Eri (27), which consists of an

A3 V primary of mass 1.9 Mo and a cool secondary of mass 0.2 Mo, which fills
its Roche lobe. The secondary of AS Eri appears to be collapsing to the

white-dwarf state (28), and we speculate that the same evolutionary picture

may apply to HR 5110 and other RS CVn-type systems.

We wish to thank Dr. A. Boggess, Dr. C.-C. Wu, and the staff of the IUE
Observatory for their assistance in the acquisition and reduction of these
data.
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Table 1

Summary of IUE Observations of HR 5110 a

IUE Image Dispersion Exposure Date Orbital Comment
Phase b

(mln) (JD 2440000+)

SWP 5415 Low 30 4025.2003 0.6412 "Flare"

LWR 4652 High I0 4025.2192 0.6484 "Flare"

LWR 6838 High I0 4270.7214 0.5963 "Nonflare"
SWP 7834 Low 25 4270.7361 0.6019 "Nonflare"

aAll observations were made through the I0" × 20" large aperture.

bphases computed from ephemeris given in Ref. 19.
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Table 2

Comparison of Line Surface Fluxes (ergs cm-2 s-l)

HR 5110 a UX Ari b

Line or _ Casc Quiet Sund

Multiplet Flare Quiet Flare Quiet

C III 1175 % 7.1(5) 1.1(6) 1.2(6) 2.0(5) 4.5(4) 1.6(3)

N V 1239 % 4.1(5) 8.4(5) 1.2(6) 1.9(5) 1.4(4) _.6(2)

0 I 1304 % 1.2(6) 1.5(6) 1.3(6) 4.4(5) 1.4(5) 4.0(3)

C II 1335 % 1.1(6) 1.4(6) 4.4(5) 8.6(4) 4.6(3)

Si IV 1394 % 2.2(5) 7.2(5) 7.0(5) 1.3(5) 3.1(4) 1.7(3)

Si IV+O IV 1403 % 5.9(5) 5.0(5) 6..5(5) 1.2(5) 4.6(4) 7.9(2)

C IV 1549 % 1.7(6) 2.2(6) 6.5(5) 1.8(5) 5.8(3)

C 1 1561% 1.4(5) 1.9(5) 2.0(4) 2.0(3)

He II 1640 % 7.2(5) 1.1(6) 3.5(5) 1.3(3)

C 1 1657 % 3.5(5) 9.2(5) 5.3(3)

Mg II 2796 % 1.9(7) 2.1(7) 1.7(7) 6.8(6) 6.8(5)

Mg II 2803 _ 1.7(7) 1.7(7) 1.4(7) 5.8(6) 5.3(5)

aAssuming all the emission comes from the secondary with an angular diameter
of 0.45 milliarcsec. If the emission is assumed to come from the F star only

(angular diameter of 0.53 milliarcsec), then all surface fluxes should be

divided by factor of 1.4.

bAssuming all the emission comes from the KO IV star whose angular diameter is
0.62 milliarcsec. Data from Refs. 12 and 14.

CAssuming an angular diameter of 2.0 milliarcsec. Data from Ref. 21.

dQuiet Sun fluxes cited in Ref. Ii.





ANALYSIS OF THE SYMBIOTIC STAR AG PEGASI

' Charles D. Keyes and Mirek J. Plavec
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ABSTRACT

High and low dispersion IUE data are analyzed in conjunction with

coincident ground-based spectrophotometric scans and supplementary

infrared photometry of the symbiotic object AG Pegasi. The IUE obser-

vations yield an improved value of E(B-V) -- 0.12. The two stellar

components are easily recognized in the spectra. The cool component

may be an MI.7 III star and the hot component appears to have T f_ ofe
approximately 30000 K. The emission lines observed in the ultravlolet

indicate two or three distinct emitting regions. Nebular component

ultraviolet inte_ombi_ation lines suggest an electron density of
several times i0-v cm--.

INTRODUCTION

AG Pegasi (HD 207757) is a well-known symbiotic star, although it
does not display the irregular outbursts that are typical of most

symbiotics. It brightened only once, over i00 years ago, and has been

declining ever since. The important work of Hutchings, Cowley, and

Redman (ref. i) describes the spectral peculiarities and changes which

have interested many ground-based investigators over the years. The

first satellite ultraviolet observation, and first direct evidence of a

hot star in the system, was the broad-band OAO-2 photometry of Gallagher
et al (ref. 2).

AG Pegasi was observed with IUE im August and November, 1978 by MJP.

Both high and low dispersion SWP images and only low dispersion LWR

images were obtained. Coincident ground-based s_ectrum scans of high
photometric accuracy were made in the 3200-7000 A region with the

Cassegrain Image Dissector Scanner (IDS) on the Lick 3-meter Shane

telescope in August, 1978 by CDK. Figure i shows the combined observed

spectrum of AG Peg. It is quite gratifying to note that the three IDS

scans and two IUE images match extremely well with no artificial shift-

ing imposed. It should also be noted that all SWP IUE images have been

corrected for the image processing error originally present in the data.

We have re-evaluated the interstellar reddening of AG Peg with the

extinction curve of Seaton (ref. 3) and found the color excess to be

E(B-V) = 0.12 * 0.03 from the 2200 _ extinction feature. The larger
value of 0.2 obtained by Gallagher et al. is probably due to the very

strong emission lines contaminating their broad-band photometry short-
ward of 2000 _.

The observations show clearly the presence of both a hot and a

cool component in the system. The IUE spectra are dominated by a
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number of extremely strong emission lines and a brlghtcontinuum that

rises steadily toward shorter wavelengths. The IDS spectra ....show that

the decline of the ultraviolet continuum continues to approximately

4300 _ where the continuum begins a steady rise to the red.

THE COOL COMPONENT

Infrared photometry of AG Pegasi has been published by Szkody

(ref. 4) and Swings and Allen (ref. 5). We have previously (ref. 6)

obtained a value of fe = 5.5 e 0.8 x 10-8 ergs-cm-2sec _I for the total
observed continuous flux of the cool component (corrected for inter-

stellar extinction). This result was based upon an integration of the

published photometry and upon an independent extrapolation of our Lick

spectrophotometry. Colors obtained from the Szkody magnitudes were also

used to determine the spectral type of the cool component in the system
of Lee (ref. 7). On the assumption that the luminosity class is III,

the colors formally indicate a classification of MI.7 III. Comparison

of our Lick scans with standard stars 104 Her (MI III) and 2 Peg

(M3 III) shows that AG Peg is intermediate between them and suggests

that the cool component may be normal. The effective temperature,

according t_ Lee, is 3570 K.

Consistentlythroughout this presentation we shall express the

distance d in kpc and the stellar parameters in solar units. The general
formula

R = 5.89 x 1012 T-2 d fO.5 (i)

leads to the following relations for the cool component:

R = (I08_9)d L = (1720"260)d 2 MBOL = (-3.3*0.2) + 5 log d (2)c c c

If the cool component really is luminosity class III, then using the

calibration of Lee, MBOL c = -1.9, R = 56 Re, and d = 0.5 kpc. If the

luminosity class is II, MBOL c = -3.8, R = 134 Re, and d = 1.24 kpc
(z = 0.6 kpc below the galactic plane), and, even in this case, the star

would be substantially smaller than its critical Roche lobe, estimated

by Hutchings et al to be 285 Re.

THE HOT COMPONENT

The total continuum flux (corrected for extinction) between 1200

and 3200 _ is fh = 1.26 x 10-8 erg-cm-2sec -I. (The emission lines,
incidentally, contribute an additional 27 percent.) This observed

continuum is most likely a combination of a true stellar continuum and

the continuous radiation of a nebular H II region.

The hot component spectrum is clearly contaminated by that of the

cool component longward of 4300 _. We have attempted to remove the cool

component contamination by subtracting a scan of the MI III standard

2 Peg from AG Peg in the 3400'5500 _ region. The scans were normalized

and were virtually identical in the 5300-5500 _ interval where the hot

component contributes negligibly to AG Peg. Figure2 shows the resultant
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energy distribution of the hot component plus hydrogen nebula compared

with the Kurucz (ref. 8) model atmosphere energy distributions that

provide the two best fits. By fitting the energy distributions we
determine from (i)

T = 25000 _ = 1.34 d Lh = 635 d2 MBOLh = -1.94 - 5 log d (3)

T = 30000 _ = 1.0 d Lh = 730 d2 MBOLh = -2.40 - 5 log d (4).

For the surface gravitational acceleration we get

log g = 4.4 - 2 log d (5)

if we assume the hot object mass is not too different from one solar

mass (ref. i). A subdwarf is indicated, despite the model log g.
Indeed, the Wolf-Rayet character of some of the ultraviolet emission

features (see next section) implies a wind blowing outward from the hot
component and that some sort of extended region of line formation must
exist. Moreover, model atmosphere calculations of hot stars with

extended atmospheres have shown that the resultant energy distributions
tend to resemble those of cooler, less extended atmospheres (ref. 9).

Therefore, it would be quite surprising if a standard, plane-parallel,
LTE, high surface gravity, normal composition atmosphere represented
well this subdwarf.

Note that there is a modest flux excess in the 3000-4000 _ region

that grows more pronounced as models hotter than 30000 K are tried.
This excess is doubtlessly due in part to continuous Balmer emission,

the overlapping of high Balmer lines, and perhaps free-free emission.
We are currently attempting to adequately combine emission from a hydro-

gen nebula with individual stellar models in the hope of producing a
better fit.

As a result of the Wolf-Rayet character of some lines, we also
compared the ultraviolet energy distribution of AG Peg with the TD-I

observations of several Wolf-Rayet stars by Willis and Wilson (ref. i0)
in the 1350-2550 _ region. Their one WN5 (HD 50896) and one of two

WN6 (HD 192163) stars displayed continua clearly steeper than that of

AG Peg. The remaining WN6 star (HD 191765), for which Willis and Wilson
find a surprisingly similar temperature to HD 192163, provided a better,

though not perfect, match in this spectral region. Willis and Wilson
determined a Zanstra temperature, based upon the 1640 _ He II equiva-

lent width and a grid of Kurucz model atmospheres, of 29200 K for

HD 191765. Using the tabulations of Willis and Wilson we determine the
He 11 1640 Zanstra temperature for AG Peg to be 31900 K. We should

note that the 1640 equivalent width in AG Peg is considerably stronger
than that of either WN6 star in the Willis and Wilson sample.

THE EMISSION LINES

Emissions of N V, C IV, Si IV, and lower ions of these elements

are present in the IUE spectra. No 0 IV is seen, although the O III
1663 _ doublet and several of the Bowen flourescentllnes are visible.
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A quite well-developed recombination spectrum of He II is also present.

The high dispersion IUE spectra show that the line profiles are quite

complex and that many lines have two or three components.

One component comes from a highly ionized region near the hot

object and shows broad P Cygni profiles of a Wolf-Rayet character.

The N V resonance doublet at 1239 and 1242 _ and the permitted N IV

1718 line show this structure. The N IV] intercombination line at

1486 _ (Fig. 3) displays both the broad Woif-Rayet structure and a

sharp, nebular component (FWHM= 0.3 _ ) which apparently is formed in

a more distant, quiescent region.

All the other intercombination lines, C III] 1909 _ , Si IIl]

1892 _ , and the N III] 1750 _ group, display only the sharp, nebular

component. The resonance doublet of C IV at 1548 and 1550 _ (Fig. 4)

shows the nebular emission component and several narrow, blue-shifted

absorptions superposed on a broad 1550 emission. The 1548 component

is quite weak, probably due to a broad P Cygnl absorption of the 1550
line.

An analysis of the line strengths of the N III] 1750 multiplet

indicates that the electron density in the N III] region must be between

i x i010 cm-3 and 5 x i0 I0 dm-3. The presence of the C III] 1909

line, the absence of C III 1906 A, and evaluation of critical densities

for collisional de-excitation of the relevant energy levels are consis-

tent with this result. Maximum densities implied by the other intercom-

bination lines are also all less than approximately I0II.

COMMENTS

The symbiotic stars are a group of objects where_ in spite of

considerable effort, non-controversial models were not possible before

the advent of IUE (and perhaps not after), In the optical spectrum,

a late type continuum is observed on which are superposed emission

lines (H, He I, He ll, C III, N III, and some forbidden lines), which

require a radiation source much hotter than the K or M type giant whose

absorption spectrum is visible. Single_ and binary_star models were

proposed, and both may have some validity, since the group may _ery

well be heterogeneous, An inspection of Fig, 1 shows why the dilemma

was practically unsolvable without ultraviolet spectroscopy. In the

optical region, the hot component is virtually unobservable, having a

much smaller radiating surface. In fact, the small "ultraviolet

excess" and "absorption line veiling" contaminating the late-type spec-
trum shortward of about 5000 _ seems to be due to free-free and bound-

free radiation of hydrogen, naturally excited by the hot component, but

testifying only indirectly to its presence. For AG Peg, we find the

radius of the hot subdwarf on the order of 1 Re, effective temperature

probably about 30000 K , while the mass may be 1 - 2 M_. The profiles
of the emission lines are composite, and the broadest components

suggest a similarity between the hot star and the WR nuclei of plan-

etary nebulae. In the past century, the outflow of mass from AG Peg

had the character of an extremely slow nova. The red giant component
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is probably not merely a passive companion; more likely, it triggered

the activity and is the ultimate source of much of the material. Yet

it appears now to be much smaller than its Roche limit - a rather vexing
dilemma.

One of the current problems is the actual temperature of the hot

component. Michalitsianos et al. (ref. ii) believe that the hot
component temperature in RW Hydrae must be above 105 K, and explain
that the continuum longward of about 2000 _ is due to a hydrogen

cloud. Since AG Pegasi closely resembles the Wolf-Rayet spectra for
which Willis and Wilson postulate temperatures only on the order of

30000 K, we think that such a temperature is sufficient to explain
both the ultraviolet continuum and the strength of the He II lines,

and that the hydrogen cloud contributes only modestly in the vicinity

of the Balmer jump in AG Pegasi.
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IUE OBSERVATIONS OF SYMBIOTIC STARS

Jorge Sahade

Instltuto de Astronom_a y Fislca del Espaclo
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Estela Brandl

Observatorio Astron6mico, La Plata, Argentina

ABSTRACT

The IUE observations Suggest that the symbiotic stars can be placed in

two broad groups. One of the groups is characterized by strong_ narrow emls-

sions arising from a wide range of excitation energies, while the other one

typically shows a strong continuum with absorption lines and very. few or no

emissions at all. Both broad groups appear to suggest that we are dealing

with binary systems and that they probably differ in the characteristics and

extent of the chromosphere-corona formation that is present in the system.

Twenty stars that are listed among the symbiotic stars were observed

with the IUE in December, I978/Januar_y, 1979 and in July, 1979, mostly in the

low dispersion arrangement, except for 17 Leporis and AX Monocerotis, which

were also observed with high dispersion.

The aim of the program was to ascertain:

1) whether or not the belief that all symbiotic stars are binaries is

sustained by the UV observations;

2) whether or not the behavior of the whole group is similar in the UV;

3) whether or not theme were any detectable changes in the UV spectra

between the two observing epochs.

The stars that were observed are:
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R Aquarii I WY Geminorum# 2 AR Pavonis¢_# I

Z Andromedae I RW Hydrae I AG Pegasi _'_I

T Coronae Borealls_ I 17 Leporis_ 2 AX Persei I

BF Cygni# I AX Monocerotis'%_ 2 RX Pupp_s# I

CH Cygni 2 BX Monocerotis# 2 RR Telescopli# I

CI Cygni# I RE Ophluchi_ 2 WY Velorum 2

V1016 Cygni# I HD 4174 1

The five objects definitely known to be binaries are indicated on the llst

with an asterisk, while the symbol # stands for observations made only on one

of the two epochs.

The examination of the UV spectra of the twenty stars disclosed that they

carlbe placed in two broad groups. The first group is characterized by the

presence of numerous narrow emlssionlines that arise from a wide range of

excitation energies, from 6000°K (Mg II) to 105 OK (N V). The strong emisslons

in the short wavelength range are of resonance and intercombination lines and

of transitions that correspond to higher excltation_ like He II i640. The

lines normally presentare

C III] 1909

Si III 1892

N III] 1749

O III] 1666

He II 1640

C IV 1548, 1551

N IV] 1486

SI IV 1394, 1403

C II 1335

N V 1239, 1243

but, of course, the relative intensities are not the same on all the stars

that we would place in our first group.

The SWP images were secured with exposure times short enough so that the

emission lines would not become saturated. Therefore, our material in the

short wavelength mode is not suitable for the detection of a hot continuum,
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if present; however, such a continuum is clearly visible in the case of AR

Pav.

In the IUE long-wavelength range, the group normally displays strong

Mg II in emission; however, in the case of AG Peg, no Mg II is observed on

our images. The Mg II resonance doublet appears To be variable in Z And and

in WY Vel, and, in the context of this fact, we should mention here that in

the spectroscopic binary _I Scorpli Sahade and van der Hucht (ref. I) found

that Mg II is also strongly variable and concluded that the variation may per-

haps be correlated with variations in Balmer emission.

The second broad group shows typically no emissions except of Mg II in

WY Vel and in CH Cyg, and of 0 I 1303 in CH Cyg. The images secured for the

stars in this group show a continuum spectrum which does not correspond to a

late type star. In the cases of WY Vel and WY Gem the resonance lines that

are present in emission in the first group, appear in absorption, remindlng

us of the behavior of Be stars in the ultr_vlolet.

If we consider the first broad group, we can conclude that

I) the resonance lines must be for_ed in a region of low density where

collisional excitation is at work and ischaracterlzed by a large pange in

excitation temperatures; This suggests that The objects have some sort of a

chromosphere-corona formation that may perhaps be linked to the late-type

star;

2) although our SWP material, except in the case of AR Pay, does not

show evidence for an early-type continuum, the presence of hlgh-excltatlon

lines, like He II 1640, and the presence of a continuum on The LWR images

point towards The existence of a hot source and, thus, support The hypothesis

that we are dealing with binary systems.

The behavior of our second group appears to support the same conclusion

and, therefore, the validity of the binary hypothesis for The symbiotic stars

is generally valid for our large sample. The difference in spectral behavior

in The two groups should then be related to the characteristics and extent of

the chromosphere-corona formation.
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On the list of the observed objects which is given ut supra, we have

indicated with number "I" those that belong in our group I, and with number

"2" those that belong in our group 2.

No correlation is possible to establish between what we have learned

from the IUE material and what we know about the symbiotic stars from inves-

tigations made in other wavelengths. Only simultaneous photometric and spec-

tral observations in a wide range of wavelengths, taken at appropriate times,

could help us understand whether or not the two broad groups a_e actually

related to the phase in the nova-like behavior, and, therefore, to arrive to

a mope definite picture of the structure -and evolution- of the extended en-

velopes in the symbiotic stars. The whole thing may even have a bearing on

Linsky and Haisch's (ref. 2) finding of solar and non-solar type stars.

The analysis of the low-dispersion spectra will be published in detail

elsewhere, and the results from the high dispersion material will form a sub-

sequent paper.
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THE WHITE DWARF COMPANION OF THE Ba II STAR _ CAP

Erika BShm-Vitense

University of Washington

ABSTRACT

The Ba II star _ Cap has a white dwarf companion. Its Tef f is determined

to be 22000K, its mass M_IM O. The importance of this finding for the expla-
nation of abundance peculiarities is discussed.

During the course of observing chromospheric and transition layer
emission of stars with different chemical abundances we also observed the

Ba II class 2 star _ Cap (G5 IIp). Figure 1 shows the tracing which we ob-

tained at the computer screen at the IUE observatory. The intensity increases
again for A<I500A. We even see a slight intensity increase shortward of Ly u,

indicating a faint B star spectrum. The energy distribution obtained after

correcting for the instrumental sensitivity is seen in Figure2. For compari-

son we have also plot£ed the energy distributions for the G8 IIl standard star

e Vir and for the weak Ba II star _ Cyg (G8 IIp). These spectr_ are all nor-

malized to the same visual magnitude. The intensity for _<1500A increases

with increasing Ba II anomaly of the star. For _ Cap we see the superposition

of the normal G8 II star spectrum (for _600_), the cool chromospheric

emission line spectrum (1500<A<I60OA), some intense emission lines from

regions with temperatures around 100,000K, (CIV, NV), and the additional faint

B type stellar spectrum (for A<IbO0_).

An estimate of the absolute magnitude shows immediately that the B star

must be a white dwarf. Interpreting the decrease of the intensity for

%<I300A as the Lye wing we can determine the relation between Tel f and log g
(g = gravitational_acceleration) which will produce such a Lye profile. From

the calculation by Wesemael I) et al. (1979) we find a log g, Tef f relation
shown by the solid line in Figure 3.

If we know the absolute magnitude of _ Cap we know the distance and the

absolute flux for the companion _ Cap B at 1300_ which gives a relation be-

tween the radius R and Tef f. For white dwarfs the radius determines the mass

M@ of the white dwarf and thereby also the gravitational acceleration g. We
have used the Hamada, Salpeter 2) (1961) relation M(R) for helium white dwarfs.

The spectroscopists (Kemper3)1975, Sneden and Smith 4) 1980) tell me that MV =
-3 for _ Cap.

With this value we find a relation between Tel f and log g as shown by the

dashed line for MV = -3. The intersection with the solid line determines the

best value for Tef f and log g (M) leading to Tef f = 22000K and M = 0.98MG. For
lower absolute brightness, i.e. a smaller distance of _ Cap A, _ Cap B has to
be smaller and more massive. The _ Cap companion is then very similar to
Sirius B.
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This observation seems to be especially important in view of the findlr_gs

of McClure et a1.5)(198_who observed radial velocity variations of all strc_ng
Ba II stars. They are now checking on the weak Ba II stars. For two of the

systems they could determine mass functions which indicate masses of i to

2 M_ for the invisible companions. They concluded that these had to be white
dwarfs. Since all Ba II stars appear to have companions they concluded that

the Ba anomaly is due to mass exchange between binaries rather than to mixing

in the star. In fact, the strong emission lines seen in the _ Cap system make

it probable that some mass exchange is still going on. The question then

arises how much of the peculiar abundances seen in red giants of both popula-

tions is due to mass exchange and how much due to actual mixing?

Whether _ Cyg also has a white dwarf companion is not quite clear; we

need to study the data more carefully. If it has one, it must be of lower
temperature, probably around 1400OK, but of similar mass.

These are the two brightest Ba II stars. We have since observed Ba II

stars ~2.5 magnitudes fainter. So far none of them _as a possible com-
panion bright enough to be clearly recognizable on 4 exposure spectra. We

are still studying the data. Details of this study will be published in
the Ap.J. Letters.
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Figure i: The short wavelength spectrum of the Ba II star _ Cap as seen on

the computer screen at the IUE observatory. The increase in inten-
sity for _<1500A is attributed to a white dwarf companion. The in-

tensity increase shortward of Lye indicates rather high tempera-

tures for the companion.
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Figure 2: The energy distributions of the Barium star _ Cap, the weak Barium

star _ Cyg and the standard star e Vir, all normalized to the same

visual magnitude. The short wavelength intensity increases with

increasing Ba II anomaly.
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INGRESS OBSERVATIONS OF T_E 1980 ECLIPS_ OF T_E SYMBIOTIC STAR CI CYGNI

Robert E. Stencel

Joint Institute for Laboratory Astrophysics - Univ. of Colo.& NBS

Andrew G. Michalitsianos

Laboratory for Astronomy and Solar Physics - Goddard Space Flight Center

Minas Kafatos

Department of Physics, George Mason University

Alexander A. Boyarchuk

Crimean Astrophysical Observatory, U.S.S.R. Academy of Sciences

INTRODUCT ION

One of the major results from the IUE may prove to be the new knowledge

gained by studies of the ultraviolet spectra of symbiotic stars. Symbiotics

combine spectral features of a cool M giant-like photosphere with strong

high excitation emission lines of nebular origin, superposed. An excellent

pre-UV review has been given by Swings (i). The UV spectra are dominated by
intense permitted and semi-forbidden emission lines and weak continua indica-

tive of hot compact objects and accretion disks. Two symbiotics, AR Pay and

CI Cyg are thought to be eclipsing binaries, and we have begun IUE observa-

tions during the predicted 1980 eclipse of CI Cygni.

SYSTEM PARAMETERS

Periodic albeit irregular light curve variations suggest that CI Cyg is

an eclipsing binary, with the elements: minimum light = JD 2411902+855.25E.

Boyarchuk has predicted ingress to begin about April i0, 1980 and egress to

end about August 18, 1980, with a nearly I00 day totality. The visual mag-

nitude range fluctuates between +i0 m and +12m with outbursts to +9m known.

Light curves are described by Mattei (2) and Belyakina (3).

QUESTIONS TO BE ADDRESSEO

Obviously the time variation of the UV line and continuum flux can be
used to constrain the physical dimensions of the line-emitting regions and

thereby used to discriminate among various excitation mechanisms. It may be

possible to determine something about the origin and extent of mass transfer.

Since the system inclination is known, information about the existence and
nature of an accretion disk might be obtained, as well. These questions are

posed in the light of recent IUE studies which will also be presented at this
conference. In particular, Plavec (4) argues that a connection between Beta

Lyr stars, W Ser stars and symbiotics (AR Pav) can be made in commonality as

case B mass-transferring binaries (rates of -6 or more in the log) and accre-

tion onto non-degenerate stars. IUE observations of RW Hya by Kafatos et

al. (5) have been used to argue that tidal interaction on the cool object

can greatly augment the intrinsic stellar wind and lead to the observed
accretion effects° The visibility of UV continua from accretion disks among

symbiotics may be a complicated function of densities and viewing angles.
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We hope to be able to address several of these concerns with eclipse obser-

vations of CI Cyg.

PRE-INGRESS AND INGRESS OBSERVATIONS

At the time of this writing we have obtained spectra on March 16, and April

16 and 25. The March 16 spectra in SWP and LWR are remarkably similar to

RW Hya (5) in showing numerous strong high excitation emission lines from
species like permitted N V and C IV and semi-forbidden O IV, O III and N III,

among others. In contrast to RW Hya where evidence for a I00,000 K continuun

is seen, CI Cyg shows a weak Balmer continuum emission falling off towards

higher frequencies. Also CI Cyg shows strong O III lines at 3047 and 3133 A

which are frequently seen in Miras and planetary nebulae but not strongly in

RW _ya. These are Bowen fluoresced by }_ II Lye. The measured line fluxes

in CI Cyg are generally 2 to i0 percent of those in RW Hya. C IV 1550 for

example had an integrated_flux of about 2E-II ergs/cm2/s on March 16, 1980.
We note that for reasonable assumptions about distance (cf. 5) for CI Cygni,

we can compare fluxes in C IV against Mg II for symbiotics much as Ayres has

done for normal cool stars (see paper by Ayres in these proceedings) and

find symbiotics like CI Cyg and RW Hya lie three orders of magnitude above

the C IV-_ II flux correlation for normal cool stars. We interpret this to

be a manifestation of different physical mechanisms involved: magneto-

acoustic heating of the outer atmosphere for normal cool stars, versus
photoionization-recombination for the symbiotics.

A preliminary comparison of the spectra obtained during ingress

indicate a substantial decrease in the continuum at all wavelengths and a

noticeable drop in the emission line flux from the higher excitation lines,

particularly in the 1400 % blend of Si IV and O IV. A lie at 2830 A due to

He I also appears to be decreasing in strength, while the O III lines at

3047 _ and 3133 _ may have slightly increased in strength. These changes are
suggestive of a stratified nebula, where the highest excitation regions are

centralized and of dimensions less than that of the M giant, of order 1012

em. This region could represent the actual accretion disk. The O Ill lines

may arise from a more extended region (Bowen fluoresced), perhaps comparable

to the orbital separation, of order 1014 cm. It is not obvious that we have

detected a hot companion star, given the weak cool continuum. Comparison

with observations well out of eclipse and during a burst stage would be

useful. If other observers would like to supplement the observing plan,
collaboration would be welcomed.
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ULTRAVIOLET SPECTROSCOPY OF OLD NOVAE

AND SYMBIOTIC STARS

David L. Lambert, Mark H. Slovak and Gregory A. Shields

University of Texas at Austin

Gary J. Ferland

Cambridge University

ABSTRACT

Low-dispersion, short-wavelength IUE spectra are presented

for two old novae, DQ Herculis (1934) and V603 Aquilae (1918) =

HD 174107, and for two symbiotic variables, AG Pegasi = HD 207757

and CI Cygni. The emission line spectra of the novae are rela-

tively sparse, dominated by a strong C IV (11549) feature and show-

ing weaker e/nissi_ns arising from NV(I1241), Si IV+ 0 I_ (111398,
1402), and He II (11640). The absence of intercombination lines

suggest electron densities greater than i0 _° cm -3 . The continua
of the two novae are remarkably different, the appearance seeming-

ly dictated by the inclination of the system. The symbiotic var-

iables display a more variegated emission line spectrum, exhibit-

ing features of O I (11304), N IV](I1485), N III](I1752), and C II_

(11909). The continua for the quiescent symbiotics are stellar

in appearance and change as a function of the system inclination.
These results confirm the existence of hot companions in the sym-

biotic stars, lending support to the binary hypothesis for these

variables. Model atmospheres are fit to the spectra to estimate

the properties of the hot components.

INTRODUCTION

Ultraviolet spectra have been obtained for several old novae

and various of the symbiotic stars in order to study the nature

of these objects in a region inaccessible to ground-based obser-
vations. The ultraviolet data are being combined with optical

spectra in order to provide absolute flux distributions extending
into the near infrared.

In order to ascertain the steady-state post-eruptive proper-

ties of these active systems, the data were obtained while the
stars were in their quiescent states. Hence, the observations

can be compared directly with various of the steady-state models
that have been proposed to explain the novae and nova-like vari-
ables.

The old novae are thought to be close binary systems (ref. i)
involved in active mass transfer via Roche lobe overflow of mat-

ter from a late type star onto a white dwarf. An accretion disk
is formed around the white dwarf as a result of the mass transfer
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process and is predicted to contribute an appreciable fraction of

the ultraviolet luminosity (ref. 2). The old novae V603 Aql (19]8)
and DQ Her (1934) were examined and their spectra are discussed in
the context of the binary model.

The exact nature of the symbiotic variables has been an unre-

solved puzzle for many years. The optical spectra are usually do-

minated by a late-type giant and a strong nebular line spectrum,
obscuring any contribution from a hot companion. The IUE data ob-

tained for various of the symbiotics, however, show clear evidence

for the existence of a hot component in many of these stars, sup--
porting the binary hypothesis discussed in reference 3. Data fo]_

the spectroscopic binary AG Peg and the eclipsing system CI Cyg
are presented as examples.

OBSERVATIONS

The low resolution (AI = 5 x i0 -mm) spectra were obtained with
the short wavelength prime (SWP) camera of the IUE satellite on

June 29 and December 14, 1979. The exposures were taken through

the i0 _ x 20 _ oval aperture and were untrailed with the exceptiorL
of SWP 7407 (AG Peg).

The data have been converted to absolute fluxes using the

calibration given in reference 4. Unfortunately, the June spec-
tra were processed using an incorrect intensity transfer function

(ITF). However, additional spectra of similar quality for V603

Aql (SWP 5921) and CI Cyg (SWP 5485) have been processed using

both the incorrect ITF and a corrected version (ref. 5). The a-
verage correction error between the two was 2.3%. Since the un-

certainty in the absolute flux calibration of the SWP spectra

longward of Le (11216) is estimated to be 10%, the results present-

ed here would appear to be uneffected by the ITF problem.

The fluxes have been de-reddened using the reddening curve
given in reference 6. The values of the color excess, E(B-V),

used to de-redden the data are indicated in each of the figures.

The color excesses are small for the novae, tending to be larger
for the more luminous symbiotic stars.

DISCUSSION

THE OLD NOVAE

The IUE data for V603 Aql are compared with earlier OAO-2

and ANS satellite measurements in figure i. The satellite data

have been de-reddened assuming E(B-V) = 0.07 mag, as have the IUE
fluxes. The systematic disagreement between the OAO-2 and IUE

values shortward of 11600 _ suggests real variability in the con-
tinuum of the hot component. The OAO-2 data were used (ref. 7)

to derive ultraviolet colors and estimate a color temperature of

25,000 K. A hot model atmosphere (Tef f = 25,000K ; log g =4.5)
(ref. 8) is compared to the IUE data in figure 1 as well as the

predicted flux distribution for an optically thick accretion disk

(fl _ I_)" Also shown are values from a white dwarf model
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(Tef f = 25,000 K ; log g = 8) (ref. 9). The model fluxes have
been normalized to the stellar fluxes at i1700 _ where the con-

tinuum appears free of emission lines.
The continuum of DQ Her can be seen in figure 2 and offers a

startling contrast to that of V603 Aql. It is well represented

by a flux distribution of the form f_ l°= constant over the band-

pass of the SWP camera (111200-1900 _). Despite the difference
between the continua of the novae, however, the emission line

spectra are qualitatively similar at least in the appearance of
various of the lines. Note the strong NV (_1239, 1243 ) feature

present in DQ Her which is absent from V603 Aql.
It is interesting to note that DQ Her is an eclipsing system

seen at a relatively high inclination ( i = 7_ ) whereas V603 Aql

is viewed nearly pole-on (i = 150). The difference in the appear-
ance of the continua may thus reflect the differing aspects of

these systems. Those binaries seen at high inclinations apparent-

ly must present a larger optical depth in the disk to the obser-
ver than do the lower inclination systems. This simple geometri-

cal interpretation provides support for the models that posit the
existence of optically thick accretion disks surrounding the hot

white dwarf components.

THE SYMBIOTIC STARS

The IUE spectra of the symbiotic stars present a wealth of
observational material. These data show a much richer and more

diverse emission line spectrum than seen in the novae. Further-

more, the ultraviolet data provide direct confirmation, in many

cases, of the existence of a hot companion. Spectra were obtain-

ed on two systems known to be binaries from optical studies. In

figure 3 the low dispersion spectrum of AG Peg, a spectroscopic

binary, is seen, and figure 4 presents a similar spectrum for the

eclipsing system CI Cyg.
Satellite data also exist for AG Peg and are shown in figure

3 compared to the IUE fluxes after de-reddening using a value of

E(B-V) = 0.12 mag. Despite the large uncertainties associated
with the earlier measurements (_34% at _ = 1330 _), the continuum

appears to have systematically decreased by approximately 20%

since the epoch of the OAO-2 observations (May 1970). Such a

decline appears to be the source of the steady 0.025 mag/year de-

crease seen in the optical light curve which would also imply a
20% decrease in flux.

Model atmospheres from reference 8 were fit to the continuum

of AG Peg and serve to provide an estimate of the temperature of

the hot component ( Tef f = 40,000 K). This value is in accord
with the temperature estimated from the OAO-2 measurements, dis-
cussed in reference i0.

Both the continuum and the emission line spectrum of the

eclipsing system CI Cyg (figure 4) provide a marked contrast to

those of AG Peg. The emission lines are much narrower and gener-

ally weaker. Note the presence of the strong permitted nitrogen

lines in AG Peg and their weaker appearance or even absence in
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CI Cyg.

Further support for the hypothesis developed above relating
system inclination to continuum appearance is provided from the
comparison of these two systems. CI Cyg appears at a very high
inclination showing flat-bottomed eclipses of variable depth.
AG Peg, on the other hand, is seen at a lower inclination of ap.-
proximately 36 ° . Thus, the material (disk?) surrounding the high
inclination systems would again appear to present a large optical
depth to the line of sight. It is expected that spectra of the
eclipsing nova T Aurigae and the other known eclipsing symbiotic
star AR Pavonis would show similar effects.

CONCLUSIONS

IUE spectra have been presented for two old novae and for

two of the symbiotic variables. Prominent emission line spectra
are revealed as is a continuum whose appearance is effected by
the system inclination. These data provide evidence for hot

companions in the symbiotic stars, making plausible the binary
model for these peculiar stars. It is also worthy to mention
that recent'IUE spectra of dwarf novae (ref. ii) provide addition-
al support for the existence of optically thick accretion disks
in active binary systems. The ultraviolet data of the eclipsing
dwarf novae EX Hya and BV Cen appear flatter than for the non-
eclipsing systems (e.g. VW Hyi), an effect which could be ascribed
to the system inclination.
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Figure 1 - The low-dispersion IUE spectrum f o r  t h e  o l d  nova 
V 6 0 3  Aql. The IUE f l u x e s  a r e  compared wi th  t h e  
OAO-2 d a t a  ( f i l l e d  c i r c l e s ) ,  t h e  ANS d a t a  (open 
c i r c l e s  with d o t ) ,  and t h e  white dwarf model fluxes; 
( c i r c l e s  with s l a s h ) .  Dashed regions  of spectrum 
l o c a t e  reseau contaminated por t ions .  Also shown 
a r e  t h e  p red ic ted  f l u x e s  of a  s t e l l a r  model atmos- 
phere (0) and an o p t i c a l l y  t h i c k  a c c r e t i o n  d i sk  (0). 
See d i scuss ion  i n  t h e  t e x t .  

Figure 2 - A s  i n  f i g u r e  1 f o r  t h e  o ld  nova DQ Her. The d a t a  
have been de-reddened using a  va lue  of E(B-V) = 0.08 
mag. The s t rong  La f e a t u r e  i s  geocoronal i n  o r i g i n .  
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Figure 4 - As in figure 3 for the eclipsing symbiotic Cl Cyg.
The fluxes have been de-reddened using a value of
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ABSTRACT

Ultraviolet spectra of RR Tel made with the International Ultraviolet

Explorer satellite are reported. These cover the range 1150-3200 _ at both

high and low dispersion through bothlarge and small apertures_ A range of
exposure times yields a dynamic range of i000 in line intensities. A line

list of 431 lines is presented giving measured wavelength, intensity and full
width at half maximum. Over three quarters of the lines are identified. There

is a correlation of line width with ionization energy. Lines identified in-

elude common species from once to four times ionized. Lines seen are generally
resonance, semi-forbidden or forbidden lines but some recombination lines are

also seen for C, O and Ne. Many Fe II lines are seen - most are from odd

levels near 5 ev to even low - lying levels but decays from even i0 ev levels

are also seen. One third of the decays from the 5 ev levels are part of a

cascade from higher levels. Population of the i0 ev levels may be due to L_

fluorescence. Diagnosis of densities and temperatures suggests stratification.

Forbidden line wavelengths are used to refine intersystem separation of energy
levels in some species.
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Low dispersion data yield a continuum energy distribution. The strength

of the _2175 feature and the He II Paschen line intensities yield EB_ V = 0.L0
magnitude. The continuum energy distribution is not due to a simple combina-

tion of gaseous emission processes and a hot star or accretion disk but the

very high ratio of the energy in the lines to that in the continuum of 3.3

argues such a source must be present.

New ground-based photometry finds variations of order 0.03 magnitudes
r.m.s, from night to night and within a night. If due to the lines this, ila

combination with the emission measure, would interestingly constrain the

distance but it is more likely the variation is seated in the continuum.

The full text of this paper will shortly be submitted to Monthly Notices of

the Royal Astronomical Society. The line list is available on request from
the authors.
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ON THE NATURE OF THE NOVA-LIKE VARIABLE CD-42°14462

E.F. Guinan and E.M. Sion

Villanova University, Villanova, Pennsylvania 19085

ABSTRACT

Low-dispersion long and short wavelength IUE spectra of the nova-like system

CD-42°14462 were obtained on August 24 U.T. 1979. The short wave spectrum ex-

hibits absorption features due to CIII (/_1175), L_ (/_1216), NV (_1240), HeII
(/_1640), SiIV (/_1394), NIV (/_1785) with CIV (/_1550) as a P Cygni feature with
blue-shifted absorption suggesting the presence of material leaving the system, pos-

sible interpretations of this object are discussed.

INTRODUCTIOI _

Nova-like variables seem to be related to cataclysmic variables but are not

known to have suffered major outbursts such as those of dwarf novae, recurrent

novae, classical novae or symbiotic variables.

The system CD-42°14462 (V3885 Sgr) (refs. 1,2, 3,4) is one such system which,

optically, exhibits broad Balmer absorptions, weak He I absorption and Ca II with pos-
sible weak central emission in the H lines. Rapid flickering with periodicities near

30 seconds is presumably associated with a hot spot at the impact region of material

with an accretion disk (refs. 5, 6).

Cowley et. al. _ noted its spectroscopic similarity with the nova-like system
BD-7°3007. If one is viewing a single white dwarf, it is particularly puzzling to have

the simultaneous presence of H, HeI and CaII. In normal white dwarf stars, Balmer

H and He I lines are rarely observed together and when Ca II is present with only Bal-
met lines, the Balmer lines are usually narrower.

CD-42°14462 has recently been observed as an X-ray source by the Einstein

satellite over the energy range 0.15 to 4.5 Key (ref. 7 ). We report below on IUE
observations of CD-42°14462 as part of a survey of nova-like variables at ultraviolet
wavelengths.

OBSERVATIONS
i ilill, ii .,,, ,

We have obtained IUE low dispersion short (SWP 6280) and long (LWR 5450)
wavelength spectra of the nova-like variable CD-42°14462. The exposure times with

the large aperture were 8 minutes for both spectra. The short-wavelength spectrum

was overexposed from 1250/_ to approximately 1330/_ and the long-wave spectrum was
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overexposed in the interval 2450_ to 3000_. The times of mid-exposure were Augus:
24.7180 U.T. and August 24. 7275 U.T. 1979 for the short- and long-wavelength
spectra, respectively. In addition, using the Fine Error Sensor (YES) of the satel-

lite, apparent magnitudes of +10m. 35 and +10m. 34 were measured. These apparent
visual magnitudes are consistent with the measures of other investigators summar-

ized in reference 2, and indicates a reasonably constant light level for the object.
We display the short wave (_t1150A- 1900A) spectrum in figure 1.

The short-wavelength spectrum reveals the presence of the following absorption
features: CHI (Al175), Lyc_ (_1216), NV (_1240), SiIII (A1300), SiIV (_1393,
1402), HeII(A1640), NIV (_1785) and possibly A1HI (A1850). In addition, a rela-

tively strong C IV (A1550) feature is observed in 1_ Cygni profile with blue shifted ab-
sorption and essentially rest-frequency emission. The long-wave spectrum reveals
the possible presence of NIV (_2478), CIV (_ 2493) and OV (_2786) absorption fea-
tures but otherwise appears featureless.

ANALYSIS AND DISCUSSIONi, H , i i i ._

Our continuum fluxes, plotted on a log F_ vs. 1/A (_-1), are shown in figure _,
together with fluxes provided by J.L. Greenstein for a similar nova-like variable,

BD-7°3007. On the same plot, fluxes from broad band photoelectric U, B, V,R,Ipho-
tometry are shown from the observations of Wegner and Eggen for CD-42_14462 and
multi-channel ground-based measurements of BD-7°3007 made by Greenstein (ref. 8 ).
The absolute calibration of the U, B, _V,1RandIphotemetry was based upon the work
of Hayes (ref. 9).

The spectrum of CD-42014462 in figure 2 seems to be essentially fiat from the
far UV out to 5500_ but seems to turn downward longward of V with the lowest flux

values being an I_ measurement near 0.9_t. Shown for Comparison is a FTIc__,1/3
flux distribution derived under local Black Body behavior for a viscous, steady state

optically thick disk (ref. !0), a model stellar atmosphere (Teff = 16,000°K; log g =
4.5) from Kurucz (ref. 11), and a steady state optically thick model accretion disk

from the grid of Herter et al. (ref. 12), corresponding to a mass transfer rate M =
10-7Mo/yr and inclination i = 30°. The X-ray flux points log F_. _ -30.1 ergs s -1
Hz -1 and log FF --_ -28.4 ergs s -1 Hz -1 centered on_5._ and 35_, respectively due to
Cordova (ref. 7 ) are off the scale of figure 2. The accretion disk model of Herter

et al. (ref. 12) for the case shown in the figure predicts an X-ray flux of log FT_ =
-25.6 ergs cm-2s-lHz -1 at 30_.

The model accretion disk spectra shown in figure 2 are clearly discordant with
overall observed fluxes. The 7/1/3 distribution gives far better agreement than the
models of Herter et ah (ref. 10) in the UV, but remarkably good agreement with the
observed fluxes are achieved with the Kurucz stellar atmosphere at relatively low
gravity. While we cannot completely rule out the presence of an accretion disk given
the theoretical uncertainties in the models, the present data are best fitted with the
Kurucz model atmosphere.
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The hot components of other nova-like binaries have been fitted with hot stellar

atmosphere models as reported by Slovak and Lambert for the old slow nova V603

Aquillae, and several symbiotic variables thought to have accretion disks but viewed

at low inclination so that the disk is tilted out of the line of sight. Patterson* re-

ported a cataclysmic variable, HT Cas, in which a white dwarf appears to dominate
the light and seems to be responsible for the observed flickering.

Based upon our present data we cannot rule out any of the following three expla-

nations of our overall continuum fluxes: (1) a hot optically thick accretion disk; (2) a

cooler accretion disk (Teff_ 25,000°K) which mimics a stellar photospheric con-
tinuum; (3) a hot single star (no accretion disk) of uncertain surface gravity. A suc-

cessful model of this system must account for the 0.2 day periodicity in the radial
velocities found by Cowley et al. (ref. 4), the high-frequency oscillations reported in

(ref. 5 ) and the X-ray fluxes reported by Cordova. A further constraint is imposed

by the presence of the C IV P Cygni feature which almost certainly indicates sys-

temic mass outflow of some type.

* Presented at the Fifth Workshop on Cataclysmic Variables, Austin, Texas,Mar, 1980.
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ORBITAL PHASE DEPENDENT IUE SPECTRA OF

THE NOVA-LIKE BINARY TT ARIETIS

E.F. Guinan and E.M. Sion

Villanova University, Villanova, Pennsylvania 19085

ABSTRACT

We have obtained nine low-dispersion IUE spectra of the nova-like binary TT Ari
over its 3h17 m orbital period. Four short-wave spectra and five long-wave spectra
exhibit marked changes in line strength and continuum shape with orbital phase. The

short wave spectra show the presence, in absorption, of CIII, Lyman _, SiIII, NV,

SiIV, CIV, HeII, AIIII, and NIV. CIV shows a P Cygni profile on two of the spectra.
Implications of these spectra for the nature of nova-like variables will be discussed.

INTRODUCTION

The nova-like variable TT Ari (=BD + 14°341) was shown (ref. 1) to be a single
line spectroscopic binary with orbital period P = 0. 13755 days whose observed spec-
troscopic and photometric properties could be accounted for with the canonical model

for cataclysmic variables; a low-mass red star losing mass through Roche lobe over-

flow to a disk surrounding a white dwarf primary. At the point of impact of the gas

stream with the accretion disk, a hot spot is produced which also contributes to the
light from the system.

Photometric studies have been reported (ref. 2, 3,4) which show quasi-sinusoidal
light variations with photometric period P_ 0.1328 days having an amplitude_ 0m2

and quasi-periodic light variations with periods of _ 800 s and_ 40 s having amplitudes

0m. 1 to 0m.2. Long term light variability ranging from 9m. 5 to 11m. 8 over a time inter-
val of about a century are apparent from comparison with those magnitudes given in
the BD catalogue to the value listed by Kulmrkin et al. (ref. 5).

TT Ari has been observed as an X-ray source (ref. 6) by the Einstein satellite in
the energy range 0.15 to 4.5 Key. We report below on IUE spectra of TT Ari as a
function of orbital phase which we have obtained as part of a survey of nova-like vari-
ables at ultraviolet wavelengths.

OBSERVATIONS

We .have observed TT Ari through its orbit with the IUE satellite at low disper-
sion, both short and long wavelength spectra (1100A to 3200A). Table 1 lists the cam-
era image number, aperture size, exposure time and time of mid-exposure ex-

pressed in universal time.
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We have displayed the four short-wave spectra in figures 1-4. Absorption lin_;

features are present due to CIII (Al175), Ly_ +HeII (A1216), NV (A1240), OI +

SIII(A1300), SiIII (A 1394), C IV (A1550), He IT (_1640) and AIIII ( A 1850). In

SWP 6276 and SWP 6277 the AIIII feature is not present. The long-wave spectra r{_-
veal few features that can be reliably considered real due to the noise level present.
Not surprisingly, the contribution of the secondary star t o the long-wave spectrum is

not apparent, a fact in agreement with the optical spectra. We place an upper limil;

on the reddening E(B-V)_, 0.1, based upon the lack of a detectable A2200 absorptior_
dip.

ANALYSIS AND DISCUSSION

The orbital phase coverage of our nine IUE spectra presents the opportunity to

analyze variations in line strength, continuum flux levels and interfacing with the the-
oretical predictions of available binary models of cataclysmic variables. Using all of

our spectra, the first ultraviolet light curve of the system is shown in figure 3. Ul-
traviolet fluxes at 41800 and A2400 are plotted versus time. In the same figure, we

display a Fine Error Sensor (FES) light curve. The light variations shown in both the
UV and FES light curves are consistent with the photometric period found previousl:f

(ref. 2). The shapes are also similar, but the amplitudes of the variation in both

light curves are larger while the mean optical light level is lower than previous phc,to-

metric studies by about 0m5 (ref. 2). In figure 5, we plot the continuum fluxes for
TT Ari taken from the SWP 6278 and LWR 5446 exposures near maximum light. The

fluxes in figure 5 are from the photometry in reference 2 where the magnitudes

were normalized to value of Vmax = +11m90 obtained from the FES measures. These
were converted to absolute flux units with a calibration of Hayes (ref. 7). In the same

figure we plot, for comparison, a F71 _ _1/3 flax distribution for a viscous steady
state optically thick disk based upon local black body behavior, a model stellar atmos-

phere (Teff = 15, O00; log g = 4.5) from Kurucz (ref. 8) and a steady state optically
thick model accretion disk from the grid of Herter et al. (ref. 9) corresponding to a
mass transfer rate l_I = 10-7M®/yr; i = 30°. It is apparent that the accretion disk fits
are in rather large disagreement with the overall continuum. On the other hand, a
Kurucz model atmosphere gives a reasonable fit to the data and implies an Teff

20, 000°K. The lines exhibit an interesting phase behavior in the short-wave region.

Spectra SWP 6275 and 6278 are near the same relative orbital phase (i. e. maximum

light) and have essentially the same line features. Exposure SWP 6277 was obtained
near minimum light and reveals weaker overall absorption lines and stronger emis-

sion in C IV, which has the appearance of a P Cygni profile. Spectrum SWP 6276 oc-

curs at a relative phase intermediate between SWP 6275 and 6278. Cowley et al.

(ref. 1) also find phase dependent changes in their optical spectra which they inter-
pret as being caused by the changing aspect of the hot spot on the accretion disk of

the primary, arising from orbital motion. They attribute the observed optical light
variations to the same model. However, the presence of the P Cygni CIV feature

strongly suggests some type of mass outflow from the system.

Our ultraviolet spectra raise several new puzzles about the nature of TT Arietis
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and related objects. (1) Why are current disk models in disagreement with our con-

tinuum fluxes ? Are the disk models unrealistic or is there an accretion disk present

at all ? If the latter is the case, all of the phenomena associated with a disk (e. g.,

rapid flickering, hot spot, etc. ) must be discarded. (2) Are the strong absorptions

arising from the disk, the stellar component or possibly the hot spot? What is the

significance of the apparent phase dependence of the C IV P Cygni profile ? Is it ari-
sing from a stream, a spherically outflowing stellar wind or from a disk? A resolu-

tion of some of these puzzles may be possible with a detailed analysis of the line
strengths and shapes as a function of orbital phase at both maximum and minimum

light. Would coverage of 2 or more consecutive orbits over an extended interval re-

veal the same phase dependent behavior as reported here ? (3) If the interpretation of
Cowley et al. (ref° 1) is correct why does the system not exhibit dwarf nova type out-

bursts ? A more detailed analysis of this interesting system will be forthcoming.
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TABLE I

IUE SPECTRA OF TT ARIETIS

Camera Number Aperture Exposure Time of Mid- Exposure
(rain) AUG. 24.0 U.T. 1979

LWR 5445 Lg 15 24. 4317

SWP 6275 Lg 10 24.4451

LWR 5446 Lg 8 24.4649

SWP 6276 Lg 9 24.4866

LWR 5447a Lg 4 24.5051

LWR t_447 Sm 4 24. 5266

SWP 6277 Lg 9 24. 5363

LWR 5448 Lg 4 24. 5558

SWP 6278 Lg 9 24. 5786
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Figures 1-4: IUE flux plots of TT Arietis as a function of relative orbital phase plotted
in IUE flux units vs. wavelength exuressed in.& units.
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Figure 5:

Top paneloof the figure shows a plot ot the )(1800 and )_2700 UV fluxes obtained
over 100 Abandpasses. The/_1800 and/_2700 fluxes were shifted in the

figure to match at minimum light near Aug. 24.54 U.T. 1979. The times

• at which the various IUE spectra were obtained are also indicated in the

figure. The apparent visual magnitude obtained with the FES on the satellite
are also shown.
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Flux plot of log F_ vs. _-.I The small dash curve is a Kurucz model
atmosphere for Teff = 16,000°K; log g = 4.5, the large dash curve is a IIerter

• , " 7
et al. aeer_n dmk model, (M = i0- M@/yr; i = 30°) and the solid curve
is F7 _ 7/ " . Optical fluxes are labelled with corresponding bandpass
designations.
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SEARCH FOR COLLIDING STELLAR WINDS IN
PLASKETT'S STAR (HD 47129)

Sara R. Heap

Laboratory for Astronomy and Solar Physics
Goddard Space Flight Center

Greenbelt, MD 20771

ABSTRACT

High-dispersion spectra of Plaskett's star (HD 47129) were obtained
with the short-wavelength spectrograph on IUE at five phases of the
binary cycle. The unsaturated wind profiles, particularly those of Si IV
_1400, show complex, phase-dependent structure. Two interpretations for
the structure are suggested, neither of Which is entirely satisfactory:

(1) the structure is a consequence of directed streams, and (2) the
structure is a consequence of colliding winds from the primary and
secondary.

INTRODUCTION

In the past 15 years, two observational discoveries from space have
changed our way of thinking about OB stars. The first discovery, made by
Morton (Ref. l) and his colleagues at Princeton, was that OB giants have
high-velocity winds. The second discovery, made by scientists using the
Uhuru satellite (Ref. 2) was that some close binaries having an OB
component emit x-rays. The interpretation of these observations is that
the secondary is a compact object embedded in the wind of the OB giant,
and x-rays are generated in the wake of the wind accreting onto the
compact object. I don't think there is any doubt today that the massive
x-ray binaries,are associated with accretion by a compact object.
Nevertheless, it is useful to think of other mechanisms of x-ray emission
that do not involve a compact object. Prilutskii and Usov (Ref. 3) have,
in fact, considered how x-rays might be generated in close binaries
containing two 0 stars. They suggest that x-rays could be generated
behind a shockfront formed where the wind of the primary collides either
with the secondary itself, or with the wind of the secondary. It is this
latter possibility -- the phenomenon of colliding winds -- that I wish to
use as a framework for discussing Plaskett's star (HD 47129).

Let me first review the evidence that the two components of
Plaskett's star do, in fact, have winds which may interact. Detailed
studies of the visual spectrum (Ref. 4, 5, 6) indicate that Plaskett's
star is a double-line spectroscopic binary whose components are both
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O-giants. Table I summarizes some of the properties of the two
components (Ref. 6). Although the spectral types are approximately the
same (07 I), their flux distributions differ, with the secondary
appearing slightly cooler. In the red region of the spectrum, the
primary and secondary are of approximately equal brightness, while in the
blue spectral region, the primary is at least three times brighter.
Spectra obtained with IUE indicate that in the ultraviolet, only the
primary is visible, as indicated by the fact that "photospheric" lines
like N IV x1718 show radial-velocity variations which follow the
radial-velocity curve of the primary (although shifted to shorter
wavelengths by about 200 km/sec). The IUE observations also indicate
that the primary has a wind typical of those of 0 giants with a terminal
velocity of 2500 km/sec. Since the visual spectrum of the secondary is
similar to that of the primary, and since the mass and radii of the two
stars are similar (Ref. 6), I assume that the secondary also has a
high-velocity wind.

Consequences of Colliding Stellar Winds

If this is the case, it seems worthwhile to develop the observable
consequences of colliding stellar winds and to compare these predictions
with observation. One potentially observable consequence of colliding
stellar winds is, of course, the generation of x-rays. Cooke, Fabian and
Pringle (Ref. 7) have predicted measurable x-ray luminosities of six
binaries, including HD 47129, in which both stars are thought to be
0 stars undergoing mass-loss. Fabian, in fact, has observed Plaskett's
star with HEAO-2, and I just found out yesterday the outcome of these
observations: HD 47129 is an x-ray source with an x-ray luminosity of
6 x lO32 ergs per sec. This luminosity is two orders of magnitude
below COok et al.'s predictions. In fact, it is equivalent to x-ray
luminosities of garden-variety single stars. Another potentially
observable consequence of colliding winds is the alteration of the
properties of the winds. The theory has not been developed in any
quantitative manner, but it is not hard to see at least qualitatively how
this alteration might go. In the absence of a companion, the 0 giant has
an accelerating wind. The predominant species in the wind are ions like
N V, Si IV, C IV which scatter stellar photons, thereby producing the P
Cygni-type features typical of O-type ultraviolet spectra. Now consider
how a companion with a wind modifies the situation (Figure l). According
to Prilutskii and Usov, a highly ionized cavity will form where the two

winds collide. The presence of the cavity may be detectable through its
effect primarily on the ionization law and secondarily, on the velocity
law of the stellar wind. The ionization law describes how the number of
ions capable of scattering varies with velocity in the wind. Because
N+4, Si+3, C+3 are ionized to higher stages in the cavity, the P
Cygni profiles of N V, Si IV, C IV are modified at the wavelengths
corresponding to the velocities of the cavity. The velocity law
describes how the velocity increases with distance. It may also be
modified by the high-ionization cavity since the ions in this cavity have
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TABLE I

PROPERTIES OF HD 47129
(taken from Ref. 6)

Period = 14.439601 days

200 km/s (He II, Si IV, He I lines)K = 162 km/s (Hy)

MIX M2_ 55 M° or more

RI_ R2_ 20=25 R

Distance between stars_100 R
O

M_ 2 to 8 x 10-6 Mo per year
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no resonance transitions accessible to the stellar photons and hence,
radiatively-driven acceleration is not possible in the cavity. The main
effect, then, of the high-ionization cavity is the appearance of
structure in a P Cygni profile. Furthermore, the appearance of structure
should be phase-dependent: the profile should remain unaltered at phases
0.5 to l.O since the line of sight from the primary to the observer does
not pass through the cavity, while it should be altered at phases 0.0 to
0.5.

IUE Observations

The IUE spectra show evidence for phase-dependent structure in some
of the wind profiles, most notably Si IV and C IV. These two features
are formed by scattering material over the full range of velocities, but
because they are not fully saturated, they are still sensitive to
anomalies in the ionization law. Figures 2 and 3 show the profiles of
the Si IV and C IV wind features at four phases covering nearly half of
the orbital cycle. (I should note that a good deal of care was taken in

deriving the observed profiles so as to insure that the reduction process
itself would not be a source of spurious structure. In particular, the
interorder background was smoothed by a 31-point median filter followed
by two 15-point running averages before it was used to obtain the net
fluxes. In addition, the echelle ripple "constants" were derived for
each profile by trial and error until the three orders containing a given
profile overlay one another in the wavelength intervals where they
overlapped. In no case did the constants used in the standard reduction

procedure sufficel) For comparison, the top of each figure shows the
profiles of these two features as calculated from the formulae and tables

of Castor and Lamers (Ref. 8). Examination of Figures 2 and 3 shows the
development of structure in the Si IV wind profile until at phase,
@ = .47, three sets of absorption features are visible, or alternatively,
until two sets of "lack-of-absorption" features are visible. The radial
velocities of these features are given in Table II. Although less
dramatic, the C IV feature shows the development of "lack-of-absorption"
midway in its profile at phase, ¢ = .64.

The structure of these lines is open to several interpretations, none
of which is entirely Satisfactory. One, which follows along the lines of
Struve, Sahade and Huang's interpretation of the visual spectrum, is that
the wind of the primary contains directed streams which account for the

sharp absorption components of the Si IV profile. If the velocity law
for the components is the same as for the rest of the wind, then these
streams extend out to 1.6 stellar radii. It is hard to understand how

these streams could remain so contained with so.little velocity
dispersion out to such-large distances. Another interpretation, which
follows along the lines of the colliding wind hypothesis, is that the
structure of the wind profiles is due to the "lack of absorption" caused
by the erasure of Si+3 and C+3 in the high-ionization cavity. A
simple model for the high-ionization cavity, such as that shown in
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TABLE II

Measured Radial Velocities from SWP 4819 (_
g _7_

J

ID Velocity Remarks

Si IV X1593.755 -1550 Sharp

-1190 Sharp

-370 Broad

+48 Sharp,
interstellar

Si IV k1402.769 -1570 Sharp

-1140 Sharp

-460 Broad

+45 Sharp,
interstellar

!
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Figure I, does not explainthe observedphase-variations,but surely the
geometryof the cavitymust be more complicatedthan this simple model.
The developmentof a more realisticmodel that includesthe angular
momentum of the system and possiblyunequalrates of mass-lossfrom the
two componentswould appear to be a fruitful line of research.
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OBSERVATIONS OF CATACLYSMIC VARIABLES WITH IUE*

L. Hartmann and J. Raymond
Harvard-Smithsonian Center for Astrophysics

Cambridge, MA 02138

AB_/'/L4CT

We report observations of the cataclysmic variables AN U1VIa,
2A0311-ZflT, VV Pup, DO Her, and GK Per made with IUE. We
have been able to detect continuum emLssion in the short-

wavelength (_ 1180-19_0) region in DO Her. This object exhibits
a quasi-biackbody (~ u_') spectrum at short wavelengths; such
blackbody components are a common property of the variables AM
Her, SS Cyg, and U Gem, suggesting an underlying similarity in
the activity of these diverse systems. "Flat" continuum com-
ponents at longer wavelengths In general are not compatible with
standard disk models. The emission Line ratios in AE Aq¢ are
anomalous, in that C IV is absent to a very low level relative to N
V.

INTRODUCTION

Ultraviolet spectroscopy of cataclysmic variables is yielding a much dif-

ferent Perspective on the nature of such objects than that obtained from optical

and X-ray observations. In another paper (ref. 1) we have discussed the UV
spectra of AM Her, SS Cyg and U Gem. Although these objects have quite dif-
ferent optical characteristics, they all exhibit blackbody components of UV
emission with temperatures in the range 10 eV -40 EV. Here _-e examine the

spectra of several other cataclysmic variables in order to study the ultraviolet
emission through a wider range of stellar properties.

o

OBSERVATIONS

a) DQ Her

The object Nova DQ Her (1934) has been well studied photometrically and

spectroscop_call_ (refs. 2, 3, 4). Optically, it ls a single-lined binary with a
period of 4"30". Periodic oscLllations indicate that the white dwarf has a rota-
tional period of 71 sec. Narrow emission lines arise from a nebular shell ~ Z0"
in diameter; He II _4686 and high Balmer series lines follow the radial velocity
variation of the hot object. These lines are doubled, with a separation ~ 650
km s "1 (ref. 4), interpretable in the standard way as emission from a rapidly
rotating disk.

In Fig. 1 we show a 165 min. exposure on DQ Her taken through the large
aperture at low dispersion. The spectrum Is composed of a curving continuum
upon which emission lines of N V, C IV, Si IV, He H, and C II are superimposed.

ISupported in part by NASA Grants NSG 5370 to the Harvard College Ob-
servatory and NAG-5-5 to the Smithsonian Astrophysical 0besrvatory.
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The line ratios are very similar to those observed in AM Her. In addition, the

continuum shapes are similar in ])_) Her and AM Her. The ubiquitous blackbody
emission appears as a Rayleigh-Jeaua distribution rising for )_ ( 1500_ The

similar emission seen in AM Her, _S Cyg and U Gem was interpreted by Fabbiano
et al. (ref. 1) as the result of nuclear burning of the accreted material.

Kraft (ref. 3) inferred the presence of an ultraviolet component with a
blackbody temperature ~ 8 eV in an attempt to account for the A4686 emission

by phototonization. Our results indicate a temperature _ 10 eV. However, we
are unable to account for all of the k 1840 emission by recombination following
photoionization by. the blackbody component. As discussed by Fabbtano et al.
(ref. 1), if the p'_" component of the continuum and the A1640 emission are

both produced by optically thick cool gas illuminated by the black body, the
_1640 equivalent width is a simple function of black-body temperature. The
maximum predicted equivalent width is _16_, while the observed value is
40_. Therefore either the emitting gas is optically thin to continuum radiation
(ref. 5) or the A1640 emission is produced by a mechanism other than recombi-

nation following photolontzation by the blackbody component.

One clear difference of the IX} Her spectrum from that of AM Her is in the
line widths. In AM H_r the emission in He II _ 1840 comes fro_ a narrow
component of 80 km s "L width and a broad component - 600 km s "l wide (ref.

6); this corresponds nicely with the optical observations of h4686 (ref. 7). The

optic.a_ profile of A4686 in DQ Her is doublepeaked, with a separation of ~ 650
kln s'" between.components (refs. 3, 4). The low-dispersion resolution of IUE
is ~ 1000 km s "1 at A1640, so that tt is difficult to determine the expected line

Width. The A 1840 profile of DQ Her is margin_ly broader than that of AM Her,
formally suggesting a line width ~ 800 km s", which is consistent with the
optical data within observational errors.

However, there is no question that the C IV, Si V, and N V profiles are

much wider tn IX} Her than in AM H.e_. From the C IV and N V widths we esti-
mate a velocity width ~ 1400 Pun s . Thus we have evidence of the manner
in which the temperature of the disk decreases with increasing distance from
the star.

The similarity of line strengths between AM Her end I_ Her, despite the
fact that AM Her shows no evidence for a disk accretion pattern, demonstrates
that the excitation of the ultraviolet emission is not controlled by the geometry
of the flow.

We have also detected nebular emission from the expanding nova shell in C

H _1335 and C III] _1909. The image of the 10" x R0, large aperture is barely

visible on the photowrite _i_ge. Fro._ the line-by-line, spectra we estimate
fluxes of 4.7 and 1.Z x 10 "''j erg cm s "I in _1335 end A1909 respectively

from about one-half of the nebula. We do not detect the C I _1656 e__sionbyFerl dandTuran(ref.6),buttheupperlimitof- x 10"" erg
cm-_s -" Ls within the two order of magnitude uncertainty of the prediction.
The C II and C HI emission probably arise from the relatively hot component of
nebular gas which emits the IN II] and [0 II] linesr(ref. 9) rather than the cold,
recombining gas, because recombination from the ground state of C Ill to the
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ZsZp z upper level of X1335 would require a two-electron transition.

b) AN U'Ma and GK Per

AN UMa is_n "A_ Her"type system, i.e.a I- to 3-hour binary consistingof
a magnetic (I0' - 10Vg) white dwarf accretingmatter from a red dwarf. The
SWP spectra of AN UMa, W Pup and 2AO311-Z27 (the 3 AM Her types other

than AM Her) alllook remarkably similar when scaledwith opticalbrightness.

The spectrum of AN U1VIa is shown in Fig. 2. While it has strong C IV, N

V, and He II emission as in DE} Her, there appears to be little if any continuous
emission. Bather, much of the spectrum appears to be composed of weak emis-
sion Lines. This statement appears to be firm despite the low signal-to-noise
ratio of the exposure on the basis of intercomparison of two separate exposures.

There is some evidence for an asymmetric profile of C IV in AN UMa as
well as in DQ Her; with some extra emission on the short-wavelength side.
What significance this asymmetry has is not known. The spectrum of

ZAO311-_.27 is very similarto that of AN UMa.

In Fig.3_ we show the spectrum of the old nova GK Per (Nova Per 1901).

Despite the weakness of the exposure, it is clear that the C IV emission isrela-
tively weak viewed against the neighboring "pseudo-continuum" when com-
pared with AN UMa. The emission structureappears to have similaritiesto AN

UMa, particularlyin a possibleN V emission followed by an "absorption"dip ~
IgS0-1370_. "

Of particular interest is the rough similarity of the GK Per spectrum to that
of the hot UV stellar source in the center of the globular cluster NGC 66Z4
which has been identified with the bursting X=ray source (ref. 10). Although

the spectrum is again quite weak, multiple long exposures indicate some evi-
dence for the "absorption"dip at 1R50- IZTO_as well as a general lack of

prominent emission lines.

The nature of the spectra in AN UMa and GK Per suggest an opticallythin

emitting region in the accretiondisk. Our interpretationof the blackbody com-
ponent as the resultof nuclear burning on the white dwarf suggests that the

difference in short-wavelength continuum isprimarily due to the differencesin
how the accreted material arrives on the white dwarf surface.

c) AE _uarii

Tlle short wavelength spectrum of AE Aquarli is much different from those
of the strong emission line objects discussed above in that N V and Si IV are
extremely strong, while C IV is ba_ely detected. One possible explanation is an
abundance anomaly. Another is an emitting region extremely optically thick in
the lines, as discussed for the Balmer lines by WiUtams (ref. 5). The relative
intensities of N V and C IV can be explained if the lines are formed at tempera-
tures of 16,000K and 10,00K respectively, as might be expected for cool gas
illuminated by X-rays (ref. 11). The emitting area required is sensitive to the
temperatures of formation, but it is consistent with reasonable sizes for an
accretion disk.
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COORDINATED IUE, EINSTEIN AND OPTICAL OBSERVATIONS OF

ACCRETING DEGENERATE DWARFS*

G. Fabbiano, J.E. Steiner**, L. Hartmann and J. Raymond

Harvard-Smithsonian Center for Astrophysics

ABSTRACT

Three binary systems believed to be composed of a white dwarf and a late

type star, AM Her, SS Cyg and U Gem, were observed simultaneously in the UV

X-ray and optical wavelengths. AM Her was in its customary high state at the

time of the observations, while SS Cyg and U Gem were in a low state. In all

three cases, a significant UV black body component with K__T_ i0 eV was found.

The flux in this component is in excess of the amount predicted by current

scenarios of gravitational energy release.

We compare our observations of these objects with the data available in

the literature, and we suggest an alternative scenario that would explain their

general behavior.

INTRODUCTION

AM Her, U Gem, and SS Cyg are believed to be binary systems consisting

of a late type star and of a more massive white dwarf. Optically they can

be found in either a high emission state (mv _ 12, 8.1, 8.8 for AM Her, SS

Cyg and U Gem respectively) or a low emission state (mv _ 15, 21.1, 14.4).
SS Cyg and U Gem are optically quite similar, undergoing quasi-periodical

outbursts _asting a few days. AM Her instead is found typically in the high
emission state. These systems have all been detected in the X-rays. The

mechanism of X-ray emissionis generally believed to be radial accretion

on the white dwarf. The three systems chosen for this study represent
different kinds of accreting white dwarfs. AM Her has an intense magnetic

field (B _ 108G) (ref. i) and because of this, it is believed to have no

accretion disk and to be powered by an accreting column at the magnetic pole

of the white dwarf. Optical spectroscopy shows that both SS Cyg and U Gem

ere associated with accretion disks The X-ray behavior of SS Cyg has lead

to an estimate of a magnetic field B _ 106G associated with the white dwarf

(ref. 2) No estimate of B has so far been produced for U Gem. The fact that

*Supported in part by NASA under contracts NAS8-30751 and NAS8-30453 and

grants NAG 5-5 and NSG 5370.

**Also IAG-Universidade de Sao Paulo, Brazil under contract FAPESP(03)

79/0629.
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the hard X-ray luminosity of U Gem is at least one order of magnitude smalle,

than that of SS Cyg suggests different magnetic field intensities and/or

accretion rates in the two systems. The comparative study of these three

accreting degenerate dwarfs should then give us information that can put

interesting constraints on the theory for different values of the parameters
of the systems.

In this paper, we report the results of coordinated observations in the

optical/UV/X-rays of AM Her, U Gem and SS Cyg, and we compare our findings

with the existing theoretical predictions. The simultaneity or quasi-

simultaneity of our observations in the different energy bands allows us a

straightforward, unambiguous comparison with the theory. For a more detailed

discussion, see ref. 3.

OBSERVATIONS

A description of the X-ray instruments on board the Einstein ObservatorN

may be found in ref. 4; for a description of the International Ultraviolet

Explorer, see ref. 5.

AM HER

AM Her was observed with the 500 lines/mm Objective Grating Spectromete_

in front of the High Resolution Imager (HRI) onboard the Einstein ObservatorN

on March 17, 1979. The OGS allows us to obtain spectral information, which

otherwise are not provided by the HRI. The soft X-ray spectrum of AM Her

obtained from the OGS observations does not show any line contribution

(Seward 1979, private communication). It is consistent with a black body

radiation with KT ~ 30-40 eV (Heise 1980, private communication). The X-ray

properties are summarized in Table I.

The short-wavelength spectra are spaced fairly uniformly over, two orbital

cycles. They confirm the suggestion of Raymond et al. (1979a) (ref. 6) that

the UV continuum is the sum of two power law components. The F9 = _,I com-

ponent is always present while the F_ = _2 component disappears in phase with
the X-ray eclipse. The UV continuum may be separated into the two components

as shown by Raymond et al. (1979b) (ref. 7). The F9 = 92 component may be
interpreted as the Rayleigh-Jeans tail of the _ 30 eV black body which pro-
duces the soft X-ray emission.

U GEM

U Gem was observed on April 29, 1979 for 1,170s with the Imaging Propor-

tional Counter (IPC) onboard the Einstein Observatory. This observation

occurred 20 minutes after _ 8 hours of observation with the IUE satellite,

during which six spectra of the source were taken. Each one of the IUE

spectra was exposed from 40 to 60 minutes. U Gem was reported by the AAVSO
to be in an optical low state at about m = 14.2 at the time of the X-rayv
and ultraviolet observations.
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From a comparison of the hardness ratios of U Gem and SS Cyg, we find

that the X-ray spectrum of U Gem at minimum appears to be softer than that of

SS Cyg (KT ~ 20 keV). We define the hardness ratio as the ratio o£ the counts

in the (_ 1-4) keV band to those in.the (< i keV) band. The IPC hardness

ratio of U Gem is <.4 while that of SS Cyg is _ 1.7. The hardness ratio of

SS Cyg has been calculated using unpublished IPC data taken in 1978 December,
during an optical low state.

The (.5 - 4 keV) luminosity of U Gem is 1.3 ± .2 x 103o erg s-I for a

distance of 76 pc (ref. 8). The X-ray observations show clear presence of

variability. The X-ray intensity appears to decrease during the length of

the observation; a feature involving a decrease of the intensity in a smaller

time scale is also present. A X2 test shows that the data are definably

incompatible with the hypothesis of constant intensity for time scales

greater than 2 minutes.

The average of five short-wavelength IUE spectra is shown in Figure 4.

In contrast to AM Her and SS Cyg (see below) the spectrum exhibits only
absorption lines on a strong continuous background. There are no emission

lines (the Ly_ feature is very likely only geocoronal) while absorption lines

of OI, CII, SiIV, CIV and HeII are present. A broad Ly_ absorption line with

a width A1 _ 70_ is also present.

Fig. 7 shows the composite spectrum of U Gem. A strong UV component can

be seen with fuv _ 200 (fo_+ + fv), assuming a UV temperature _ i0 eV. For
the distance found by Wadee_1979_ (ref. 8) the UV emitting area is between

3% and 15% of the canonical white dwarf projected surface. These facts,

together with the facts that no strong and hard X-ray and no UV emission

lines are seen, indicate that the UV component comes from the inner region

of the disk (boundary layer) or from the accreting belt.

SS CYG

SS Cyg was observed simultaneously with the Einstein Observatory and the

IUE satellite on May 17, 1979. The X-ray observation was done with the HRI/
OGS (i000 lines/mm grating) in the focal plane of the telescope and lasted

9.9 hr. The total observing time, because of Earth occultation and other

data gaps is 3.4 hr; of these about 2 hr are simultaneous with the observa-
tions in the ultraviolet. The IUE observations cover a total time of about

6 hr within the X-ray observing time. A total of nine low-dispersion long-

wavelength spectra were taken, four of which are simultaneous to X-ray obser-

vations. SS Cyg was monitored by the AAVSO and appeared to be in an optical

low state at the time of the Einstein and IUE observations, at a magnitude

between 11.3 and 12.0. Szkody (1979, private communication) observed the

source photometrically simultaneously with the Einstein and IUE observations.

The X-ray, _UV and optical observations are summarized in Tables I and II.

The MPC data are consistent with an exponential spectrum with kT = 10-30 keV

and no significant low ener§y cut-off. The 2-6 keV intensity of SS Cyg is
(4.4 - 5.8) x 10-11 erg cm- s-I.
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The average IUE spectrum of SS Cyg is shown in Figure 2. The emission

lines are the same as the ones observed in AM Her, but the line/continuum

ratios appear to be smaller. The main difference with the AM Her UV spectr_

is in the presence of a broad Ly_ absorption llne. We measure a width for
this line of_X= (45 ± 5)_.

The composite spectrum of SS Cyg during the May 17 observation is plotted

in Figure 6. Here again, as in the case of AM Her, the UV data can be inter-

preted in terms of two components: a _-I.s power law that extends through
the optical points and a _ component that is predominant at the short wave-

lengths and could be representative Of the Ray_igh-Jeans end of a black body
spectrum.

The similarity between the AM Her and SS Cyg UV spectra suggests that

SSCyg, like AM Her, has magnetic funneling. This is consistent also with

the hard X-ray emission at minimum. In maximum, however, the picture (fig. 113)

is morellke U Gem, which, we suppose, has an accreting disk. This difference
can be explained by the higher accretion rate at maximum, when the Alfv_n
radius is of the order of the star radius.

DISCUSSION

Despite previous work that indicates that AM Her, U Gem and SS Cyg have

substantially different accretion patterns, they possess one outstanding

similarity. All of these cataclysmic variables have an UV short wavelength

component of their continuum spectrum which follows a _ _2 power law. This
component had already been noticed in the spectrum of AM Her (ref. 6); our

new observations show that it is also present in SS Cyg and in U Gem in

quiescence. As discussed by Raymond et al. (1979a)(ref. 6), if this feature

represents the Raylelgh-Jeans end of a black body with temperatures of the

order of 20-30 eV (see also ref. 9), the UV and soft X-ray luminosity of

AM Her would be far greater than its hard X-ray luminosity. As is apparent
from our data (Figure 5, 6 and 7 and Table 2), the same is true in the case

of SS Cyg and U Gem. This property disagrees with models of emission purely

from gravitational accretion, both with and without magnetic fields (ref. i0_

ii). A possible resolution of this problem is the action of nuclear burning..

Kippenhahn and Thomas (1978) (ref. 12) have shown that it is possible to have

localized burning in dwarf novae. They also suggested that the different

geometry could alter the condition for unstable burning which plays a crucial

role in current nova theories (ref. 13, 14). Moreover, the possibility of
stable slow burning involving the p-p reaction instead of CNO burning is

currently being investigated (Starrfield 1980, private communication). The

results so far are very encouraging although detailed dynamical calculations

applied to the particular dwarf novae configuration have not yet been per,
formed. The action of nuclear burning on the X-ray flux in a radially

symmetric accreting white dwarf has been investigated by Katz (1977) (ref. 15)

and more recently by Weast et el. (1979) (ref. 16).

Our findings can be resumed as follows:

504



i) We have discovered the presence of a strong excess UV radiation in

SS Cyg and U Gem. For U Gem we show that this radiation, for the most likely

parameters for the system (ref. 8), is likely to originate from the boundary

layer of the accretion disk. The luminosity of the UV component is 200
times larger than the combined optical and X-ray emissions. This is incon-

sistent with the traditional picture of gravitational accretion. We suggest

that such a large UV flux might originate from nuclear burning (refs. 12, 16)

(Sparks 1980, private communication) at the surface of the white dwarf in the

vicinity of the disk boundary layer. A possible black body component of the

UV flux similar to the one in U Gem is seen also in AM Her (confirming

previous observations by Raymond et al. 1979a)(ref. 6) and in SS Cyg.

Although the UV excess in these two systems is not as high as the one seen

in U Gem, it is not possible to explain it in terms of the current theoretical

framework (refs. i0, 17). In both cases the UV emitting area is of the same

order of the X-ray emitting area, and in AM Her, in particular, the black body

UV flux is eclipsed in phase with the X-ray flux. We suggest that nuclear

burning of the accreted material might also happen in SS Cyg and AM Her and

be responsible for the excess.

2) If nuclear burning is responsible for the UV black body excess, we

find that AM Her, SS Cyg, and U Gem can be explained within a scenario of

accretion in different magnetic regimes. A strong magnetic field (_ 108G)

in AM Her would be responsible for polar radial accretion, as suggested by

many authors (see review of Chiappetti et al. 1980, ref. 18 and references

therein). A re-examination of the data collected on SS Cyg both at maximum

and at minimum, together with our new observations, shows the presence of a

magnetic field _ i0 s - 106G, as suggested by Ricketts et al. (1979)(ref. 2).

SS Cyg at minimum looks remarkably similar to AM Her, consistent with a

picture of polar magnetic accretion. But the magnetic field is not so
intense as to inhibit completely the formation of a disk, as shown by the

observations of Walker and Chincarini (1968) (ref. 19). The increased

accretion at maximum causes the magnetosphere to move closer to the white

dwarf with the consequent building up of a disk. In U Gem instead, the

magnetic field is so low as to make polar accretion impossible even at a

minimum, as shown by the lack of emission lines in the UV.
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TABLE I

X-RAY OBSERVATIONS

Start and Stop Times Energy

1979 (UT) Instrument Band (keV) Flux (erg cm-2s -I) D (pc) Lx(erg s-I)

AM Her 764 23_ 23m 2s HRI/OGS (500) .i - 4.5 3.2 x i0-I0 + 15% 100 3.6 x 1032

77_ i_ 43m 40s MPC 2 - 6 (ON time)
1.0x i0-II ± 15%

(eclipse)10_ll(6.6 ± .2) x
(ON time)

* (eclipse)

U Gem i19 d ih 34m 16s IPC .5 - 4.5 (2.0 ± .2)x10 -12 76 (2) 1.3 x 1030

2h 20m 41s MPC 2 - 6 <2.5 x i0-ll (30) <1.6 x 1031(3o)

7h i0-iiSS Cyg 137d 19m 53s HRI/OGS (i000) .4 - 2 3.5 x ± 20% 120 (i) 5.7 x 1031
17h 14m 29s MPC (4.4 - 5.8) xl0 -II 8.3 x 1031

*no eclipse data are available forMPC spectral analysis
(i) Kiplinger 1979 (ref. 20).
(2) Wade 1979 (ref. 8).



TABLE 2

a a LHX a (eV) THx(keV)Lopt LBB TB B

AM Her 6 x 1032 _ 2.3 x 1034 7.5 x 1031 _ 28 > 30

SS Cyg _ i x 1033 > 3.0 x 1033 2.1 x 1032 10-12 10-30

U Gem _ 9 x 1030 > 2.3 x 1033 1.3 x 1030. > i0

a In units of ergs s-l; distance determinations are discussed in the

text. The LHX refer to the total hard X-ray emission.
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Figure 1. Average short wavelength UV spectrum of AM Her during the 1979
March 17 observations.
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Figure 2. Average short wavelength UV spectrum of SS Cyg during the 1979
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the observations. Notice the similarity with the UV spectrum
of AM Her (Fig. i).
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Figure 5, Composite spectrum of AM Her in high state. The optical, UV
and X-ray points were obtained during the 1979 March 17 simul-

taneous observations. The optical point (dot) has been given
to us by the AAVSO. The infrared points are the measurements

of Merrill (crosses) and Rieke (square) as reported by Swank
et al. (1977) (ref. 21).
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Figure 6. Composite spectrum of SS Cyg both in quiescence and in outburst.

The U, B, V points (dots) in the spectrum in quiescence are the

photometric measurements of Szkody (1980, private communication)
simultaneous to the IUE (dots with error bars) and Einstein

(lines) measurements of the 1979 May 17. The lower energy X-ray
measurement is the HRI/OGS observation; the higher energy

measurement represents the MPC data. The double line represents

the range of variability of SS Cyg during the MPC observations.
The continuous line that covers the IR through optical range

is from the spectrophotometric measurements of Kiplinger (1979)

(ref. 20). In the spectrum during outburst, the continuous

line is again from Kiplinger (1979) (ref. 20) and the dotted llne
underneath it represents the Szkody (1976) (ref. 22) photometric
measurements. Both these lines have been normalized to the UV

data (Head et al. 1978)(ref. 23) during which the visual magni-
tude of the source was 9.5,one magnitude fainter than at maximum.

The X-ray data are from Cordova et al. (1980)(ref. 24).
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Figure 7. Composite spectrum of U Gem at minimum. The UV and X-ray points

are relative to the quasi-slmultaneous observations of 1979
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time of the IUE and Einstein observations, as reported by the

AAVSO. The dots cover the IR and optical observations of

Wade et al. (1979)(ref. 8).
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CYCLOTRON EMISSION FROM AM HERCULIS 1

G. Chanmugam 2
Joint Institute for Laboratory Astrophysics
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ABSTRACT

The cyclotron absorption coefficients, in the ordinary and extraordi-

nary modes, are calculated for the shock heated region of AM Her. Tbe equa-
tions of radiative transfer are solved and the _ntensity of the emitted UV

radiation determined as a function of angle. The average spectrun is shown

to have deviations from the previously predicted Rayleigh-Jeans spectrum and

the magnetic field of _ Her is deduced to be roughly 5 x 107 gauss.

INTRODUCTION

The _ Herculis binaries are believed to contain a magnetic white dwarf,

accreting matter from a companion star (refs. i-3). The polarized light ob-

served has been interpreted as being due to cyclotron emission, at the funda-

mental cyclotron frequency mc = eB/mc, in a magnetic field B _ 2xlO gauss.

It has been suggested that the matter accreting along the field lines forms a

shock heated region (height h ~ 106 ) cm above the magnetic pole (refs. 4,5).

This region was predicted to be a source of strong optically thick cyclotron

emission peaking in the ultraviolet. However, the observed flux is much

weaker (ref. 6). The theoretical estimates for the self-absorbed cyclotron

emission were made using the angle-averaged cyclotron absorption coefficient

(refs. 4,5,7). Recent estimates (ref. 8), made using the total cyclotron

absorption coefficient and taking angular effects into account, suggest that

the Rayleigh-Jeans spectrum would not be filled and that as a result the UV

flux would be less than was previously predicted (refs. 4,5). In this paper

the absorption coefficients _(_,8) for the ordinary (+) and extraordinary

(-) modes are separately determined and the total intensity of the emitted

radiation deduced as a function of frequency m and the angle 8 between the

direction of the radiation and the magnetic field.

Isupported by NSF Grant AST-76-O6807-A01.

2,TILA Visiting Fellow, on leave from Dept. Physics and Astronomy, Louisiana

State University, Baton Rouge, LA 70803.
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CYCLOTRON RADIATION

The cyclotron absorption coefficients _(_,8) have been calculated, for
a three-dimensional relativistic ?_xwell distribution (as in ref. 8) for the

electrons, by a modification (ref. 9) of methods previously used (refs. i0,

ii). For the shock heated region of AM Her the Faraday rotation angle _

A(_c/_)2/2_ is >> i, since the dimensionless parameter A _ _p2h/_cC ~ 106

(see eq. (3)), where Up is the plasma frequency and _/_c _ i0. In this
case, the transfer equations for the intensities in the two modes decouple

and (assuming Kirchhoff's law) take the form (ref. i0)

dI±(_,e)

dz + _±(_J,6).l±(_,e) = _±(_,G)IRj , (I)

where IRj = 0_2kT/8_3c2 is the Rayleigh-Jeans intensity per POlarization

mode. For a homogeneous plasma, the solutions are:

I± = IRj[I - exp(-_±L)] (2)

where L is the path length of the radiation through the source. The total

intensity is then given by I = I+ + I_.

RESULTS

The shock heated region is treated as a uniform plasma slab which is

perpendicular to the magnetic field so that the path length of the radiation

is L=h/cos e. The temperature of the slab is taken to be kT = 20 keV, as

may be inferred from the hard X-ray observations (ref. 12), while the dimen-

sionless parameter A is given by (refs. 4,8)

M/M 3/2

o ) 10 8 Bgauss
_ 1.6 x 106 (R/5x108 cm ' (3)

where M is the mass of the white dwarf and R its radius.

The intensity of the emitted radiation is plotted as a function of cos e

for several harmonics in figure i. Consider the radiation at m/_ c = 12, For
cos 0 = 0, the plasma is optically thick for both modes and hence the inten-

sity is that of a black body (flat curve). For increasing values of cos 0

the plasma first becomes optically thin in the ordinary mode (at cos 0 = 0.2)

and then in the extraordinary mode (at cos 0 = 0.4) giving rise to the de-
crease in intensity. For lower harmonics the radiation is optically thick

for a greater range of cos 0 and conversely for higher harmonics. During an
orbital cycle of AM Her, the viewing angle 0 varies.

The total flux F(_) from the plasma slab may be compared to the total

Rayleigh-Jeans flux BRj(_), if emitted as a black body:
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fl l(cos 0)cos e d(cos 0)
F(_) 0= (4)

BRj(_) fl 21Rj cos 0 d(cos 0)
0

In figure 2, F(_) is plotted as a function of _/mc' for several values of A.

An important result is that F(m) deviates from the Rayleigh-Jeans flux for

_/mc >_ 6. If the angle-averaged absorption coefficient is used the flux
would follow the Raylelgh-Jeans curve up to a frequency m* and be optically

thin for _ > _*. The value of _* is _12 _c for A -- 1.0 x 106 (ref. 4). For

_ m* also, the angle-averaged results give fluxes higher than F(m): by a

factor _3 for 0_ _ 14 mc and a factor =6 for m/mc _ 30. The values of F(m)

are in good agreement, for _/mc <_ 12, with those obtained using the total

cyclotron absorption coefficient (ref. 8), however for m/mc >_ 12, F(m) is

higher (e.g. by a factor of almost 2 for A = 1.0 x 106' _/_c = 14). This is

because of the neglect of optically thin emission for small angles in ref.

8, an approximation which is good at low frequencies.

Raymond et al. (ref. 6) find that the UV continuum consists of a black
body (kT = 25-30 eV) component, which also produces the soft X-rays (ref.

13), and a flat uneclipsed component produced by the X-ray heated secondary

or by the accreting gas further up the accretion column. They do not however

observe the optically thick cyclotron emission from the hot (kT _ 20 keV)

shock heated region which had been predicted (refs. 4,5). The smallest

value for the predicted cyclotron emission consistent with the soft X-ray

flux is 20 times the observed value at 1500 %. This discrepancy could be

removed if the mass of the white dwarf (M _ 0.6 Me) and the magnetic field

(B = 3 x 107 gauss) are lower than had been previously assumed (ref. 14).

If angular effects are taken into account, as in this paper, a higher field

B = 5 x 107 gauss (with the same mass M = 0.6 _e' so that A = 6.5 x 105 )

would suffice, since %=1500 % would correspond to m/mc _ 14 (figure 2).

Recent UV observations of AM Her by Tanzi et al. (ref. 15) confirm the

low UV flux observed by Raymond et al. (ref. 6). The former however find

that the spectrum from 1150 to 3200 % is well fitted by a power law F(%)

_-2, i.e., F(m) = constant. These observations are in better agreement with

our results than those of ref. 6. The reasons for the differences in the

observations are not entirely clear, but may be due to: (a) the observa-

tions not being carried out at the same time, (b) the neglect of reddening

in ref. 6 and (c) the fit to the UV flllx in ref. 15 being'made without dis-

tinguishing between the eclipsed and uneclipsed flux or subtracting out the

soft X-ray component.

In conclusion it is suggested that the magnetic field in AM Her is

B _ 5 x 107 gauss which is a factor of about 4 below the usually adopted

value. This lower value is consistent with estimates for the field strength

made in understanding the optical polarization observations (ref. 9). The

UV flux from the shock heated region is predicted to deviate from the

Rayleigh-Jeans spectrum.
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Fig. I. Plot of the log of the intensity I vs. cos 0 for A = 106 ,

h = 106 cm, kT = 20 keV and _/mc = 8, 12,
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Fig. 2. Plot of the log of the flux F(_), in arbitrary units, vs. _/_ for5 c
kT = 20 keV and A = 0.5 x 10b cm, 1.0 x 106 cm and 2.0 x 10 cm.

The curve RJ is the Rayleigh-Jeans flux, dashed curve is due to

Masters (ref. 4) while the dotted curve corresponds to 0.05 times

the Rayleigh-Jeans flux (cf. ref. 6).
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OBSERVATIONS OF SUPERNOVA 1979c IN M iO0

Nino Panagia
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Bologna, Italy

ABSTRACT

The IUE observations of supernova 1979c in M IO0 are presented and dis-
cussed. The main results are:

i) The bulk of the energy is in the form of continuous

emission which is radiated by the main SN envelope.

2) The absorption features originate mostly in both
the disks and the haloes of our Galaxy and M iOO.

3) The emission lines are produced in a highly ionized

shell which has a radius greater than twice the

radius of the main envelope and consists of com-

pressed circumstellar material in which the

abundance ratio N/C is about 30 times higher than solar.

INTRODUCTION

On April 19, 1979 Johnson (Ref. i) discovered a bright supernova (denoted

as 1979c, mB = 12m) in the spiral galaxy M I00 (= NGC 4321).

The behavior of the light curve and the optical spectrum have indicated

this SN to be a Type II (Ref. 2).

In the framework of a joint ESA-SRC target-of-opportunity program, on

April 22, 1979 a series of low resolution spectra were taken in both short

and long wavelength ranges. Observations were repeated at several subsequent

epochs (April 24 and 27, May I, 7 and 18, June 4, 15 and 28, and August 4).

In additiQn, simultaneous observations in the visual, radio and X-ray do-

mains were also made resulting in a rather complete coverage and a thorough

follow-up of the SN explosion and its time evolution. Detailed account of the
first six weeks observations can be found in an article presently in the

press (Ref. 3)

Here, I will present and briefly discuss the IUE observations with some
reference to the optical results.

THE CONTINUUM AND THE TOTAL LUMINOSITY

The UV spectrum of the SN taken on April 22 is shown in Fig. i. The bulk

of the energy is radiated in the form of continuous emission which runs smooth-

ly from 1600 to 3200 A corresponding to a color temperature of Tc=ll000 K.
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The emission lines are estimated to contribute less than _ 15% of the total
flux.

As seen in Fig. 2, which presents the observations made during the first
four weeks, the continuum decreases steadily and becomes steeper with time,

corresponding to a decrease of the color temperature from about ii000 K on

April 22 to _ 7400 K on May 7. Starting in mid-May the decline in the UV

bands becomes shallower and becomes similar to that observed in the optical

range. This suggests an almost constant photospheric temperature after the
middle of May.

Integrating over the whole optical and UV spectrum of April 22, after

correction for extinction, the total flux is estimated to be Fto t = 7.9 x i0-IO

_gA_-_i s2-_i I_;P_n_ _A_a_ _f2_ _P_O_r eMgl_O_ =the6.3abs°lu_exiO_Lo .lumin°sityByin-
tegrating the observed spectra over time and frequency the total radiative

energy released _ the Supernova explosion has been estimated to be Era d
(1979c) = 7 x I0_ erg.

THE ABSORPTION LINES

Superimposed on the continuum are many absorption and emission features.

In absorption one can easily identify (cf. Fig. I and 2) lines of low ioniza-

tion ions such as CI, CII, 01, Nal, Mgll, Sill, SII, as well as some resonance

transitions of highly ionized species (e.g. SilV, CIV, AIIII).

The absorptions extend from approximately zero velocity up to velocities
of abQ_ 16OO km s-I and can be produced in the interstellar media of both

M IOO and our own Galaxy. The interstellar origin of all these absorption

features is confirmed by the constancy of their widths and strengths in spec-

tra taken at different epochs (cf. Fig. 2).

The velocity dispersion implied by the absorptionofeatures due to neutral

and once ionized atoms observed between 1250 and 1350 A is found to be inthe
range of 14-26 km s- . This estimate agrees very well with the more direct

determination by Penston & Blades (Ref. 4) of 15 (+II, -6) km s-I obtained from

measurements of the absorption of the Ca II 3934-68 and Na 1 5890-96 doublets.

Similarly, the absorption lines of highly ionized atoms imply the presence,

in both galaxies, of a medium where the gas is highly ionized and the velocity

dispersion is 50 km s-I at least. Evidence for the presence of such a halo in

our Galaxy has been found in the direction of 3C 273 and towards some high z
stars (Ref. 5) as well as towards stars of the LMC (Ref. 6).

THE EMISSION LINES

The strongest emission features present in the April 22 spectrum can be
identified with resonant transition of N V (1238.8-42 A), Si IV (1393.7-
1402.7 A ), C IV (1548.2-50.8 _) and the intercombination transitions of N IV]
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1486 A, N II_ 1750 A, C.III] 1909 A. The intercombination lines of O III]
1663 _ and of O IV] 1406 A, cannot be discerned in the spectrum. The He II
1640 _ line is neither clearly present in this spectrum nor in those taken at

later e_ochs. On the other hand, in the spectrum one can clearly see the line
1718.5 A of N IV which corresponds to a permitted transition between excited

levels (2p IpO-2p2 IS). This immediately tells us that nitrogen must be pre-

sent largely in the form of N IV in order to produce such a strong line.

As seen in Fig. 2, the spectrum appears to contain several other lines

which are somewhat weaker. However, they are severely blended with each other
so that the identification of individual lines and a quantitative estimate of

their intensities is impossible.

The same crowding of lines makes it difficult to properly determine the

profile of the major features and to measure their intensities to accuracies

better than, say, 30%. Nevertheless, by studying the spectrum observed on

April 22 as well as those obtained at later epochs (cf. Fig. 2) the following

is apparent:

i) The line profiles are sharply peaked at a velocity displacement
of 1800 ± 300 km s-I with respect to the laboratory wavelength.

This velocity is only marginally higher than the radial velocity
of M i00 and confirms that the emission lines originate in the

SN envelope.

2) The wings of th individual emission features extend to no more
than 4000 km s-_.

3) The emission profiles appear to be symmetric with respect to the

emission peak.

Thepeaked profiles indicate that the lines are formed in an expanding

envelope in which a velocity gradient exists and_the maximum expansion veloc-

ity is Vmax(UV) = 4000 km s-I .

The symmetric extension of the llne wings to the red and to the blue in-

dicates that the UV emitting layers are far enough from the SN "photosphere"

that any occultation of the receding part of the shell is negligible. From

simple geometric arguments the average distanceof the UV emitting shell from
the SN surface can be estimated to be at least 2 photospheric radii (i.e.

R (UV shell) > 2.5 x 1015 cm). Therefore, the UV emission llne layers must be

well separated from those which produce the continuous spectrum, i.e. the SN

photosphere. Moreover, inspection of Fig. 2 shows that the line-to-continuum
ratio increases with time. This is further confirmation that they evolve in-

dependently ands thus, are formed in different zones.

On the other hand, the optlcal llnes dlsplay very asymmetric profiles

(Ref. 3), with the blue portion being twice as extended as the red one. This

indicates that the optical lines are formed in the mainoenvelope which has

been ejected in the SN explosion. Also the MglI _28OO A line presents similar

characteristics in both profile and time evolution. Thus, this line too

originates in the top layers of the SN photosphere.

The UV shell is likely to consist of gas originally ejected by the stellar
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progenitor, a red supergiant, as a more or less continuous wind. The wind

material must have subsequently been compressed and accelerated as a result l_f

the SN explosion, possibly by the radiation pressure of an initial soft X-ra_r

burst (Ref. 7). The UV shell mass can be estimated to be approximately

M(UV shell) = IO-2M e. This may be the result of steady mass loss of
M = 10-4 Me/year. From the intensities of the emission lines of C and N, as
well as the upper limits to the O lines, it is estimated that the number

abundance ratios of N/C and O/C are 7 and <4, respectively. This correspond_

to a strong overabundance of nitrogen relative to both carbon and oxygen by a

factor of 10-30. The high enrichment of N and/or the possible depletion of C

and O are indicative of nuclear processing through CNO cycle. This can have

occurred in an H-burning shell during the red giant phase of the progenitor

star. Subsequently the material has been brought up to the surface and

ejected from the star in the form of stationary wind. It is clear, then, that

the anomalous CNO abundances found in the UV shell provide further evidence

for the accumulation of circumstellar material prior to the SN explosion.

REFERENCES

i. Johnson, G.E.: 1979, IAU Circular No 3348.

2. Ciatti, F. et al.: 1979, IAU Circular No 3361 & 3371.

3. Panagia, N. et al.: 1980, Mon.Not.Roy.Astr.Soc., in press.

4. Penston, M.V. & Blades, J.C.: 1980, Mon.Not.Roy.Astr.Soc. 19___O,51P-57P.

5. Ulrich, M.H. et al.: 1980, Astron.Astrophys., in press.

6. Savage, B.D. & de Boer, K._.: 1980, Astrophys.J., in press.

7. Klein, R.I. & Chevalier, R.A.:I978, Astrophys.J.(Letters) 22___3,LIO9-LII2.

S24



- LT I I I I I I I T I r ] I I I I I I I I I I I

_ _' =_ A., cm] April 22, 1979 _al

g
_ _.e
E

0,0 I I I I I I I I I I I 1 I I I I I I I ..... 1 I I
1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Wavelength (A}

Figure I. Ultraviolet spectrum of the supernova taken on April 22.3, 1979.

The identifications of some relevant features either in absorp-

tion or in emission are given. The average wavelengths for

components at zero velocity and at the M iOO radial velocity

(z = 0.0054) are shown for absorption features. Only the red-

shifted wavelength is indicated for emission lines.
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Figure 2. Evolution of the ultraviolet spectrum from April 22 to May 18.

Note the increasing prominence of the far UV lines with time.

Also noteworthy, is the development of the Hg II %2800 A line.
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Horizontal Branch Stars, and Galactic

and Magellanic Cloud Globular Clusters

Klaas S° de Boer

Washburn Observatory

University of Wisconsin, Madison WI 53706

Seven blue horizontal branch stars in the field have

been observed, and a few HB stars have been isolated in

globular clusters. Energy distributions are compared to assess

possible differences, also in comparison with model atmospheres.

Observed energy distributions of HB stars in NGC 6397 are used

to estimate the total number of HB stars which produced the in-

tegrated fluxes as observed by ANS. Preliminary results are

given for colors of globular clusters observed in the Magellanic

Clouds and for their extent, based on the Washburn IUE extraction.

Since the observations of galactic globular clusters by the OAO-2 (Welch

and Code 1980) and by the ANS (van Albada, de Boer and Dickens 1979, 1980)

there is need for basic data on those constituents of globular clusters which

provide most of the ultraviolet light. Neither of the two satellites had ob-

served blue horizontal branch (BHB) stars in the field for their own sake,

except for HD I09995 by OAO-2 (see Koornneef et al. 1980) and a few possible

BHB stars by ANS (de Boer and Wesselius 1980).

IUE provided the opportunity to fill this gap. In addition, with its

high spatial resolution it seemed to be possible to isolate BHB stars in ga-

lactic globular clusters, while an extension of the data base to Magellanic

Cloud globular clusters is of general interest (Freeman 1979).

Blue Horizontal Branch Stars in the Field of the Galaxy

Seven BHB stars have been observed at low dispersion in the wavelength

range I150-3200A. Most of the stars have an energy distribution in the UV
o o

which drops rapidly to <I0% of the 1500-20OOA flux near 1330A and none of the

stars shows detectable flux shortward of L_. In Fig. l the spectrum is shown

for HD 86986. The fluxes are from the Washburn extraction which was adapted

to correct the ITF error (see de Boer, Koornneef and Meade 1980, henceforth
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Fig, l: Absolute flux of a field blue horizontal branch star, The uncertain-

ty of the flux is plotted at the top in the same units as the spectrum (based
on the _shburn extraction routine, see de Boer, _ornneef, and Meade 1980).
Visual data are from Christensen O978). Dashed lines near the UV spectrum
are from a Kurucz mode] as labelled. Since the star has spectroscopically
[M/H] = -].5, a better fit would be obtained with T = 7800 K.

BKM). The large and small aperture spectra have been combined with weighting

according to the error found in the Washburn extraction (BKM). The absolute

calibration used is the one given by Bohlin et al. (1980) and the connection
o

between SWP and LWR spectrum is made at 1992A. From stromgren photometry and

spectrum scans one obtains that HD 86986 has Tef f = 8000 K, log g = 3.05,

[M/H] = -1.5 (Kodaira, GreensteinJand Oke 1969; Hayes and Philip 1979). The

UV, at XX < 16OO, is very sensitive for temperature effects, Comparison with

the Kurucz (1979) models indicates that a fair fit is obtained with a mode]

with Tef f one or two hundred degrees below 8000 K. Models at 8000 K also give

a lower UV flux for metallicities more near solar, but then strong lines near
o

240OA are indicated, while these are very weak in the observed stellar spec-

trum.

BHB Stars in Globular Clusters

NGC 6397 is a relatively open cluster, and is bright in the UV in spite

of E(B-V) _ 0.2. Both characteristics make it possible to isolate BHB stars

with IUE. Up to now 3 stars have been observed, star no. 56 and 2|0 (Graham

and Doremus 1968) and a star very near the nucleus of the cluster. The BHB

stars in NGC 6397 are much bluer than the known field HB stars. GD 56 has

Tef f = 12000 K and log g = 3.15 (Newell, Rodgers and Searle 1969).
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Fig. 2: Absolute reddening corrected flux for the BHB stars 56 with mV =
13.95 (full spectrum and error plotted as in Fig. ]) and 2]0 with mV = ]3,63
(dashed line and fi]led'circ}e at V) in NGC 6397.

55The absolute flux at 1 O_ of GD 56, log F1550 -- -14.0, can be used in

relation with the photometric flux from ANS log F1550 = -12.97 erg cm-2s -1

A -1 (van Albada, de Boer, Dickens 1980). Hence, in the ANS field of view of

2' .5 x 2' .5, 10 BHB stars have been sampled. Together with visual photometry

this allows the determination of the total number of BHB stars in NGC 6397.

Gl___obular Clusters in the Magellanic Clouds

The earlier UV photometric satellites OAO-2 and ANS had insufficient

spatial resolution and sensitivity to isolate and measure globular clusters

outside our galaxy, With lUElong integration times are possible and a few

I I I I
0.0- _-

J Fig. 3: UV energy distribution of
x__._TJ""_'//_/" the globular cluster NGC 1835 in

"E the LMC, and for comparison 3

:3 MI3 X_x _ galactic globular clusters observed

_" o.__._ A/ by ANS (van Albada, de Boer,
-O.5 - Dickens 1980) adjusted to the IUE

N6397

• /A/ calibration following Bohlin et al.
t_ (1980). Fluxes with arbitrary

_, • / relative shift.

/ • N,83
N 527;_ _/ in LMC-I.O

,,, I I I I
IOOO 2000 3000
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Fig. 4: Response of the large aperture in SWP (positionally adjusted coadded
?-Ftsof 350 diagonals between 1580 and 2000X; see BKM) for three different
objects. Image 3-8040: star 56 in NGC 6397; image 3-2989= even illumination
from diffuse light near the Trapezium; image 3-3930: NGC 1835 in the LMC,
Further anaIysls of such responses can yleId Information on the spatlal
structure of LMC globular clusters.

, clusters in the Magellanlc Clouds have been observed, This program is sti:ll

In progress and only preliminary results are given,

In Fig. 3 we show the UV energy distribution for NGC I835, In comparison

wlth three galactic globular clusters. The latter three have been selected

from (van Albada, de Boer and Dickens 1980) group EB: M13, with extremely

blue HB; group B: NGC 6397, wlthblue HB; group I: NGC 5272 with only

moderately populated horizontal branch. NGC 1835 seems to have a UV bright-

ness like a normal blue HB globular cluster.

The Washburn Extraction Routine (see BKM) can also be used to Infer

spatial Information from the large aperture data. Flg, 4 shows as an

example the spatial intensity distribution for a few different objects,

Several of the globular clusters In the LMC are still so extended that two

displaced large aperture IUE observations are required to get proper spatlaI

Information.

/
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/
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DISCUSSION - PART IV

Wallerstein: What is the nature of the companion of the hydrogen-poor
star DSgr?

Plavec: It is a normal 09 star with no emission lines.

Stencel: What is the connection between W Ser and the symbiotic stars?

Are the symbiotics extreme because of their larger mass exchange rates?

Plavec: I don't think that symbiotics have extreme rates of mass loss.

In fact, it seems that in some of them, it is the hot star that is

losing mass now, by a massive stellar wind, although we must suspect J'

that over a long period of time, the cool component is the loser. I

think that the basic characteristic of the symbiotics may be the subdwarf
character of the hot star. This makes them related to central stars of

planetary nebulae as well as to cataclysmic variables (since the hot

star may well be surrounded by a disk). The nature of the relation is,
unfortunately, obscure. Yet it seems that the symbiotic stars are

trying to tell us something very important about helium subdwarfs in
binary systems.

Plavec: I. The absence of the traveling wave in HR 5110 may be due to

the low luminosity of the secondary. 2. The origin and character of

the emission lines could be studied with advantage: (I) by observing

primary and secondary eclipses of suitable systems; (2) by studying the
line pupils in the high-dispersion mode. Has it been done?

Simon: I. At infrared wavelengths longward of 2 _ m, the secondary

contributes approximately 30% of the total light of the system. However,

I find no evidence in JHKLM photometry obtained at Kitt Peak in February

and March for variability > 0.ml. A very low amplitude wave might still

escape detection, even at 5 _ m. 2. The observations suggested by
Dr. Plavec are scheduled for later this year.

Hartmann: I have a question about the flare model for UX Ari. As I

understand it, the evidence for mass motions in the flux tubes/ l_ops
comes from the Mg II profiles. However, the flux tubes are at I0 K.
How is the Mg II emission related to the flux tubes?

Simon: It is possible that the Mg II emission comes from the splashdown

points. More detailed observations are required for better modelling.

Penston: D. Allen and I have also been working on this star and we
agree with many of your conclusions. There is one item which we do not

understand and which you did not mention. This is the weakness of the O

IV] lines. The broad component is absent unlike other three-times-

ionized ions and the narrow components are the same strength as the S
IV] lines!

Keyes: We see the same thing in our August 1978 spectrum_
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Linsky: Would you comment on the very strong and broad N V emission?

Keyes: The N V emission lines do not show nebular emission components

but have a _ Cy_ni character indicating a maximum expansion velocity of
1500-2000 km s .

Roman: In view of the similarity of the companions of _ Cap and _CHa,

is there also a relation between the spectral peculiarities of the

primaries?

B6hm-Vltense: We do not understand the source of the x-rays. I think

they are due to mass accretion by the white dwarf. The material may have

come originally from Sirius A. This, of course, is only speculation

presently. There appears to be circumstellar material in _ Cap. Of
course Sirius A looks llke a hot metallic line star but the abundance

anomalies, I think, are different from those observed for Ba II stars.

R. Green: Does the white dwarf companion to _ Cygni seem to have a comparably

large mass to that of the companion to _ Cap?

B6hm-Vitense: The signal for _ Cygni is less than for _ Cap. We think

Cygni also has a companion, but we cannot be sure, we are still analyzing
the data. If there is a white dwarf companion, it must be cooler, we
estimate abo-ut 14000 to 15000K. The mass also comes out to be about 1

Me•

Stencel: Wilson (1976 Ap. J.) has noted chromospheric pecularities for

BaII stars as a class. Do you note Hg II and SWP differences?

B6hm-Vitense: Yes, _ Cap has very strong Hg II emission lines with deep
central reversals which have lower central intensities than k. and h...

ii

It probably indicates clrcumstellar material. The emission l_nes are

much stronger than in the comparison star e Vir.

Stencel: Which nuclear process could provide the slow neutrons for

barium production?

Wilson: There are different processes discussed in the literature; none

of them looks very convincing tome. However, the overabundance of the

process elements is observed. So we have to accept that there must be
such a process available.

Savedoff: Can you estimate the separation of the _ Cap system? I have

been trying to model internal effects in 2-dimensional stellar mode_

and estimate that horizontal _hermal or density fluctuations of lO---
suffice to drive mixing in I0 years. The peculiar abundances could

result from gravitationally-lnduced meridional circulation rather than
accretion from the outside.

B6hm-Vltense: _ Cap is not among the stars McClure has studied. We

have neither velocities nor periods. For similar stars, periods of the

order 0.5 to 1 year have been found.
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Sparks: Are there any features which would indicate a hot spot in the
spectra of your old novae?

Slovak: Unfortunately, we don't have high-dispersion IUE data for any

of the old novae, and so we cannot make a detailed line-by-line compari-

son. From the low-dispersion spectra, the emission lines do not appear

to have significantly different widths (e.g., N V compared to He II) or

other characteristics which would allow their origin to be ascribed to

the "hot spot" as opposed to the disk in general.

Stencel: What correlations have you noted between continuum slopes and

emission line widths? Can you speculate about the origin of the line
broadening in your inclination-activity model?

Slovak: Though the analysis comparing emission line widths versus

continuum slope has not been performed in detail, there appear to be no

obvious correlations. Compare the spectrum of AG Dra (very hot component

present, narrow emission lines) to that of AG Peg (a hot component of

Teff = 30,000K 6 - 40,000K °, broad WR emission lines). The line broadening
may De related to activity of the hot component or possibly excitations
effects. This still remains to he examined.

Michalitsianos: What are the general properties of symbiotic stars in
the near- and far-infrared?

Slovak: The spectrum of AG Pegasi, displayed by Keyes, is typical of
the near-infrared nature of most symbiotic stars. The continuum is

generally that of a late-type giant (M0-M6 If), superposed on which is an

emission line spectrum exhibiting He I, He II and Balmer lines in emission.

The far-infrared properties of symbiotic stars have been explored by broad

band (J,H,K,L, and M) photometric studies, nany exDibit a non-varlable

stellar-like continuum (S-type), whereas others show as variable, dusty
infrared behavior (D-type).

Keyes: It is interesting to note that the UV spectral similarity you

show for CI Cygni and AX Per is continued into the visible region. Both

are rather high-excitation objects having displayed [Fe VII]. Another
system rather similar to these is Z And. It might he useful to look
closely in the UV at these 3 systems for similarities and contrasts.

Slovak: We have obtained IUE spectra, in April 1980, for Z And. and can

confirm the resemblance to AX Persei and CI Cygni. The emission line
spectrum is similar and there is no marked evidence for a hot continuum
in the raw data.

Aller: From spectrophotometry (1972) Keyes and I concluded that RR Fel

required a model with a large variation in temperature and density. No

specific model would ever work. These magnificent data should go a long
way in constructing a picture for this star. Congratulations!

Penston: We certainly confirm the stratification as we find that both

line width and density vary with excitation potential.
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Nichalitsianos: Is RR Tel associated with soft x-ray emission?

Penston: I don't know.

Ahmad: The phase lag between the observations and the model of stellar

winds might be accounted for if the winds are actually streaming out

along magnetic field lines, which is what we would actually expect,

rather than simply expanding radially.

Slovak: How are you sure that you have detected emission from the shell
around DQ Herculis? Does shell emission fill the large aperture in the

three hour exposure?

Hartmann: We observe faint C II and C III emission from an extended

source. The emission does not appear to fill the large aperture uniformly,

although it is difficult to tell from the weakness of the signal.

Chanmugam: Is there any evidence of an eclipse in 2A0311-227?

Raymond: We have one spectrum of short enough exposure time to separate

out the eclipse, but it is too noisy to be useful.

Wallerstein: When you refer to a black body source that is a small

fraction (I0-15_) of that expected for a white dwarf, did you use a

model for a 0.6 M white dwarf? These accreting WD's may have a larger
mass and hence a _maller radius.

Fabbiano: For SS Cygni the mass of the white dwarf is 1.05 M and we usede
the corresponding radius for that mass.

Slovak: I would like to emphasize the point I made in my talk, concerning
the inclination effects on the appearance of the continuum of these

close binary systems involved in accretion disks. I cite, for example,

the recent paper by Bath eL al. (1980)* where the data for the dwarf

novae (eclipsing systems: EX Hya and BV Cen) compared to non-eclipsing

system: VWHyi show the flattening of the continuum, ascribable to a

large optical depth in the high-inclination systems.

Raymond:Does the transparency along the field account for the primary
minimum in V in AM Her?

chanmugam: Yes. The detailed calculations of ref. 9 confirm theearlier

suggestion (ref. 7).

Michalitsianos: Is there circular polarization as well as the linear

polarization that you have spoken of in AM Her? Do you derive the

magnetic field intensity in this system from the circular polarization
component?

* Bath, G. T., Pringle, J. E. and Whelan, J. A. J., 1980, M.N'R.A.s.,

190, 1985.
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Chanmugam: The polarization (both linear and circular) are discussed in

ref. 9 and can be understood if the optical polarize@ radiation is at
roughly the 5th cyclotron harmonic (i.e., B z 4 x I0- gauss).

Michalitsianos: Don't you feel that a mass loss rate of _ _ 10-4 MoYr -I
is excessive from M supergiants?

Panagia: The quoted mass loss rate of _ z 10-4M /yr is in fact an upper

limit. I think that a value two or three times smaller may well account

for the UV shell mass. On the other hand, it is quite possible that the

high mass loss rate indicated by the UV2shell corresponds to a paroxysmic
episode of short duration, say about 10 years or so.

Heap: Could you say how you derived your N/C ratio? What lines did you
use?

Panagia: The lines used to derive the N/C ratio are C IV 1550, C III]

1909, N IV] 1486 and N III] 1750. The adopted temperature was around 2

x i04 K but the results are quite insensitive to the exact value of T

because the excitation energies are rather similar for all the transitions

for corresponding ions of carbon and nitrogen. Therefore, the uncertainty
in the ratio N/C should be lower than a factor of 2.

Aller: In the LMC there is a very blue cluster which resembles a globular

cluster. The spectrum and energy scan resemble an A star (IAU symposium
on galaxy Magellanic Clouds). Unfortunately, Idon't remember the NGC

number but this cluster was brighter than NGC 1831 and would be well

worth examining with IUE.

de Boer: They are not on my observing list but I plan to add them soon
or devote a separate observing program to such clusters.

Weaver: Does your viewgraph which shows the relative response Of the

spectrograph across the large aperture (Ito dispersion) represent an
average over the entire spectrum? Is the relative response always
higher towards the center of the camera face?

de Boer: It is the response over half of the spectrum (long half of

SWP) and I have no information yet on systematics. It seems to me from

what I did last week that LWR and SWP have opposite slope of the flat
top.
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OBSERVATIONS OF THE INTERSTELLAR MEDIUM WITH IUE

Edward B. Jenkins

Princeton University Observatory

IUE'S POTENTIAL FOR INTERSTELLAR MATTER RESEARCH

Over nearly eight years of operation, the Copernicus satellite has

brought forth far-reachlng conclusions on the composition and physical state

of the interstellar medium. The many milestones of research from this orbit-

ing telescope and spectrometer have demonstrated the unique value of ultra-

violet absorption lines, far beyond some early, enthusiastic projections (e.g.

ref. i), since this region of the spectrum_is especially rich in strong tran-
sitions from the lowest electronic levels of astrophysically important sub-

stances. In a complementary way, the IUE instrument has continued the tradi-

tion of disclosing new insights on the properties of low density regions in

space.

In reviewing IUE's promise for exploring new frontiers, it is helpful to

examine the strengths and weaknesses of this instrument relative to its pre-

decessor, the one on board Copernicus. Since IUE records a spectrum with an

image sensor instead of a scanning photomultiplier, it can integrate the sig-

nals from all spectral elements simultaneously and obtain information from

stellar sources about 6 magnitudes fainter than those recorded by Copernicus
(in spite of the farter's much larger collecting area). This increase in

sensitivity means much to astronomers who wish to study the intrinsic proper-

ties of sources in the sky which emit UV radiation, since the classes of ob-

Jects open to examination has broadened enormously, as this IUE symposium

will attest. However, the observer dealing with the interstellar medium also

realizes a gain, inasmuch as he or she can see to considerably greater dis-

tances or probe denser clouds where the absorption by grains is substantial.

Onthe other hand, we must acknowledge some important limitations of IUE

for analyzing interstellar lines. Because there are small-scale photometric

irregularities, it is generally conceded that the minimum detectable equiva-
lent width is about 20 mA (Copernicus often registered lines at the i mA

level). For a llne to have a measurement of acceptable accuracy, it must have

a strength of several times this threshold. However, the saturation of this

llne must be small, say less than a factor of 2, for a column density deriva-

tion to have even modest reliability. This condition is satisfied only if the

velocity dispersion b for the gas is greater than about 8 km s-1, which is
often not the case for the more common interstellar species in individual ab-

sorbing regions. While saturated lines and the resulting uncertainties in

their interpretation are a universal problem for astronomers, we must not be

too harsh and categorically deny that useful work can be done in such instan-

ces. For example, one may compare the abundances of several species if their

absorption lines are seen to have comparable strength and there is good rea-

son to believe their velocity profiles are nearly identical. In this circum-

stance, we acknowledge that we have no information about what is happening in

the saturated cores of the lines, but we do have the opportunity to compare
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abundances of material in the outer wings of the velocity profile. Also,

quite apart from equivalent widths, valuable information on the kinematics of

interstellar gases in specially interesting contexts can be derived from or-

dinary measurements of the lines' radial velocity centroids.

HIGHLY IONIZED GAS

The appearance of sharp Si IV and C IV doublet absorptions in the IUE

high dispersion stellar spectra of distant stars has attracted much atten-

tion. Initially, these lines were seen in the spectrum of the X-ray binary

system HD153919 (4U1700-37) during the satellite's commissioning phase (refs.

2 and 3). At the time_ it was suggested that X-rays from the binary system

were responsible for ionizing the atoms in the ambient medium, since the Si IV

and C IV absorption lines seemed extraordinarily strong. Now that a large

•number of stars have been observed with IUE, we realize that the highly ion-

ized atoms in front of this source are not at all unusual; many of the ordim-

ary 0 and B type stars show lines of comparable strength.

Throughout the history of high dispersion stellar spectroscopy, a recur-

rent controversy about the appearance of narrow absorption lines is whether

they arise from some circumstellar accumulation of material or, alternatively,

from the general medium between the stars. We can trace questions of this

sort even back to the period following Hartmann's pioneering discovery of the
stationary Ca II lines in the spectroscopic binary 60ri in 1904 (ref. 4).

It was not until about five years later that enough evidence from many binar-

ies (ref. 5) could convince the skeptics that the Ca II lines indeed arose

from the general reaches of space. Challenges on the general interstellar

origin of some absorption lines also occurred during the era of the Copernict_s

satellite (refs. 6 and 7), to be answered by detailed case analyses (e.g.,

ref. 8) or by extensive statistical conclusions (refs. 9 and i0). The issue

remains alive today, as we can see from the divergent viewpoints expressed by

research groups interpreting their IUE recordings of the narrow Si IV and C IV
lines. These features are found within their broader stellar counterparts and

in most instances are well distinguished. Black et al. (ref. ll) have argued

that the line widths are in accord with the expected values from material with-

in an H II region which is photoionized by relatively energetic photons from

the hot star. In contrast, from the perspective of Bruhweiler et al. (ref.
12) such lines may be produced in a hot phase of collisionally ionized inter-

stellar material, which they labeled as "semitorrid" to differentiate it from

the much hotter interstellar gas responsible for 0 Vl absorption (refs. 13 and

14) and diffuse soft X-ray emission (ref. 15). Convincing evidence that Si IV

and C IV lines can originate from general regions of space was presented by

Savage and deBoer (ref. 16), who observed absorptions near zero velocity

against a star in the LMC -- a system with a radial velocity of approxi-

mately +250 km s-I.

Neither of the conflicting interpretations seem to have serious flaws,

and indeed both viewpoints may be correct. To support their respective con-

clusions, however, Black et al. and Bruhweiler et al. have had to rely on cir-

cumstantial relationships seen within fairly limited data bases. In this re-

view, we will try to resolve the question by gathering all of the Si IV and
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C IV data available at present and explore their relationships with various

relevant parameters. We are no longer hampered by an insufficiency of inde-

pendent observations, but we should be prepared to deal with spurious correla-
tions arising from biased target star selections and the inclusion of data
which are near the threshold of measurement. Our problems may be compounded

when we commit the sin of mixing the data from different investigators, each

of whom had categorically different types of coverage (stellar types and dis-

tance) and may have measured their lines in slightly different ways. Fortu-

nately, the difficulties arising from selection effects and marginal detections

are ameliorated by considering the complementary outputs from both the Coper-
nicus and IUE satellites. The former is sensitive to very weak absorptions in

nearby stars, while the latter can register the spectra of much fainter and
more distant stars with their correspondingly higher column densities.

Table i summarizes the principal sources of Si IV and C IV data which are
utilized for the studies which follow below. It must be emphasized that there

are probably significant errors in some of the results. Many values are from

preliminary analyses, others from reductions with a defective IUE intensity
transfer function (ITF), while still others refer to target stars whose dis-

tances (or intrinsic characteristics) are poorly known. While individual

points in the plots which follow may not be very trustworthy, the overall
trends should, with some qualifications, be reasonably fair representations.

To avoid inconsistencies and questionable assumptions, all of the column den-

sities were rederived using the doublet-ratio method on the original measure-

ments, rather than using the authors' quoted values for N(Si IV) or N(C IV).
For doublet ratios less than 1.3, a lower limit corresponding to a factor of

two saturation for the weaker line was assigned.

Support for the hypothesis that the observed Si IV and C IV arise primar-

ily from the star's ionizing photons might be seen in a positive (but decided-

ly nonlinear) correlation of column density versus the star's effective tem-

perature Te,. Figure i shows these relationships for Si IV and C IV; one
would be hard pressed to say that there is a convincing trend here. The col-
umn densities are adjusted by each star's radius to the 2/3 power to compen-

sate for different sizes of the respective radiation-bounded Stromgren spheres

of a given internal density. We might argue that the scatter could be blamed
on wide variations of the density of the ambient gas in the different cases.

Another test, which should be less sensitive to changes in density, is to de-
termine if the ratio of C IV to Si IV varies with Te,. We would expect this

ratio to increase with Te, since C III has a higher ionization potential than
that of Si III. Figure 2, however, seems not to be at all encouraging in this

regard.

Before we abandon the notion that photoionization from stars may be im-

portant sources of Si IV and C IV, we should remember that a good fraction of
the chosen stars reside within OB associations. In such cases, the radiation

field may be dominated by stars other than the target, such as possibly hotter

but less conspicuous members of the group. Perhaps one could see more mean-

ingful correlations if one classified the results according to association's
distribution of stellar types or the conspicuousness of its H II region,

rather than just the properties of the target stars.
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We now turn to the hypothesis that the high stages of ionization arise

primarily from widely distributed material at a high temperature. There are

strong observational precedents (refs. 14 and 15) and sound theoretical rea-

sons (ref. 21) which support the existence of very hot phases. Figure 3
shows how the column densities relate with the stars' distances. The wide dy-

namic range for distances and column densities for the Si IV plot results from

our combining the Copernicus and IUE data. The lines of C IVwere not mea-

sured in most of the Copernicus data base because the corrections for scattered

light were too uncertain. Over the limited range of parameters for the C IV

data, there seems to be no convincing dependence of column density with dis-

tance, but the Si IV results show an embarassingly strong relationship, with

a best-fitting slope greater than unity, albeit the scatter at any given dis-

tance is large. It seems reasonable to suggest that Si IV is widely distribu-

ted but in a very irregular manner. Perhaps within 500 pc of the sun the der_-
sity is significantly less than normal.

Figure 4 allows us to explore whether or not there is a relationship be-

tween the equivalent column density perpendicular to the galactic plane Nlsin bl
and the star's distance from the plane z. There is a hint of a turnover

above 200 pc for the Si IV data. A deficiency of C IV at high z is less

apparent, but the points above i kpc fall below a line of unit slope which
passes through the middle of the low z points.

Further insight on the behavior of Si IV and C IV away from the galactic

plane has been given by Savage and deBoer (refs. 16 and 22). They ranged the
distance of the gas by assuming its radial velocity was dominated by corota-

tion with the material in the plane of the galaxy. Their derived scale

heights for C IV and Si IV absorption of approximately 2 and 4 kpc toward

HD38282 and HD36402, respectively, seem generally consistent with what one

would expect for hot gas in hydrostatic equilibrium above the plane. Of

course, if a galactic wind or fountain of the type proposed by Shapiro and

Field (ref. 23) is operating, the theoretical situation becomes more compli-

cated and the distance cues from radial velocities become invalid (e.g. see
ref. 24). The results of Bromage, Gabriel and Sciama (private communication

via last-minute telex) for high latitude stars give a scale height for C IV
of approximately 3 kpc, in accord with determinations toward the LMC.

If we proceed on the assumption that nearly all of the Si IV and C IV

outline the presence of collisionally ionized interstellar gases, it is clear

from the calculations of ionization equilibria (ref. 25) that the peaks in the

relative fractions of 3-times ionized silicon and carbon occur at temperatures

well below that of 0 VI (log T-_5.5) or the characteristic temperatures for

the observed diffuse X-ray emission (log T _6). We should not be surprised

to find that the hot phases of interstellar gases exist over a broad range of

temperatures. Indeed, we would be hard pressed to express why any particular

temperature would be favored, since there are no abrupt changes in atomic pro-

perties (e.g. cooling functions) as there are, for instance, in an ordinary

H II region near 104K (ref. 25). Viewed superficially, the relative absence

of NV in the IUE spectra might indicate a lack of material near log T = 5.3,

between the 0 VI peak and those of Si IV or C IV. However, as the following
discussion will demonstrate, the lower abundance of N V is consistent with
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plausible physiaal explanations.

If interstellar gases are shock heated to a very high temperature by ran-

domly arriving blast waves from supernovae (ref. 21) and allowed to cool rad-

iatively, we would expect to find an overall temperature distribution for the

material dne/dT which is proportional to the inverse of the cooling function

A, if the cooling is isochoric. The relative ion abundances would then be

evaluated by integrating over temperature the product of this distribution

function , the appropriate ionization fraction curve and the element's overall
abundance (assumed to be cosmic). For A and the ion fractions, we must use

time dependent calculations which recognize that as a gas cools radiatively,

there is a significant lag in the recombination from higher to lower stages of
ionization.

Table 2 gives the relative fractions of Si IV, C IV and N V for the radia-

tive cooling case, normalized to that of O Vl. As it cools, the gas spends

most of the time at log T > 5.5, and then it plunges fairly rapidly below this

temperature. While the material spends relatively little time at the Si IV

and C IV temperatures, the abundances of these ions are enhanced by a pro-
nounced shoulder on the low temperature side of the time-dependent curves

caused by dielectric recombination from higher stages. An interesting specu-

lation is that the large variations in recorded densities of Si IV and C IV

seen in Figure 3, significantly greater than those of 0 Vl (ref. i0), are

caused by the highly transitory aspect of the lower temperature cooling, making

our ability to see the gas much more chancy. For isobaric cooling the de-

crease is slower at higher temperatures, and the low temperature plunge is

more abrupt. This effect, coupled with time-dependent ion fraction curves

which are closer to the steady-state ones, would result in significantly lower
Si IV and C IV abundances.

An alternative to consider is that evaporation of cool clouds (ref. 26)

is more important than radiative cooling, and that the ions we observe reside
within the interface between the cloud's cool interior and the surrounding hot

medium. In a different context (interstellar bubbl_ around stars losing mass),

Weaver et al. (ref. 27) have calculated the time-dependent ion fractions for

gas which is being heated within such an interface. These ratios are very
close to those for the radiative cooling (see Table 2).

To arrive at a global value for the average densities of Si IV and C IV
from the data sources listed in Table i is not a straightforward task, be-

cause over half of the data consist of upper or lower limits. One solution,

however, is to assume that the actual distribution of column densities is

fairly well-behaved and that a distance-weighted median is a good measure to

adopt. Table 2 lists these medians for the Si IV and C IV data sources in
Table i. Put differently, over the total path length covered by all observa-

tions, half of the distance had lower densities and half had larger. Because

most of the upper and lower limits are below and above these densities, re-
spectively, the results would be virtually unchanged if we had actual measured

values instead. One aspect of these determinations which is probably unfair

is that there may be over-representation of the anomalously low-density vol-

ume within several hundred pc. of the sun. The N V density listed in the

table is based on the fact that, except for the survey by Black et al.(ref.ll),
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the absorption lines are usually not detected and in a few cases only margi=-

ally seen. The O VI densities are from the summary by Jenkins (ref. I0).

The observed relative abundances of 0 Vl, N V and C IV seem to fit the

expected ratios rather well. On the other hand, the amount of Si IV present
seems to be well above the expectations. Perhaps starlight ionization is an

important contributor of additional Si IV. An alternative explanation may be
that the ion fraction computed by Shapiro and Moore (ref. 25) on the low tem-

perature side of the Si IV peak is significantly underestimated. Baulinas

and Butler (ref. 28) have shown that charge exchanges with ionized helium

atoms can be an important additional source of ionization for Si III (their

calculations, however, depict only the steady-state solutions).

VENTURES OUT OF THE GALACTIC PLANE

A significant triumph of the IUE mission has been the instrument's abil-

ity to record spectra of sources fainter than those indicated by prelaunch
projections for limiting magnitudes. Observers of the interstellar medium

have been able to capitalize on this advantage by bridging the vast regions
of space between the plane of our galaxy and the two Magellanic Clouds. At

present count, thirteen early-type stars having V magnitudes between 10.5 and

12.5 have been observed at high resolution by IUE (refs. 22 and 29). As men-

tioned earlier, these observations gave us the most straightforward proof that

Si IV and C IV exist in general regions of space and not just in the viciniti¢
of very hot stars. If one is willing to accept the assumptions on how radialL

velocities scale with distance, the distribution of gas along the llne of

sight is mapped by the extension of absorption from zero to moderately high
positive velocities, an effect which shows qualitative differences over the

different ranges of ionization (and inherent llne strengths).

In their spectra of stars in the Large Magellanic Cloud (LMC), Gondhale-
kar et al. (ref. 29) and Savage and deBoer (ref. 22) have identified discrete

absorbing regions having radial velocities of about 80 km s-I and 130 km s-1,
midway between the gas in the plane and that associated with the LMC. For

their best example, HD36402, Savage and deBoer were able to measure the col-

umn density of Fe II in the material at intermediate velocity, because this

ion had many transitions with widely dlfferentf-values and the velocity dis--
perslon was large. They could also assign lower limits for the abundances of

O I, big II, A1 II and Sl II. From an upper limit for N(HI) based on a lack of
21-cm emission in the same direction, Savage and deBoer concluded that these

heavy elements are no less than a factor of ten below solar abundances. They
were quick to add, however, that this conclusion may be invalid if the ions

are associated primarily with ionized, rather than neutral hydrogen. One

point does seem clear: material processed through stellar interiors may be
found at large distances from the plane provided, of course, that we are not

being fooled by the presence of high velocity clouds which are relatively
local.

A group of observers analyzing the low resolution spectra of 3C273 (ref.

30) confirmed that along a direction quite different from that of the LMC the

absorption by C IV in our halo is also quite strong. Using 21 cm profiles in

the same direction to model the velocity structure of neutral halo material,
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they too found that the heavy element abundances were not far below the cos-
mic ratios. Once again, the validity of this conclusion rests upon there not

being much ionized hydrogen present (or extended wings of high velocity H I
below the 21-cm detection threshold). Interstellar lines at low resolution

for a supernova in MI00 (ref. 30) were used to derive a velocity dispersion of
about 20 km s-i for neutral and once ionized atoms in our (and Ml00's) disk

and halo material and 50 km s-I for the highly ionized species. Because these

lines were very strongly saturated, no abundances could be derived.

Material in the general vicinity of stars rapidly losing mass in the 30

Doradus complex (in the LMC) has been investigated by deBoer, et el. (ref.

32). They find absorption lines associated with H I regions at a velocity of
+290 km s-I. This neutral material is presumably part of a large, quiescent

complex of gas surrounding the system. Lines from dense H II region material,

such as those from 0 I, C II and Si II in states of fine structure excitation,

are shifted by -40 km s-I with respect to the neutral gas (i.e. they appear
at +250 km s-A). Such an outflow from the stellar system could result from

either the rapidly moving stellar winds, an ionization front, or disturbances

generated by past supernova activity. Even larger velocity shifts are seen
for the highly ionized material, which is likely to be part of a hot corona

around the LMC system (ref. 33). The relative abundances of Si II and 0 1

in the H I gas near the LMC seem consistent with that in our galaxy, but the
uncertainties are large. From their low resolution recording of L_ absorp-

tion, deBoer et el. estimated a ratio of gas to reddening of 1.9 x 1022 atoms

cm-2 meg -I for the material near 30 Doradus, after subtracting off estimates

for the amount of foreground H I and reddening in the galactic plane. This
figure is about 4 times that found toward stars in the plane surveyed by the

Copernicus satellite (ref. 34).

HIGH VELOCITY GAS

New observations and theoretical treatments over the past decade have ex-

panded our awareness of the widespread propagation through the interstellar
medium of mechanical d_sturbances created by supernova explosions and high

speed mass-loss winds from early-type stars (ref. 35). Rapidly moving gases
which collide with the quiescent material form shocks which in turn cause

significant heating and ionization. When interstellar absorption lines are

shifted by at least 50 km s-1, they are well enough separated from the strong
lines of undisturbed gas to be stu_died with the IUE spectrograph. The ve-

locity dispersion of the post-shock material is usually rather large, which

helps to reduce the difficulties arising from curves of growth which are too
flat.

Gondhalekar and Phillips (ref. 36) have investigated the high velocity
material seen in front of one star behind the supernova remnant 1C443 and

another behind ShaJn 147. From their column density measurements and an upper
limit for the 21-cm emission they claim the depletions of Fe, Mg, AI, Si and
Ca to be no more than a factor of i0 below the cosmic values. Actually, this

conclusion would be invalid if these lines arose from ionized material, but

the uniformity of their formal numbers from element to element suggests that
the depletions are indeed rather modest. This conclusion is in accord with an

earlier study of the Vela remnant using the Copernicus satellite (ref. 37).
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Giaretta et al. (ref. 38) have measured abundances and derived physical condi-

tions in high velocity clouds in front of four stars not near any particular

known supernova remnant. A study of emission lines from the Cygnus Loop by

Raymond et al. (ref. 39) _ives results which are consistent with a shock ve-
locity of about 130 km s- , but with a deficiency of recombined material indi-

cated by a higher than expected ratio of [0 III] to HE emission. They sugge3t

that either they are viewing a recently shocked cloud which has not yet had

time to recombine or the shock is just beginning to enter the snowplow phase.
By studying the strengths of C IV, C III and C II emission lines relative to

those of other elements in the Cygnus Loop, Benvenuti et al. (ref. 40) concl11-

ded that the depletion of carbon is largest in the immediate post-shock region

containing C IV and becomes progressively smaller when the gas works its way

downstream, presumably because graphite grains are evaporating in the hot

material. Corrections for the effects of line saturation and the departures
from steady flow, however, may modify this conclusion (ref. 39).

OTHER AREAS OF INVESTIGATION

We must not overlook IUE's value in contributing to our understanding of

non-atomic species in the interstellar medium. Unfortunately, the short end

of the wavelength coverage of IUE just misses the molecular hydrogen electro_-

ic transitions (the Lyman bands, and at shorter wavelengths still, the Werner

system). But another important molecule, carbon monoxide, has its fourth po_-
itive system situated right in the middle of the short wavelength camera's cov-
erage. This system is ideal for study, since the different vibrational mem-

bers give us a very wide range of line strengths to observe. Black has report-
ed on the CO column densities toward 12 stars (ref. 41), and much like the

early Copernicus observations (ref. 42), finds no easily identifiable lines

from other molecules. Tarafdar et al.(ref. 43) have tentatively identified
the presence of circumstellar CO toward the star 9Cep.

The behavior of the interstellar extinction in the ultraviolet by dust is

an important diagnostic for studying the size and composition of the particles.
Often there are large differences in the shape of the extinction curve from one

region to the next (ref. 44). Results for eight reddened stars in the LMC seem

to indicate that , with the exception of one star, the extinction curves turn up

more rapidly at the short wavelength end than for stars in our part of the
galaxy (ref. 45). This behavior is consistent with the notion that there are

greater numbers of small particles in the dust mixture near the LMC stars.

Finally, we should not lose our awareness of IUE's potential for studying

the very local regions of space. "Reversals" caused by interstellar gases can

be seen in the chromospheric emission of cool stars at L_ (ref. 46) or Mg II
(ref. 47), and if studied systematically, could help us to better understand

the distribution of material within a few tens of parsecs.

This research was supported by NASA grant NSG-5248. The author is in-

debted to W. Taylor and D.G. York for communicating their results well in
advance of publication.
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TABLE 1

Source No. of Remarks
stars

Bruhweiler, et al. (ref. 17) 17 All targets were binary sysl:ems.
Flawed ITF used.

Black, et al. (ref. ii) 12 Distances typically I kpc.
Flawed ITF used.

Taylor and York (private commu- 46 Distances typically somewhat
nication of preliminary results) greater than i kpc, mostly in

the galactic plane. Good ITF
used.

I 22 High latitude, distant stars_.

Jenkins (special workup for this Good ITF used.

review) 40 From Copernicus archives. Most

stars are closer than 1 kpc.

Miscellaneous sources of Copernicus 3 _ Oph, y Ara, _ Pup, and y Vel.
data (refs. 18, 19, 20, and 8)

TABLE 2 -RELATIVE ION ABUNDANCES

Si IV C IV N V O VI

Prediction for Isochoric

Radiative Cooling 0.018 0.28 0.078 1.00"

Prediction for Evaporation

Interfaces 0.010 0.16 0.063 1.00"

Observed representative

densities (cm-3):

a) near the galactic plane (from
data sources in Table i) 3.6xi0-9 6.9xi0-9 _l.2x10 -9 2.0x10-St

b) away from the galactic
plane (ref. 22) 1 x 10-9 3 x 10 -9 _i x 10-9 ---

* O Vl set to 1.00; other ions are expressed relative to O VI.

t from ref. i0, corrected to z = i00 pc.
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Figure 1. Logarithmic plots of 
column densities,  adjusted for 
varying Stromgren Sphere s izes ,  
versus the effect ive tempera- 
tures of the target stars. 
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NEW INSIGHTS INTO THE PHYSICAL STATE OF GASEOUS NEBULAE
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ABSTRACT

The impact of our knowledge of H II regions, planetary nebulae and super-
nova remnants due to IUE is briefly examined. Some of the more relevant as-

pects related to the physical conditions of gaseous nebulae are reviewed. The
analysis of IUE data is under process and already significant results have
been obtained on the following properties of gaseous nebulae: a) density and

temperature distribution, b) ionization structure, c) chemical composition, d)

internal dust, and e) shock velocity for supernova remnants. The CNO abundan-

ces of planetary nebulae are compared with stellar evolution models.

INTRODUCTION

To understand the nature of gaseous nebulae it is necessary to study

their physical properties; the most important are: density and temperature

distributions, ionization structure, chemical composition, dust presence and

mass motions. From a profound knowledge of gaseous nebulae, it is possible to
derive accurate chemical compositions to study such important problems as stel-

lar and galactic chemical evolution. The three types of gaseous nebulae that
will be considered in this review are: H II regions, planetary nebulae (PN)

and supernova remnants (SNR).

There are at least four areas in which ultraviolet observations arepara-

mount for our understanding of gaseous nebulae: a) the determination of the

ionization structure from the detection of ions without strong optical emis-

sion lines such as CII, CIII, CIV, NIII, NIV, NV, OIV, OV, SiII, SiIII, SiIV

and MgII, b) the determination of the density structure from the ratio of
emission lines such as 1907/1909 of CIII and 2422/2425 of NeIV, c) the de-

termination of the temperature structure by comparing the line intensity of
the same ion originating from three different energy levels like _1663, 4363

and 5007 of OIII which for an electron density Ne<10 _ cm-3 permits us to de-

termine the electron temperature, Te, and the mean square temperature variation
over the observed volume, t2, d) the presence of internal dust from the op-

tical thickness of resonance lines like 1548 and 1551 of CIV and from the

gaseous abundances of certain elements that might be partially locked up in

grains like Mg, Si and C.
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Excellent review papers on the possibilities for UV research of gaseous

nebulae and on PN results derived from IUE data are presented elsewhere (ref.
1,2).

H II REGIONS

There have been three determinations of abundances of the Orion nebula

based on IUE data (ref. 3,4,5). The three groups find a C/O ratio similar to

the solar one (see table I) implying that the amount of carbon locked up in
grains inside the Orion nebula is not substantial.

Perinotto and Patriarchi (ref. 3) obtain log Mg+/H + _ -6.7 for the Orion

nebula; to estimate Mg/H they make use of the value Mg+/Mg= 0.15 derived from
a model of IC 418 by Harrington et al. (ref. 8) and conclude that their

observed upper limit corresponds to a Mg/H value an order of magnitude smaller

than the solar value implying that most of the Mg is locked up in grains. The

Mg ionization correction factor should be verified due to its very large value
and to the higher ionization degree of the Orion nebula relative to that of

IC 418; furthermore from the models by K_ppen (ref. 9) for objects like IC 418

and the Orion nebula with+33000_ T_40000 °K and l< (R_/R®)(Ne_/100)< l0 it
is obtained that 0.008QMg /Mg _0.04. The possibility of resonance line scat-

tering reducing the Mg 2800 line intensity should also be considered.

By comparing the C++ 1907+1909 intensity with that of C+ 4267 it is found

that t2= 0.016 for the Orion nebula (ref. 4).

Rosa (ref. 10) has observed two extragalactic H II regions, NGC 604 and

NGC 5471, which show a continuum energy distribution with stellar absorption
and emission lines. In addition NGC 5471 shows strong C++ 1907+1909 emission
of nebular origin.

From the work of Bohlin et al. (ref. 5), Perinotto and Patriarchi (ref.ll)

and others, it is found that most of the continuum observed in galactic H II
regions is due to dust-scattered light from the ionizing 0 and B stars. From

these data the dust-scattering efficiency and albedo as a function of wave-

length have been estimated. The results depend on the model adopted for the
spatial distribution of the dust and stars, therefore more observations and

better models are needed to decide among several possibilities.

The relatively low temperatures and high dust content of H II regions with

solar abundances makes the detection of UV emission lines very difficult and

consequently the determination of their chemical abundances. Alternatively,

extragalactic metal-poor H II regions have higher electron temperatures which
produce emission lines relatively brighter than the stellar dust-scattered

continua. Metal-poor H II regions that can be observed without their ionizing

stars, like those in the Magellanic Clouds, are particularly good for the
study of emission lines.
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PLANETARY NEBULAE

The determination of the electron density, Ne, from UV lines is particu-
larly important for the study of the regions of high degree of ionization.
From the ratio 1907 [CIII] to 1909 CIIIS and the computations by Nussbaumer
and Schild (ref. 12) the Ne values of several PN have been obtained (ref. 13,
14). From the KNe IV] 2422/2425 ratio the Ne value has been obtained for
NGC 7662 (ref. 15).

There is no good method to determine directly from visual data Te for the
region where helium is twice ionized. This can be done by combining IUE data
with visual observations or by using only IUE data. From the _elVS 1602/
(2422+2425) and 2422/2425 ratios it is possible to obtain Ne and Te. The

_elV] 1602/(2422+2425) ratio has already been measured in NGC 3918 (ref. 16).
By comparing _4267 of CII and _1907+1909 of CIII it has been found that t2=
0.02 for IC 418 (ref. 4); while from _1663,4363 and 5007 of 0111 it has been
found that t2= 0.00 for the regions where the O111 lines originate.

The most important result derived so far on PN from IUE data is a set of
CN0 abundances that are presented in table II. The 0/H ratios are very similar
to those derived from visual data. The UV carbon abundances are mainly based
on C++ and C+ ionic concentrations and ionization structure models; for CIV

1548, 1551 the dust-free models predict higher intensities than observed
(ref. 2, 16), the difference is most likely due to the presence of internal
dust that absorbs the resonance line radiation. The UV carbon determinations
are of higher accuracy than those based on the _4267 CII lines (ref. 18) due
to the larger number of observed ions and to the faintness of the _4267 lines
which typically have been overestimated by factors ranging from 1.5 to 2.5
(ref. 4). The UV nitrogen abundances in Table II are based on N++, N+++ and
N++++ ionic concentrations while the visual determinations are based only on

N+, which for many PN is only a trace ion; therefore the UV results are more
reliable. It can be seen from Table II that the difference between the iUE
and visual N/O determinations increases with degree of ionization which
implies that the visual method breaks down by underestimating the N/O ratio
in objects of high ionization degree.

The C abundances in Table II include only the gaseous component in the

PN shell, and since part of the C might be locked up in grains inside the neb-
ula, correspond to lower limits to the total values. For NGC 7027 it has been
estimated that the amount of carbon locked up in grains is similar to that
listed in Table II (ref. 24). In Table II the abundances of the sun and the

Orion nebula are presented for comparison. It is clear from this table that,
even without considering the amount of C in the form of dust, C and N have
been substantially enriched during the evolution of their central stars.
Renzini and Voli (ref. 25), based on the work by Iben's group, have computed
the evolution of the surface abundances of He, C, N and 0 in intermediate mass
stars from the main sequence phase up to the ejection of the PN. In figures 1
and 2 we compare the models with the observations of Table II. For C/O the
models agree reasonably well with the observations. Alternatively for N/O not
only PN of Type I (ref. 26) with high He/H values present large N/O values but
also other PN of Type II like NGC 7027, NGC 6886 and IC 2448, which originated

559



from starswlth M/M@_ 2.4 (ref. 27), present N/O values larger than predicted,
possibly indicating that the stellar evolution models should include turbulent
diffusion and meridional circulation (ref. 25).

The intensity ratio of the NV, CIV and Mgll resonance doublets (kk1239/
1243, 1548/1551, 2796/2803) is expected to be equal to 2, the ratio of the
respective collision strengths in dust-free nebulae. In all the reported cases
the ratios are smaller than 2 (ref. 13,14) indicating dust presence. Moreovelc
the ionization structure models without dust predict a higher intensity than
observed for the ClV doublet (see above) possibly indicating that the doublet
has been attenuated by internal dust. Pequignot and Stasinska (ref. 28) have
found that the observed Mgll doublet in NGC 7027 is a factor of i0 smaller than
the value predicted by their dust-free models, they have estimated that a
fraction of this difference is due to internal dust attenuation and that the
rest is due to a substantial amount of Mg embedded in dust grains. From the

Mg doublet ratio and a model containing dust it will be possible to quantita"
tlvely evaluate these two effects.

SUPERNOVA REMNANTS

Most of the SNR lines in the UV originate in regions where 4Xl0_<Te <
4x10s °K this temperature range corresponds to the gap left by the visual and
X-ray observations. The UV is particularly well suited to derive accurate
shock velocities, vs, for cases where Vs _ i00 km s-I. From the value of Vs,
the emission line intensities and models available, it is possible to deter-
minethe chemical composition of the SNR.

From IUE observations of the Cygnus Loop vs values in the 100-130 km s-I
range have been obtained (ref. 29,30,31). By combining these observations with
shock models and neglecting radiative transfer models due to the presence of
dust it is found that k_1548+1551 CIV, 1907+1909 _II_ + CIII] and 2326 CII]
are too weak by factors of i0, 2.5 and 1.5 (ref. 29,30) and by i0, 1.6 and 1.4
(ref. 31) respectively; it has been suggested that these observations can be
explained by progressive destruction of graphite grains. Benvenuti et al.
(ref. 30) find that _1335 CII is too weak by about an order of magnitude while
Raymond et al. (ref. 31), from the 1335/2326 ratio, find that the optical depth
in the resonance lines due to dust reduces the _1335 flux by a factor of ten.
As mentioned before, resonance line scattering reduces the CIV line intensities
in PN and it is highly probable that in SNR a similar situation prevails which
would make the C underabundance in the Cygnus Loop marginal. Considering that
C is depleted by about an order of magnitude in the interstellar medium this
result would imply that substantial destruction of graphitegrains occurs in,
shocks with Vs_ 130 km s,I. Raymond et al.(ref. 31) present some evidence in
favor of a depletion of _3 in Si.

The Crab nebula is the only young SNR observable with the IUE; this SBrR
has not been significantly contaminated by the interstellar medium, therefore
its chemical composition still corresponds to that of the SN. Davidson et al.
(ref. 32) from preliminary IUE results obtain for the Crab nebula that N(C)/
N(O)<3. By considering that in this object 0/0o_l/3 (ref. 33) the C/0 upper
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limit implies that, contrary to expectations, at least this SN did not produce
much carbon.
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TABLE I.- ORION NEBULA - CHEMICAL ABUNDANCES a

ObJect O/H C/H Mg+/H+ Mg/H t2 Ref.
(optical) (UV) (UV)

Orion 8.40 -<5.3 .... 0.00 3

" 8.52 8.35 ........ 0.00 4
" 8.52 8.48 ........ o.oo 5

Sun 8.92 8.76 .... 7.62 .... 6,7

a

Given in 12+log N(X)/N(H).

TABLE II.- PLANETARY NEBULAE - CHEMICAL ABUNDANCES

Object 0/Ha C/0b N/0b (C+N)/0b N/Ob He/Hc Ref.
(uv) (uv) (uv) (uv)(visual)(visual)

NGC 2392 8.74 -0.39 -0.33 -0.06 -0.29 0.091 17,18,19
NGC 2440 8.72 -0.20 +0.08 +0.26 +0.33 0.135 17,18,19
NGC 2867 8.65 +0.19 -0.55 +0.26 -0.52 O.112 17,19
NGC 3918 8.78 +0.20 -0.39 +0.30 -0.60 0.113 16,18
NGC 6302 8.79 +0.43 +0.25 +0.65 -0.15 0.191 17,19

NGC 6741 8.84 +0.26: -0.14: +0.41 -0.13 0.123 17,19
NGC 6886 8.72 +0.18: +0.08: +0.43 -0.53 0.102 17,19
NGC 7027 8.62 +0.49 -0.i0 +0.59 -0.37 0.113 20,18,19

NGC 7662 8.58 -0.07 -0.54 +0.06 -0.88 0.094 21,18

IC 418 8.60 +0.26 ................ 8
IC 418 8.70 +0.33 ............ 4
_c2448 8.46 +O.lO -o.27:+0.25 -i_8 o.111 16,18
IC 4997 8.04 -0.40 ................ 22

Me 2-1 8.86 +0.05 -0.74 +0.12 ........ 17

PNd 8.70 +0.14 -0.24 +0.30 -0.42 0.119

Orion 8.65 -0.08 .... -0.03 -0.97 0.i00 23

Sun 8.92 -0.25 -0.93 -0.17 -0.93 .... 6

a Given in 12+log N(O)/N(H). bGiven in log N(X)/N(Y). c Given in N(He)/N(H).
d
Average of this table without IC 4997 •
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Figure i. The model values (Renzini and Voll, ref. 25) correspond to the sur-

face abundances at the time of the PN ejection. Along each sequence the

values of the initial stellar mass are reported. The parameter _ is the

ratio of the mixing length to the pressure scale height, and _= 0 simply
means that hot-bottom nuclear burning has been omitted.
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INTERSTELLARABUNDANCEDETERMINATIONUSING IUE DATA

Charles Joseph and Theodore P. Snow, Jr.
Laboratory for Atmospheric and Space Physics

University of Colorado at Boulder

INTRODUCTION

Analysis of the silicon interstellar abundances have been made for more
heavily reddened lines-of-sight than were accessible to the Copernicus
satellite. Silicon has rarely had accurate column densities determined from
Copernicus data because the available li_es all lie on the flat portion of
the curve of growth for stars with 0. i0 _ E(B-V) _ 0.35. With IUE it is
possible to reach color excesses of E(B-V) _ 0.5-0.7, and in addition obtain
data on the weak Sill line at 1808 A, so that a wide range of oscillator
strengths is available. The lower resolving power of the IUE, though, causes
some difficulties in that several of the Sill lines are blended with strong
lines of other species.

Data on the lines of sight analyzed so far have suggested that some of
the absorption lines fall on the damped portion of the curve of growth,
implying that silicon may not be as highly depleted as expected. The possi-
bility cannot be ruled out at this time, however, that a curve of growth
could be adopted with a higher b-value, so that none of the Sill lines are on
the damped part, in which case substantial depletion would be inferred. The
ambiguity is due in part to the recent discovery that some of the Sill lines
have been assigned incorrect oscillator strength in the literature, and one
line in particular (_1526 A) has an F-value which is too small. Work is
currently under way by Shull and Snow usino Copernicus to obtain correct
values for these lines, which should then enable the correct determination of
the silicon column density.

DATA REDUCTION

The column densities for silicon were determined from standard curve-of-
growth analyses which exploit the relationship between absorption line
equivalent widths and the column density of the absorbing particles. These
results were then compared with column densities of HI, reduced according to
the technique described by Bohlin (1975). The spectra used in this study are
from recent observations by P. Conti, and are not subject to the Intensity
Transfer Problems of earlier data. High-resolution IUE data were used in all
cases.

The analysis was carried out on the interactive data system at the
University of Colorado using a package of programs designed for interstellar
abundance determinations (described in a separate paper, this Volume). The
results discussed in this paper were obtained from the interstellar line
spectra of the stars HD151804 (Spect. Class 09f, V=5.22, E(B-V)=O.41) and
HD167659 (Spect. Class 08, V=7.39, E(B-V)=O.51), although the results were
similar to those derived for a number of additional stars, to be described in
a later paper.
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The observed Sill lines used in the analysis have wavelengths at 1193,
1260, 1304, 1526, 1808 and 2334 A, with the first two being of marginal use
because they are blended with lines of Si and Fell respectively. When poss-
ible, an estimate of the contribution to the equivalent widths for each of
the blended lines has been made from separate curve-of-growth analyses for CI
and Fell. The Sill 2334 _ line, a forbidden intercombination line, is too
weak in the current observations to produce a detectable absorption feature,
and thus only provides an upper limit of its equivalent width. The remainir_g
three lines consistently have small error bars associated with their equiva-
lent widths and once the oscillator strengths are corrected should provide en
unambiguous fit to a curve-of-growth.

The results of the analysis are as follows: The total hydrogen column
density is 15.6E20 (Bohlin, et al., 1978) in the direction of HD151804 and is
25E20 in the direction of HD167659. Assuming that in each case some of the
absorption lines do lie on the damped portion of the curve of growth, then
the log of the silicon column densities are 16.8 for HD151804 and 16.7 for
HD167659. Adopting the value of N/NH=3.55E-05 as the solar abundance ratio
of silicon, then depletion factors of 0.88 for HD151804and of 1.79 for
HD167659are implied. These results however could be subject to change.

COMMENTS

The data indicates, although not conclusively, that silicon is probably
more abundant than estimated from curve-of-growth analyses in which the Sil]
lines were assumed to follow the curve derived for other species. In an
earlier case, (Snow, 1977), similar results were suggested. Likewise, de
Boer (1979, 1980)has recently shown that oxygen may be typically more abun-
dant than estimated from Copernicus data, where the Ol lines all fell on the
flat portion of the curve. Also, the absence of the Sill line at 1526 A in
most previous analyses probably caused systematic errors in the direction of
decreased column density. In Morton's 1974 paper, Interstellar Absorption
Lines in the Spectrum of Zeta Ophiuchi, the 1526 A line was measured, but was
inadvertently left off the graph. At any rate, detailed analyses for several
lines-of-sight, to be published elsewhere, will be presented once the correct
oscillator strengths are established.
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COMPARISONS BETWEEN OPTICAL AND ULTRAVIOLET INTERSTELLAR LINES FORMED IN

THE CARINA NEBULA (NGC 3372)

James E. Hesser

Dominion Astrophysical Observatory

Herzberg Institute of Astrophysics

Nolan R. Walborn

Cerro Tololo Inter-American Observatory

ABSTRACT

Discovery of complex Ca II H and K interstellar line profiles towards stars

embedded in the giant H II region surrounding Eta Carinae _ef. i) led us to

undertake a reconnaissance of the richer ultraviolet (UV) interstellar line

spectrum. Single IUE spectra were secured for those stars exhibiting the

greatest variety of structure in the optical interstellar lines, namely,

HD 93130, 93160, 93162, 93204, 93205, 93206 and HDE 303308. While subject to

confirmatory observations and future analysis, our initial appraisal of the

spectra suggest that: (i) longwards of Lyman Alpha many of the interstellar

lines, including an unidentified one, in the spectrum of Zeta Oph (ref. 2) seem

to be present in the Carina Nebula spectra; (2) interstellar line structure

varies widely in both velocity and intensity throughout the region, as well
as along a given line of sight as the species change; (3) new high velocity

components of UV lines appear to extend the total range of velocities in the

nebular interstellar lines to about 400 km/s; and (4) lines of the high exci-

tation species Si IV and C IV are strong and also structured in velocity space.

INTRODUCTION

Optical observations at 9 A/mmwith the CTIO coud_ spectrograph (ref. i)

revealed that a marked decrease in the strength of the interstellar calcium

lines between stars in the inner and outer portions of the Carina Nebula

arises from complex structure within or associated with that giant H II region.
This phenomenon apparently represents a fourth type of interstellar line

structure. Among the six components identified in the optical study, a total

velocity range of about 330 km/s was found (fig. i). Only in the Vela Supernova

Remnant (SNR) has comparable velocity structure been observed (refs. 3-5).

Subsequent CTI0 coude spectra of HD 92740, 93206 and 93250 in the blue at 4.5

A/mm and in the visual at 9 _/mm revealed additional components in Ca II and

structure in the Na D lines. In recent years one of us (NRW) has been carrying

out an extensive survey of the optical interstellar lines with the improved

resolution of the CTIO 4-m echelle spectrograph. The wealth of new and comple-

mentary information available from the interstellar lines accessible to IUE

makes extension of the observations to the IYV seem particularly worthwhile at

this time. In this brief report we shall describe some salient features arising

from an initial appraisal of the IUE spectra, with the caveat that proper

morphological and physical analyses may require additional observations to

achieve a sufficient signal-to-noise ratio.
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OBSERVATIONS

Some relevant parameters for our small aperture, high-resolution data

secured in September 1979 are summarized in Table I. Reductions used wavelength
calibrations recorded during the Carina observations. We have also made use of

a spectrum obtained by Dr. P. Conti for HD 93131 (LWR 1527).

RESULTS

i. Examination of the i0 L/in plots provided by the IUE Observatory show_

that when resolution, S/N and exposure leveSs are taken into consideration most
interstellar lines stronger than about 15 mA, including the unidentified one at

1317.14 _, in the Copernicus spectra of Zeta Oph (ref. 2) can be plausibly

identified in our spectra. Both velocity and intensity aspects of the profiles

are, however, quite different from those of Zeta Oph.

2. Complex velocity structure similar, but not necessarily identical, to

that of Ca II K is seen in lines of C I*, C II, 0 I, Mg I, Mg II and Fe II.

3. Profiles of C I**, 0 I**, Si II*, S II, CI I, Mn II, Ni II and Zn II

generally seem to be unresolved or, at least, much s_mpler than those of the
Ca II H and K lines. For instance, the CI 1 1347.24 A line (f=0.112, W_(Zeta

Oph) = 20.3 mA; when available these data from ref. 2 for Zeta Oph - ZO - will

be given), although weak, is present in all our spectra, where it generally

has a full width at half depth of about 0.12 A. The line appears symmetrical

and unresolved with the possible exception of towards HDE 303308, where there

is a weak suggestion of a component at -43 km/s.

4. Good correspondence between the principal velocity components in the Ca II

K-line and those in the Mg 1 2852.127 _ line (f=l.90, Wx(ZO)=218 mA) is seen
upon comparison of figs. 1 and 2. In fig. 2 components at about -190, -95, -30,

+60, and +i00 km/s are identifiable. As with the H and K lines the velocity and

intensity structure vary greatly from star to star. It is particularly inter-

esting to compare line profiles of HD 93204 and 93205 in the figures; these two

stars are separated by 20 arcsec on the sky, corresponding to a projected linear
separation of 0.25 pc. (Note that velocities mentioned herein are approximate

and based upon measurement on the figures relative to an adopted central posi-

tion of the maximum absorption dip. Also, horizontal alignment of the profiles

has been made about the presumed zero velocity component.)

5. The Mg II 2795.528 A (f=0.592, Wa(ZO)=312 m_) line profiles shown in fig_

3 are so badly saturated and, presumably, blended in the center that information

on components within 80 km/s of zero velocity is lost. However, high velocity

components are visible at about -185, -85, +90, and +190 km/s. The newly discov-

ered component at +190 km/s in HD 93160 and 93162, if correctly identified,

raises the total range of velocities in the Carina Nebula interstellar absorption

lines to about 400 km/s. Comparable interstellar line velocities (a range of

270, or possibly, 550 km/s) are known only for portions of the Vela SNR (ref.

3-5), an object of considerably different appearance than NGC 3372. Velocity

structure over 60 km/s is also known along lines of sight towards the giant H II
region 30 Doradus in the Large Magellanic Cloud (ref. 1,6,7).
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6. Profiles of the Mn II 2576.107 A (f=0.288, Wa(ZO)=138 mA) llne, fig. 4,

show, with the possible exception of HD 93162, only positive velocity compo-

nents (+65, +135, +175 km/s). The structural differences between the low-excl-

tation lines in figs.2-4 are readily apparent.

7. As an example of high-excltatlon lines, fig. 5 shows the C IV 1550.774

(f=0.097) and C IV 1548.202 _(f=0.194, Wx(ZO)_ 12: m_) lines, which are very

strong in the Carina Nebula and show some velocity structure.

8. The AI III lines, 1854.716 A (f=0.539, W_(Z0)=57:mA) and 1862.790 A (f=

0.288, W_(ZO)=34:m_)are identical in appearance. Shoulders indicative of an

unresolved component around +30 km/s appear in HD 93204, 93205, HDE 303308 and,

possibly, HD 93130, while one near -30 km/s is suspected in HD 93162.

9. No evidence for interstellar molecules has been noted.

Our first appraisal of the velocity and intensity structure of the UV inter-

stellar lines along various lines of sight to the Carina Nebula dramatically

confirms _nd extends the _complexity first noticed in the Ca II H _and
K lines. Excitation conditions in the interstellar medium within this giant

H II region vary greatly on very small scales and, not surprisingly, differ

markedly from those towards Zeta Oph. The new UV observations appear to have
extended the total range of velocities spanned by interstellar lines in the

Carina Nebula to about 400 km/s. Only some paths through the Vela SNR are known

to show comparable interstellar line velocity structure; 30 Doradus in the

LMC may be the site of similar, perhaps less extreme, behavior, however. Einstein

satellite X-ray observations by Seward, et al. (ref. 8) have recently demon-
strated that the weak Carina Nebula X-ray emission is actually composed of both

diffuse emission and many weak sources associated with its numerous early O
stars. Their observations rule out the Carina Source being a single, conventional

SNR, although they suggest that emission orlginatigg in a hot gas due to stellar
winds or due to supernova(e) which occurred I0°-i0 years ago could account

for the diffuse X-ray component. It is clear that studies of the rich inter-

stellar llne spectra in both the UV and optical regions will provide numerous

invaluable insights into the origin and current state of the enigmatic nebula

surrounding EtaCarinae.

We gratefully acknowledge the excellent support of the IUE staff during the

observations and the programs provided by S. Roundtree and J.B. Hutchings.
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TABLE I. - OBSERVATIONS OF CARINA NEBULA STARS

HD SPECTRAL EXPOSURE INFORMATION

NUMBER TYPE V B-V E(B-V) LWR(Exp. Time) SWP(Exp. Time)
Group A: NW of Eta

93160 06111(f) 7.81 0.17 0.49 5666 (60 min)

Group B: Nearest Eta

93204 05V((f)) 8.42 0.i0 0.42 5669 (120) 6597 (150)

93205 O3V 7.75 0.05 0.37 5647 (45) 6611 (60)

93162 WN6-A 8.10 0.42 0.62 5667 (90) 6609 (240)
303308 03V((f)) 8.17 0.13 0.45 5649 (100) 6596 (200)

Group C: SW of Eta

93130 06111(f) 8.06 0.22 0.54 5646 (75) 6594 (i00)

93206 O9.71b(n) 6.24 0.13 0.42 5670 (15) 6612 (25)

Group D: Outer Boundaries

93131 WN6,-A 6.48 -0.02 0.25 1527 (7)
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Fig. i. The central part of this figure, which is from ref. i, gives the distri-

bution on the sky of the stars observed in the original CTIO coud_ survey. The

stars are identified by their HD or HDE numbers. The map is surrounded by the

individual intensity profiles of the interstellar Ca II K line for each star.

The vertical fiducial marks on the horizontal zero intensity line beneath each

profile denote 0 and ± I00 km/s (heliocentric) velocity.
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Fig. 2: Profiles of the Mg 1 2852.127 A line in seven carina Nebula stars. For

this, as well as the remaining figures, 6.0 _ of each spectrum are plotted. The

fiducial marks on the abscissae indicate 0 and • 100 km/s, although, as

explained in the text, the zero point is somewhat arbitrary.
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Fig. 3. Line profiles for the Mg II 2795.528 A llne; otherwise as in Fig. 2.
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Fig. 4. Line profiles for the Mn II 2576.107 A line; otherwise as in Fig. 2.
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Fig. 5. Line profilesfor the C IV 1548.202A and 1550.774A lines; otherwise
as in Fig. 2.
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A SEARCH FOR INTERSTELLAR MOLECULES IN THE

SPECTRA OF HIGHLY REDDENED STARS*

D. Lien, 1 D. Buhl, 2 R.M. Crutcher, 1 B. Donn, 2
1

A.M. Smith, 3 L.E. Snyder, L.J. Stief 2

ABSTRACT

The dark cloud in the line of sight towards X Persei has been searched

for the molecular species OH, CH2, HCI, CO and C2 us$og the IUE satellite._

We h_e detected CO, with a column density of 5 x 1015cm -2 and 1 x 1014cm -z
for CO and CO, respectively. We have placed upper limits on the log

of the column densities of OH, CH2 and HCf of 14.0, 12.8, and 12.3, respec-

tively. Radio observations toward X Persei give a factor of 4 greater col-

umn density in CO, and a velocity width in the cloud containlng the CO of
2 km/s, FWHM. Log N(OH) = 13.8 from radio data, which is consistent with our

upper limit. We also have apparently detected the Pl_ u - XIE_ transition of

C2 at 1341_. The equivalent widths of the C II lines are great enough to
place them on the damping portion of the curve of growth. The derived column

density of carbon implies a C/H ratio of 2/3 the solar value.

INTRODUCTION

Most molecules of astrophysical interest have electronic transitions in

the spectral region covered by the International Ultraviolet Explorer Satel-

lite (IUE). Because of this, we have undertaken the analysis of high disper-

sion spectra of ten stars embedded in or behind dark interstellar clouds
which are known to contain strong lines of CH and CH+ from optical studies

(ref i). These stars were observed in October, 1978, Janua_ry, 1979, and

March, 1980. The initial data reduction was done using the GSPC PDP 11/40

Forth Reduction System, set up by D. Klinglesmith. From this preliminary
overview of all the data, we decided to analyze in detail only one star,

and then return to the others. With this in mind, we spent the March 1980

observing run observing the chosen star in order to build up the total sig-
nal-Ko-noise ratio of the stacked data. This star, to which all further dis-

cussion is directed, is X Persei (HD 24534).

X Persei is a 6th magnitude O or B emission star. It has recently been

identified with the X-ray source 3U 0352 + 30 (ref 2), and has a Vsini of

about 500 km/s (ref 3). The broad stellar lines are easily distinguishable

from the narrow interstellar lines. There is no indication in any of our

data for a stellar wind or super-surface emission features.

* Supported in part by NASA under contract NSG 5278 to the University of
Illinois

i. Department of Astronomy, University of _lllnois

2. Laboratory for Extraterrestrial Physics, GSFC

3. Laboratory for Astronomy and Solar Physics, GSFC
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Copernicus observations (ref 2) of the atomic and diatomic hydrogen
lines give the total hydrogen column density toward X Persei as 2.4 x

1021cm -2, with a fractional abundance of H2 of 0.9, and an associated kine-

tic temperature derived from the first two rotational levels of H2 of 71°K.

DATA REDUCTION

There are two main problems associated with the identification and

subsequent analysis of weak interstellar lines: the noise and the back-

ground.

As the system stands, the ITF should remove all systematic tube de-
fects, and hence all remaining noise should be random. Due to Pixel-ITF

mismatching and possible time-dependent spots, this is not the case. In

order to detect such non-random noise, we have found that sequential obser-
vations of the same star in the same camera should be taken with the star

positioned at alternate ends of the large aperture for each exposure.

This places a given spectral feature at different physical locations on the

tube face for each exposure. The plotted results then show a wavelength
shift between exposures, whereas any non-random noise feature will appear

at the same wavelength. An example of this effect is shown in Figure i.
With this procedure, tube defects cannot be interpreted as weak lines.

When the gross spectrum is divided by the extracted background, a
noisy straight line results. This implies that there are data mixed in

with the background (e.g. order overlap). To correct for this problem, we

assume that the background is of the form BT = C + (B0 - C)f, where B0 is
the observed background at a given wavelength, BT is the "true" background

at that point, and C and f are empirically derived constants. An example

of this is shown in Figure 2, where B0, BT and C are shown, and f = 0.6.
We chose this value of C because at the edge of the order there are very
little data, hence that value of the background probably represents the
component due to thermal noise and any reading induced noise. A best-fit

value for f is found by varying the value of f and subtracting BT from the
gross spectrum until the equivalent widths of the same line in two different

orders are equal. Thus C is a constant for each order, and f is a constant

for the spectrum. We find that f = 0.6 reproduces equivalent widths between

orders within 5%, and between exposures within 10%.

After the proper background for each spectrum has been_subtracted from

the gross spectrum for a given order, spectra are stacked after shifting

each to the same radial velocity, at the wavelength of interest. All equi-
valent widths and line profiles are extracted from this stack. For X

Persei, there are 6 spectra, shifted and stacked as described above.

RESULTS

Radio observations of the CO I-0 rotational transition obtained by one Of

us (RMC) have been analyzed assuming LTE. We find T0_4= 5_K, a velocity width
of 2 km/s FWHM, and a I_CO column density of 4.2 x i0 cm- . Assuming a
12C0/13CO ratio of 40 gives the column density of 12C0 as 1.8 x 1016cm -2.

Subsequent analysis in this section will assume a velocity width of 2 km/s,
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and a rotation temperature for CO of 5° K. This may not be a valid assump-

tion when comparisons between atomic and molecular column densities are

made; however, it is adequate as a first approximation.

We have observed the v" = 0 progression of the Fourth Positive system

of CO through v '.=12 for 12C0. Observations of the i-0 rotational transi-
tion and the 2-0 vibrational band of the A-X system are shown in figure 3

for 12CO and 13C0. We have done an initial analysis of the system assuming

that only the first four rotational levels are populated, at a rotation

temperature of 5°K. For each frequency over the band, we then calculate

the optical depth contributed at that frequency by each of the nine transitions
from the four levels, assuming that a Voigt profile describes the line. Under

these assumptions, we find the column density of 12CO to be about 5 x

lOl5cm -2, and the column density of 13C0 to be about i x 1014cm -2. These

values compare favorably with the column densities derived from radio

observations; reasons for the small differences may be due to the assump-

tion of a thermal population of the rotational levels (which strongly af-

fects the saturation of the UV CO lines), and the larger beamwidth of the
radio measurement. It seems reasonable that the cloud is completely in front

of the star.

We have made a detailed search for OH (1222_), HCL (1290_), and CH2

1416_), and report that none of these molecules were detected above the 5

level. This puts upper limits on the logarithm of the column densities
for these molecules at 14.0 (.004), 12.3 (.16), and 12.8 (.05), respective-

ly. The numbers in parentheses are the oscillator strengths (ref 5,6,7).
These limits are derived assuming that the molecular line is optically

thin.

One of us (RMC) has detected the 1667 MHz radio OH line toward X

Persei. He finds log N(OH)=I3.8, which is consistent with our upper limit.

i i+
We have apparently detected the F _u - X E system of C2 (ref 8), of

which we have observed the 0-0 vibrational band at 1341 _. The D-X system

in the ultraviolet has previously been reported (ref 9). Since C2 does

not have a permanent electric dipole moment, transitions between rotational

levels are forbidden; hence, there is expected to be a thermal population of

the ground state rotational levels. The resultant profile due to the
convolution of lines arising from these rotational levels with the response

of the IUE spectrograph should show the transition as a broad profile, with a

possible separation of the bands. This is about what we observe, as shown in

Figure 4. We are in the process of modeling the C2 line in much the same
way as described for the CO lines.

The C II doublet at 1334_, 1335A is important not only as an indicator

of the total hydrogen density (ref. 4), but also the abundance of this domi-

nant species can provide some information about the composition of the dust.

The equivalent widths of the two lines toward X Persei are 267 and 172 m_,
for the 1334A and 1335_ lines, respectively. For a velocity parameter, b,
of 5 km/s or less, this puts the 1334_ line on the damping part of the

curve of growth, thus making it independent of the exact velocity dispersion,

providing it is less than about 5 km/s. This implies a column density of C

(assuming most carbon is C II) of 5.6 x 1017cm -2. For a total hydrogen

583



1021column density of 2.4 x , this implies a C/H ratio of 2.3 x 10-4 or

about 2/3 the solar value. Formal errors have not been worked out, but

errors in the exact placement on the curve of growth do not change by more

than ± .15 in dex. The kinetic temperature based on the relative populatlon_

of the fine structure levels of C II is 55°K, which agrees favorably with
the kinetic temperature of 71°K derived from the relative populations oZ the

J = 0 and J = i levels of H2. This implies that collisions dominate the
de-excitatlon of the excited fine structure level of C II, and puts the

brunt of the cooling on H2 and other molecules.

SUMMARY

We have observed a total of ten stars with both the SWP and LWR cameras

of the IUE in both high and low dispersion. We have chosen one star, X
Persei (HD 24534, 6.0 BE), to analyze in detail.

Our ultraviolet observations of the column densities of CO match those

derived from the radio to within a factor of 4, with the difference probably
due to the larg&r beam size of the radio measurement and the assumption of
a thermal population in the rotational levels of CO,

We give upper limits to the log column densities for OH, HCf, and CH2
of 14.0, 12.3 and 12.8, respectively, and report the identification of the

FI_ u - xlz_ system of C2. We find the carbon abundance to be about solar,
with a possible depletion of about a factor of 2. We feel that with the

proper precautions concerning both noise and correct background, the IUE
can effectively be used for some studies of interstellar molecules.
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i. During sequential observations of the same star, if the star is shifted

in the large aperture, spectral lines shift, but systematic noise does

not; f indicates lines due to Fell, m indicates lines due to Mnll, and
n indicates systematic noise features on the tube.
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2. An example of the gross spectrum and the background subtraction tech-

nique used; B0 is the IUE extracted spectrum, and BT is the "true"
background, as indicated by the equation. After the computation of

BT, it is smoothed bv a median smoothing routine.
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3. Radio and optical observations of CO. The radio observations are of
the 1-0 rotational transition, and the UV CO are due to the 2-0 vibra-

tional band of the Fourth Positive electronic system.
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Figure 2
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BY=C+(B,- C)xf

I I
1335 1345

4. 'meFlwu - XIE + system of C2, showing the 0-0 vibrational band at
1341.63_ (ba_d origin). The strong feature at the left is the 1335_

line of CII which originates from the excited fine structure level of
the ion.
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A COMPRESSED CLOUD IN THE VELA SUPERNOVA REMNANT

Edward B. Jenkins

Princeton University Observatory

George Wallerstein and E. Myccky Leep

University of Washington

Joseph Silk

University of California, Berkeley

INTRODUCTION

Our previous interstellar line survey, carried out with the Copernicus

satellite, was limited to selected lines in only four bright stars (ref. I).

Nevertheless, our data revealed the presence of numerous absorbing, primarily

ionized gaseous sheets and filaments, that had evidently been shocked, com-

pressed, and accelerated by interaction with the SNR.

The significance of the interaction of supernovae with interstellar

clouds was first stressed by Oplk (ref. 2), who suggested t_at star formation
would be initiated. More recent studies have supported this viewpoint, al-

though the direct evidence for triggering of star formation by supernovae is

very tenuous. Herbst and Assousa (ref. 3,4) emphasized the location of young

stellarassociations at the edges of expanding shells of gas: such shells are

not necessarily old SNR, however. A more direct connection was sought by Woo-

tten (ref. 5) who found evidence for compression by a factor _i0, heating, and

enhanced line broadening in molecular clouds near the SNR W44 and W28.

Another connection between a supernova and star formation has been in-

ferred from the presence of excess 26Mg in certain inclusions in the Allende

meteorite, taken to indicate that the unstable isotope 26AI was injected into

the protosolar nebula within -106 yr of the nucleosynthesis of the 26AI in a

nearby supernova (ref. 6). Such circumstantial evidence suggests that inter-

action with the supernova may both have enriched and initiated the collapse of

the interstellar, cloud destined to form the sun and the solar system.

Finally, recent models of spiral structure have utilized supernova-lnduc-
ed star formatlon as a means of enabling star formation to be self-propagatlng

in the galactic disk (ref. 7,8). To justify this type of theoretical work,
one would llke to know whether there is any evidence for the extreme compres-

sion of ambient gas near a SNR that is required to initiate star formation.

In an attempt to shed light on these issues and to further elucidate the
nature of the interstellar medium in the vicinity of the Vela SNR, we have

undertaken an extensive study with the IUE of interstellar absorption lines

toward 35 stars in the vicinity of the Vela SNR. Observations of interstellar

absorption, in particular of CI, towards one of these stars, HD 72350 (type
B4 III), are of sufficient interest that we report here a preliminary analysis

of this data before the entire survey has been reduced.
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OBSERVATIONS

In June 1979 we obtained high resolution IUE spectra of 35 stars in the

field of the Vela Supernova Remnant. From the video displays of the short

wavelength echelle spectra it was clear that HD 72350 showed multiplet struc-.

tures in all of the C I transitions which were especially prominent, indicat-

ing that the excited fine-structure levels are heavily populated. Two addi-

tional short-wavelength exposures of this star were recorded in September 1979

to verify this result and improve the net signal-to-noise ratio.

Column densities of various species were derived using curves of growth
based on Voigt profiles. For unresolved blends of two or more transitions

from C I, special curves of growth were calculated to derive the total equiv-

alent width of the partially overlapping components. Table i lists the de-

rived column densities as a function of the velocity dispersion parameter b,
averaged from all but the weakest lines. We calculated the standard error of

the results for cases where we measured three or more lines, and these disper-

sions are shown in parentheses after the respective entries. For our study of

cloud compression, our primary objective is to derive column densities of neu-

tral carbon atoms, i.e. (N(CI), N(CI*) and N(CI**), in the three levels of fine

structure excitation, 3P0, JPI and 3P2, respectively. From the standard

errors in Table 2, we see that the best internal consistency for the column

densities occurs for b _ i0 km s-I. Within the range i0 < b < 20 km s-1, the

total column density of neutral carbon varies by a factor-of Three, but the

ratios of C I, C I* and C I** populations are relatively insensitive to the

choice of b. Our inability to detect the weaker transitions indicates that

the absorptions we have measured do not have heavily saturated cores. In par-

ticular, our detection limit for X1276.48 forces us to conclude that log

N(CI) < 14.7 for any b greater than 4 km s-1, if log f% for this transition is

about 0.8 (this line strength is based on a preliminary analysis of C I absorp-
tion data recorded by ref. i0; see also ref. ii). Hence, we are confident

that the conspicuousness of the excited lines is attributable to a strong

excitation of carbon rather than a large difference in line saturations.

If we assume log N(H) = 20.8 from the star's B-V color excess of 0.14

(ref. 12) and the general gas to reddening ratio of 4.8 x 1021 atoms cm-2

mag -I (ref. 13), we find that the relative abundances of N I and O I are con-

sistent with the cosmic abundance ratio if b ranges between I0 and 12 km s-I.

From earlier research works on ultraviolet interstellar data, we know that

velocity dispersions of atoms in a stage of ionization below the dominant one

for H I regions generally exhibit a lower b than those species in their domi-

nant stages (e.g. see Figure 2 of ref. 14), so our N I and O I b values should

exemplify only an upper limit for the b of C I. Doublet ratios for the Ca I]

and Na I absorptions in the visible yield b values of i0 and 5 km s-I, respec-

tively (ref. 9). The value for sodium appears to be too low perhaps because

the equivalent widths were not very accurate; 8 km s-I would be acceptable,

but a larger b value implies the D lines are virtually unsaturated which is
inconsistent with the observed line strength ratio. From the above consider-

ations, we feel that it is reasonable to assume that the most probable value
of b for C I is 12 km s-I.
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TABLE I.-COLU_IN DENSITIES (LOG NL) FOR LIGHT ELEMENTS
IN THE H I REGION IN FRONT OF HD 72350

No. of log NL for various b-values

Element Lines 8 i0 12 15 20 Notes

Cl 3 15.3(0.4) 14.8(0.2) 14.6(0.2) 14.4(0.2) 14.4(0.2)

Cl* 9 15.5(0.5) 15.1(0.3) 14.8(0.2) 14.7(0.2) 14.6(0.2)

CI** 8 14.8(0.2) 14.6(0.1) 14.5(0.1) 14.4(0.1) 14.3(0.1)

Cl(total) 22 15.8 15.4 15.1 15.0 14.9 i

NI 3 17.6(0.3) 17.1(0.4) 16.3(0.4) 15.5(0.3) 15.0(0.2)
Ol i 18.0 17.7 17.2 16.2 15.4

01" I <13.9 <13.9 <13.8 <13.8 <13.8

Mg I 2 13.3 13.2 13.2 13.2 13.2

C0 5 14.2(0.1) 14.2(0.1) 14.2(0.1) 14.2(0.1) 14.2(0.1)
Na I 2 12.8 12.4 12.3 12.3 12.3 2

Ca II 2 13.2 12.9 12.8 12.7 12.7 2

Notes: 1-Includes two blends of CI* and CI** features.

2-From optical spectra (ref. 9).

THE NEUTRAL CARBON ABSORPTION LINE REGION

CAN THE CI ABSORPTION BE CIRCUMSTELLAR?

Prior to discussing the implications of the CI populations in Table 2 we

must demonstrate that the observed cloud is not a circumstellar feature whose

CI levels are pumped by radiation from HD 72350. Radiation from 34 III star

is capable of ionizing CI. We first have shown that there is a negligible
amount of CI recombination in the CII zone. Moreover, a sufficiently great

column density is needed to shield CI near HD 72350 from the carbon ionizing

photons that there can only be a negligible amount of CI at high pressure

(p/k >>103 cm"3 K) near the star. Finally, the stellar radiation field is not

sufficiently intense to radiatively pump the CI without requiring an excess-

ive large column density of shielding CII.

PROPERTIES OF THE C I CLOUD

Since we have shown that the cloud containing the CI is not circum-

stellar, we can adopt the perspective that it is normal interstellar material

subjected to unusual physical conditions. From the fine-structure population

ratios fl E Cl*/Cltotal and f2 E Cl**/Cltotai we may arrive at permitted com-
binations of pressure and temperature using the diagrams for eollisional equi-

libria in H I regions given by ref. 15. Figure i shows the combinations of

pressure and temperature which are consistent with our population ratios_

allowing for reasonable errors in column densities.

However, there are two additional constraints, shown in the figure, which

we may impose on the conditions. First, we can require that a solution for

the ionization equilibrium between CI and CII (ref. 15) not give a computed
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value N(CI) less than the observed value assuming log N(H) = 20.8, a cosmic

abundance ratio for C/H, and an ionization rate rC = 2 x i0-IU s-I for the
general interstellar medium. (This argument is only a limiting case because
the computed value could greatly exceed the observed N(CI)/N(H) if much of the

reddening was not associated with the CI region.) This constraint may be even

stronger than shown here, since there is a good chance that FC in the Vela re-
gion is higher than the usual interstellar value and some of the free carbon

atoms are depleted onto grains.

The second constraint comes from our upper limit for N(01*). If we solw_

for the colllsional equilibrium for the 0 1 fine structurelevels, assume a
cosmic abundance ratio for C/O, and compute the total carbon density from the

ionization equilibrium (see above), we obtain log T < 2.1. This result is in-

dependent of log p/k because the computed ratios 01"/01 and C/CI both scale

approximately linearly with pressure.

DISCUSSION

From Fig. i we see that the tem[perature of the cloud lles between 25 and

IO0*K and P/K is greater than 104 , and could be 106 or larger. The minimum

density is about 250 hydrogen atoms/cm 3, and the density could easily be

3 x 103 or substantially higher. Such conditions could be realized by compres-

sion of pre-existing clouds by a supernova shock moving at about 400 km s-I
through the intercloud medium. Such a shock could compress the gas by a fac-

tor 300 so the shocked cloud could have had an initial density of order

i0 cm-3. The origin of shock clouds within the Vela B association poses an

interesting problem. They are likely to be material left over from the for-

marion of stars that have recently reached the maln-sequence of the associa-
tion.
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(b)

41 I2 =
logT

Fig. i. Allowed pressures and temperatures for the CI cloud.

Excluded areas are the shaded side of the lines. Lines ma_ked

(a) are from CI fine-structure excitation. Line (b) is from

the relative abundance and ionization equilibrium of carbon.

Line (c) is from the absence of observed absorption from 0I*.
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l_fE OBSERVATIONS OF SUPERNOVA REMNANTS •

3.C. R_ymo_ud
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ABSTBACT

We discuss the UV emission spectra of several filaments in the
CyKnus Loop and the Vela Supernova Remnant, including several
which are anomalously bright in the optical 0 HI lines. The
effects of internal and lntersteller resonance line scattering are
estimated. Shock velocities, elemental abundances, and in some
cases filament ages are given.

INTRODUCTION

Detefled discussions of IUE spectra of supernova remnants have been given
by Benvenuti, D'0dorico and Dopita and Benvenuti, Dopita aud D'Odortc0 (refs.
1,2). Raymond et al (ref. 3) considered long and short wavelength spectra of a
bright filament in the Cy_nus Loop which had been studied optically by M/llar
(ref. 4; his position 3). Hare we compare that spectrum with two other fila-
ments for which we have long exposures in both the long and short
wavelength cameras.

Miller's position 3 is anomalously bright in the [0 HI] optical lines com-
pared with models (rofs. 5-7) and With most of the other bright optical fila-

ments. Raymond__t al.(ref. 3) inferred for this filament 1) a shock velocity of
about 130 k,m s , significantly faster than had been estimated from optical
spectra; 9.) weakening of the resonance lines of C II and C IV by up to a factor
of ten by resonant scattering, either intrinsic to the filament or in the interstel-
lar gas along the line of sight; 3) carbon end silicon only slightly depleted (_ a
factor of 1.5) compared With oxygen! and 4) departure from steady-flow, in the
sense that the recombination region is incomplete, implying an age for the fila-
ment of _ 200 yrs.

£GNGI,U£I0
Table 1 compares the IUE spectrum of Miller's position 3 With the spectrum

of another Cygnus Loop filament and that of a filament in the Vala Supernova
Remnant. The Cygnus Loop filament has been studied optically by R. Fesen and
IL KLrshner and called position *'yellow". Its optical spectrum resembles those of

= Supported in part by NASA grants NSG 5370 to the Harvard College Ob-
eervatory and N&G-5-5 to the Sm/thsonian Astrophysical ObservatolT.
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MAiler's positions 1 and _.. The filament selected for study in the Vela Super-
nova Remnant was a sharp, bright [0 III] filament near the center of the rem-
nant chosen from interference filter photographs provided by T. Gull. It is

probably similar to Miller's position 3 in its relatively great [0 II_ / I_ ratio,
The fluxes listed in Table 1 for the Cygnus Loop have been corrected for
reddening E(B'V) = 0.08 (refs. 8,9). Reddening is not obviously required by the
optical spectra of the Vela Supernova Remnant (refs. 10,11), and no reddening
correction was made, but we cannot exclude the possibility of significant
extinction tu the UV.

The emission in the bright lines at Miller's position 3 appears to be uniform

over the large aperture, so interpretation in terms of a single velocity shock is
at least reasonable. The other two spectra reported here show clear structure

within the large aperture, and full interpretation will require separation of two
or three spatial regions in each. Thus we will not attempt a serious fit of these
spectra to individual shock models, but instead give a general comparison with
Millers position 3.

The three spectra are basically quite similar in the lines present. The out-

standing difference between the two Cygnus Loop spectra is the strong Mg II
emission at position "yellow" and the lack of 1Vig II at position 3. This confirms
the hypothesis that the recombination zone, where Mg II emission is expected to
arise, is almost absent at position 3,_while more of a steady-flow shock has
developed at "yellow". Whlle thts Is expected from the optical spectra, there is
a conceivable alternative explanation. It is possible that the Doppler velocities
of the two filaments are such that the Mg II lines from position 3 coincide

With the strong interstellar ME II absorption, while those at "yellow 4' do not. A
hit at the position of C II ),1335 prevents more than a lower limit to the factor
by which resonant scattering reduces that line. The C IV / 0 III] ratio is larger
at "yelloW' by a factor of two, giving some indication that resonant scattering
may be less severe. Either less severe scattering or a slightly higher shock
velocity may account for the greater strength of N V at position "yellow", but
the likelihood of a mixture of shock velocities makes even this uncertain.

In the coming year we will be studying the interstellar absorption lines in
• the vicinity of the Cygnus Loop and the Doppler velocities of the filaments

under study in order to distinguish between interstellar resonant scattering and
intrinsic scattering. In the latter case, resonance line photons tend to be scat-
tered out the faces of a sheet of gas; the choice of bright optical filaments for

study tends to select sheets of gas seen on edge, so the resonance lines appear to
be weak relative to forbidden and intercombination lines. If the resonance line

scattering is intrinsic, the ratio C II / C II] yields a column density, and conse-
quently a density estimate.

The Vela SNR filament is much like position 3 of the Cygnus Loop in that

the low temperature lines, C II and ME II are relatively weak, again indicating a
departure from steady flow. The weakness of N V indicates a slightly smaller
shock velocity. The N III] and N IV] lines are rather strong compared with 0
HI]. Since there is no optical evidence for an unusual abundance ratio (refs.
10,11), it seems likely that this is a result of the mixture of shock velocities.
The C II / C II] ratio is only about a factor of 2 below those predicted by the
models. The interstellar C II absorption has been studied extensively (ref. 1Z),

and it seems that a Doppler shift of around 50 k_m s -1 is needed to shift the
emission lines away from the interstellar absorption.
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One comparison of interest between the Cygnus Loop and Vela SNR is the
relative abundances of carbon and silicon, since these elements are most strongly
affected by grain depletion. Jenkins, Silk and Wallerstein (ref. 12) concluded
from Copern/cus observations of absorption lines that there was no significant
depletion in shocks associated with the Vela SNI_ The IUE spectra seem to Indi-
cate depletion of carbon and silicon by about a factor of 1.5 in beth remnants as
Compared with the ratios of these elements to okygen given by Allen (ref. 13),
but further observational and theoretical study is required to confirm this
result.
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LINE EMISSION

Relative to X 1666

ION _ Cygnus Loop Vela SNR

Miller. 3 "Yenow"

$
N V 1240 19 42 11

Z 85
C H 1335 10 62 23

$
0 V 1371 6

O' r_ 1400 73 115 148

S11VJ

N IV i485 11 - 55

C IV 1550 108 266 205

He H 1640 27 38 40

O IH 1666 100 100 100

EX
N IH 1745 52 63 76

x
SilI 1818 6 - -

SilTI 1890 27 128 73

C IH 1909 181 424 293

C H 2325 102 240 74

NeIV 2420 37 23 47

0 H 2470 21 23 20

ME H 2800 - 40 -

I(1666) t - 2.5(-4) 5.4(-5) 3.9(-5)

_t

Estimated uncertainty greater than 30%

Particle noise contributes up to 50% of this value.

t Ergs cm -Z s" 1 sr- 1
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SURFACE MAPPING OF SELECTED REGIONS IN THE ORION NEBULA

P. M. Perry, B. E. Turnrose, c. A. Harvel,

R. W. Thompson, A. D. Mallama

Computer Sciences Corporation

Astronomy Department

ABSTRACT

Low-dispersion, large-aperture, ultraviolet spectra (I_ I135-3255A) of

selected regions in the Orion Nebula were obtained with the International

Ultraviolet Explorer (IUE) scientific instrument. Spectra obtained at 35

contiguous locations defining a mosaic within the nebula were used to gen-

erate monochromatic images of high spatial resolution at the wavelengths

of the ultraviolet emf_ion lines CII_ A1909, CI_ _2326, and [0I_2470.
Image-processing techniques were utilized to generate and analyze these

ultraviolet surface maps. The imagery at the three wavelengths studied

shows definite differences in the spatial distribution of emission from

the CII] CIII] and _II] ions. Ways of using the imagery to determine
ionization structure and C/O abundance ratios throughout the regions ob-

served are being developed, in addition to means of analyzing the extensive

continuum measurements in terms of dust-scattering characteristics.

INTRODUCTION

The central (Huygenian) region of the Orion Nebula (NGC 1976) pos-

sesses a wealth of fine structural detail which can only be studied with

high-resolution instruments. Many studies have been carried out on visual

images of the central region but, until recently, it was not feasible to

obtain images of sufficiently high resolution in the far UV. Existing UV

imagery (e.g., ref. i), although of considerable scientific value, dis-

plays only large-scale surface detail.

The launching of the IUE has provided a unique opportunity to extend

the high-resolution study of the surface features of the Orion nebula into

the far UV. Even though the IUE scientific instrument described by ref. 2

is primarily designed to operate as a conventional spectrograph, its high

degree of attitude stability and pointing accuracy, together with an ex-
tended sky coverage (i0 by 20 arcseconds) using the large entrance aperture,

give it the capability--when used in the mode to be presently described

--of obtaining high spatial resolution images in the far UV. The observa-

tional technique involves the acquisition of low-dispersion spectra through

the large aperture in both the long- and short-wavelength spectrographs.

Contiguous image segments, defined by the size of the aperture, are obtained

in a raster pattern covering the program area. As in a slitless spectro-

graph, each image segment is simultaneously accumulated at all wavelengths.

The image processing operations to be described then reconstruct mono-

chromatic images of the nebula in the wavelengths of the UV emission lines

from a mosaic of the individual segments.

601



The following section of this paper describes the specific observational

procedure used to obtain the images. The next section details the processing

techniques employed in obtaining a preliminary set of "raw" mosaics, and then

describes methods to be employed to further remove instrumental signature and

improve the image reconstruction integrity. These raw mosaics are presented

in the last section which contains a preliminary discussion of their signifi-

cance and the use of the data obtained by this program in several scientific

areas.

OBSERVATIONS i

During the period from April 23 to April 28, 1979, a series of 6_ large-

aperture, low-dispersion images were taken covering a total of 35 contiguous

overlapping areas in the central (Huygenian) region of the nebula. This area

extends from just south of e20ri A in a northwesterly direction across the

bright bar towards 81Ori C (see Figures 1 and 2, and Table I). For all but

one of these areas, both a long- and a short-wavelength camera exposure were
obtained.

Figures 1 and 2 and Table I define the 35 areas used to form the mosaic

and locate the mosaic as a whole within the nebula. Figure 1 shows the con-

tiguous area observed outlined on a visual photograph of the central part of

the nebula. Figure 2 shows the placement, orientation, and extent of each of

the 35 areas observed; Table I gives the RA and DEC of each area, as well as

the image number of the observation with each camera and the exposure time

used. At the time of these observations, the spacecraft was oriented such

that the longaxis of the large aperture ranvery nearly north-south.

As can be seen in Table I, exposure times for LWR and SWP were about 15

and i0 minutes, respectively. When possible, the exposure time for an area

was estimated from the exposure time and exposure level of previously observed

adjacent areas. In one case (area 32), the position of the area was changed

to move it away from a bright star (_2A) after an adjacent area (area 33) was

saturated by scattered light from the star.

Pointing of the spacecraft was maintained to an accuracy of 3 arcseconds

or better (this is less than the spatial resol_tion of the system) by setting

on e2Ori C (assumed 1950.0 coordinates: RA = 5n33 m 04.s0, DEC = -5o27 ' 09".0),

offsetting to the RA and DEC of the target area, and then quickly acquiring
8-Ori C as a guide star. The spacecraft gyros were trimmed to minimize drift

during the maneuver. In those cases where an observation of the same area was

immediately made using the other c_aera, the spacecraft was maneuvered to

place the area in the large aperture of the other camera without going back

to the set star. After each observation or set (LWR, SWP) of observations, the

spacecraft was offset back to e2Ori C using the inverse of the offsets used to

get to the target area. The difference between the expected FES location of
the set star and its actual location was obtained in order to estimate the

combined offset and drift error during the observation--this error was less

than 3 arcseconds in all cases and usually around 1.5 arcseconds.
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ProCESSInGTEC IQUES

The 35 observations described in the preceding section were first proc-

essed in the standard fashion at the IUE Image Processing Center (ref. 3). An

example of a raw LWR image of the nebula is given in Figure 3, which illus-

trates the appearance of the CI_2326 and _I_A2470 lines against the con-
tinuum radiation. Each observation yields a two-dimensional array of fluxes

arranged by wavelength and spatial position perpendicular to dispersion; this

is the so-called line-by-line or spatially resolved spectrum which is used

herein as the starting point for our special processing. Since the imagery

to be reconstructed here is monochromatic, the wavelength dimension also

translates into position; i.e., there is spatial resolution along the disper-

sion direction. Thus, from the line-by-line spectra of each observation, we

can derive a two-dimensional image segment of that portion of the nebula sub-

tended by the large aperture, for each of the UV emission lines observed. The

purpose of our tailored processing is to assemble these segments into a set of
monochromatic mosaics of the nebula, and to remove residual instrumental ef-

fects as well as any effects due to the particulars of the observations. For

each of the mosaics, the following procedures are used.

A data array is dimensioned (51 x 69) to cover the program region

(Figures 1 and 2) with a basic resolution of one IUE line-by-line spectrum

sample. The celestial coordinates of the observations are read from the IUE

image header, verified with handkept observing logs, and converted to the

corresponding relative coordinates of our data matrix. At the same time, the

exposure time is read from the IUE header and stored in core for later use.

The wavelengths in the llne-by-line spectra are then read, and the loca-
tions of the emission lines of interestand suitable continuum background

regions are noted. Then the fluxes are read from the appropriate locations.

The image segment derived from this data is 5 line-by-line samples wide in

the dispersion direction and ii line-by-line samples high in the perpendicular

direction. This corresponds closely to the i0 x 20 arcsecond dimensions of

IUE's large aperture. (Remember that each line-by'line sample is _2 IUE

pixels, or 2.16 arcseconds, on a side). Next, the background fluxes are

interpolated within each line-by-line pseudo order and subtracted from the

emission line fluxes. The resulting data are then normalized to a constant

exposure time. The normalized fluxes are added to the data matrix, and an

increment is added to the corresponding elements of a counter matrix.

When all the data have been so processed, the data matrix is divided by

the counter matrix (in order to properly average the fluxes in grid elements

where the observations were overlapped). Then the data are normalized to a

maximum value of 30,000 for use by a COMTAL display device*, a header is

added, and the resulting file is copied to tape.

The procedures described above result in preliminary mosaic imagery.

Ways of further correcting and improving such data are currently under develop-
ment. The effective transmission function, or vignetting function, for each

element within the large aperture is being measured on unsaturated exposures

of the geocoronal Lyman alpha line. SWP mosaics will be corrected for this

function, and the possibility of relating that correctionlto LWR data will be

*Provided by the Laboratory for Astronomy and Solar Physics, GSFC.
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investigated. Also, the possibility of using bilinear interpolation to render

a more exact correspondence between the placement of the large aperture and

the derived grid elements is being studied.

DISCUSSION

Figure 4 compares a visual image of the program region of the Orion nebu-

la with the three preliminary UVmosaics which have been generated from the

present data, using the emission lines CII_ _ 1909 (SWP), CI_ _ 2326 (LWR),
and _I_2470 (LWR). Note that the bright filamentary bar identified with _m

ionization front is visible in all three mosaics. The emission line from the

singly ionized species (CI_ and _I_ ) is concentrated near th E ionization

front, whereas the emission from doubly ionized carbon is spread more through-

out the principal HII region. The bar in the _I_ imagery appears to show

a region of diminished intensity near the western end. In both CII] and _I]!_
there is detectable emission south of the bar, including fairly strong emis-

sion in the isolated region (to the east of the principal program area) which

includes the compact optical object referred to as "cloudlet C" by Taylor and

MSnch (ref. 5). The cloudlet is a relatively low excitation object since no

CII_ emission is seen. The general lack of CII_ emission south of the bar
is another feature evident from the preliminary mosaic, even though the CIII

imagery has the lowest signal-to-noise ratio because of the faintness of the

_1909 emission. Since that line is even weaker in the LWR spectra, only SWP

spectra were used in generating the _1909 mosaic. The SWP fluxes were cor-

rected for ITF error using the Three Agency correction algorithm SWPFIX
(ref. 4).

The data as they now stand indicate that several promising avenues of

research are feasible. The imagery will be calibrated absolutely to obtain

emission line intensities as a function of position with a resolution of

about 4-5 arcseconds. Such intensity maps, perhaps corrected for density

fluctuations by dividing through by an HG image*, will be used to compare the

ionization structure measured by the spatial distribution of the CI_ , CII_ ,

and _I_ UV emission to the results of optical studies. The p_eliminary UV

results compare favorably with optical measurements indicating that the

higher ionization states are found chiefly within the principal inner HII

region (see, for example, ref. 6). These data may also be compared to the

less extensive UV measurements of Torres-Peimbert, et al. (ref. 7), and

Bohlin, et al. (ref. 8). In particular, the present data will be used

according to the considerations of refs. 7, 8, and 9 to measure the C/O

abundance ratio as a function of position and compare it to the earlier re-

sults which find either solar values (ref. 7) or twice solar values (ref. 8)

for C/O in Orion.

The measurements of the nebular continuum which are accumulated in the

present program at all wavelengths from All50 _ to 320'0 _ are of considerable

interest in their own right in characterizing the properties of dust scatter-

ing as a function of position in the nebula. The grid of continuum measure-

ments obtained here will ultimately be presented in a form suitable for dust

studies. In this regard, we intend particularly to map the strength of theO

2200 A extinction feature in the bar, cloudlet C, and two other Taylor-M{[nch

cloudlets (ref. 5) also observed.

*R. J. Dufour, private communication (1980)
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TABLE I - LOG OF OBSERVATIONS

RA DE C SWP LWR

AREA# h m s deg m s IMAGE# EXP* IMAGE# EXP*
1 5 32 50.87 -5 25 28.0 5068 I0.0 4401 15.0

2 51.40 28.0 5061 10.0 4394 11.25

3 51.93 28.0 5053 10.0 4386 15.0
4 51.13 44.0 5069 10.0

5 51.67 44.0 5060 10.0 4393 15.0

6 52.20 44.0 5052 10.0 4385 15.0

7 52.73 44.0 5065 10.0 4398 15.0

8 51.93 26 00.0 5059 10.0 4392 15.0
9 52.47 00.0 4997 8.0 4334 12.0

10 53.00 00.0 5051 10.0 4384 15.0

11 53.53 00.0 5050 10.0 4383 15.0

12 52.20 16.0 5058 10.0 4391 15.0

13 52.73 16.0 5054 10.0 4387 15.0

14 53.27 16.0 5036 10.0 4364 15.0
15 53.80 16.0 5034 10° 0 4362 15.0

16 54.33 16.0 5066 10.0 4399 15.0

17 54.87 16.0 5067 i0.0 4400 15.0

18 52.47 32.0 5057 i0.0 4390 15.0

19 53. O0 32.0 5055 10.0 4388 15.0

20 53.53 32.0 5035 10.0 4363 15.0

21 54.07 32° 0 5033 8.0 4361 12.0

22 54.60 32.0 4996 8.0 4333 12.0

23 56.73 29.0 5049 9.0 4359 12.0

24 52.73 48.0 5056 10.0 4389 15.0

25 53.27 48.0 5032 8.0 4360 12.0

26 53.80 48.0 5031 8.0 4344 9.0

27 54.33 48.0 5000 8.0 4336 12.0

28 54.87 48.0 4999 2.0 4335 2.5
29 52.47 27 04.0 not observed

30 54.07 04.0 5007 8.0 4342 12.0

31 54.60 04.0 5003 8.0 4339 12.0

32 55.13 09.0 5002 6.0 4338 9.0

33 55.67 04.0 5001 2.0 4337 3.0

34 54° 87 15.0 5006 10.0 4342 15.0

35 55.40 20.0 5005 8.0 4341 15.0

36 55.93 20.0 5004 6.0 4340 9.0

*All exposures given in minutes.
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Figure 1 -- [0I]16300 photograph of the central region of the Orion Nebula
(courtesy T. R. Gull, GSFC) with UV survey area outlined.
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Figure 2 --Schematicdrawingshowingplacementand orientationof survey
apertures.
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Figure 3 -- Enlargement of raw image (LWR 4389, area 24) showing the CII] 12326

and [0I_]12470 emission lines against the continuum radiation.
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Figure 4 -- Comparison of survey region in visual and UV wavelengths:

a. [0I]16300

b [o  ] 2470
c. CII]12326

d. CIII]II909

Note that the brightness of each UV mosaic is scaled so that the

highest intensity in that-mosaic is white and zero or negative

intensity is black. Relative intensities between the three mosaics

cannot be inferred from these photographs.
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ULTRAVIOLET ABSORPTION BY INTERSTELLAR GAS AT LARGE
DISTANCES FROM THE GALACTIC PLANE

Blair D. Savage and K1aas S. de Boer

University of Wisconsin, Madison, WI 53706, U.S.A.

During the past two years we have acquired a total of 18 high dispersion

spectra of 6 stars in the LMC, 3 in the SMC, and 2 foreground galactic stars.
The LMC stars observed are HD 36402, HD 268605, Sk, 18-67, HD 38268, HD 38282,

and HD 269357. The SMC stars observed are Sk 80, Sk IO8, and HD 5980.

Various investigations undertaken with these spectra have resulted in the

following publications:

I. "Observational Evidence for a Hot Gaseous Galactic Corona"

Savage, B.D. and de Boer, K.S. 1979, Ap.J. Letters, 230, L77.

2. "Ultraviolet Absorption by Interstellar Gas Near 30 Doradus"

de Boer, K.S., Koornneef, J., and Savage, B.D. 1980, Ap.J.,
(March 15).

3. "Evidence for Hot Gaseous Coronae Around the Magellanic Clouds"

de Boer, K.S., and Savage, B.D. 1980, Ap.J., (May 15).

4. "Ultraviolet Absorption by Interstellar Gas At Large Distances

from the Galactic Plane"

Savage, ,B.D., and de Boer, K.S., A_J., (submitted).

Paper 4 contains a reasonably complete discussion of the Milky Way ab-

sorption features toward the 9 Magellanic cloud_stars. Preprints of this

paper are available on request; the abstract is given below:

Abstract from "Ultraviolet Absorption by Interstellar Gas at Large

Distances from the Galactic Plane", Savage and de Boer, Ap.J., (submitted):

We have analyzed 18 high-dispersion IUE spectra of 6 stars in the LMC,

3 stars in the SMC, and 2 foreground stars. Fourteen spectra cover the wave-

lengths XX I150-2000_ and 4 cover XX 1900-3200_. The velocity resolution
is m 25 km s-l. All the Magellanic Cloud star spectra exhibit exceedingly

strong interstellar absorption lines due to a wide range of ionization stages

at galactic velocities and at velocities associated with the LMC or SMC. In

this paper the analysis is restricted to the Milky Way absorption features.
Toward the LMC stars, the strong interstellar lines have a positive velocity

extension to VLS R _ 150 km s-l, which exceeds by _ IOO km s-l the extension
recorded toward the SMC stars. The most straightforward interpretation

of these velocity extensions is obtained by assuming that gas at large dis-

tances away from the plane of the galaxy participates in the rotation of the

galaxy as found in the galactic disk. This then indicates that we have de-

tected absorption by gas as far as perhaps lO to 15 kpc below the plane of

the galaxy. Toward many of the LMC stars the low ion stage lines exhibit a

component structure with strong features near 60 and 130 km s-l. The presence
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of 0 I absorption at these velocities implies that a portion of the gas is
neutral even though _t is not detected in existing 21-cm emission data,
A curve of growth analysis provides some information on the composition of
the low-ion high-velocity gas. Solar abundances are consistent with the
uncertain abundance estimates, although there is the possibility that the
N/O ratio is less than solar. The high-ionization lines of Si IV and C IV
are strong toward all the Magellanic Cloud stars while N V is not detected.
These data provide definitive proof that highly ionized species exist in the
general interstellar medium of our galaxy away from local stellar environ-
ments. The weakness of the high-ion lines toward the foreground galactic
stars implies that the strong absorption toward the extragalactic stars is
primarily produced by gas beyond r _ 0.9 kpc. For this halo gas we obtain
toward the LMC log N(C IV) _ 14.0, log N(Si IV) _ 13.5, and log N(N V) < 13.S.
Toward the SMC the N V limit is the same but the C IV and Si IV column
densities are at least a factor of 2 larger. If the high-ion gas is produced
by equilibrium "corona] ionization" the implied temperatures are in the range
0.7 to ].4 x ]05 K. The high-ion line profiles contain less component struc-
ture than the low ion profiles, suggesting a smoother hlgh-lon gas distribu-
tion. While the low-ion gas might represent condensed material in a galac-
tic fountain model, it is not obvious where within this model the high-ion
gas fits since the fountain, if it exists, is presumably driven by gas with
much higher temperatures. If the high-ion gas is primarily formed in "cloud
coronae" one might expect to find a better correspondence between the low- _td
high-ion line profiles than is observed. Perhaps the high-ion gas represents
a type of "transition region" between gas in the plane of the galaxy and
a hotter exterior zone that cannot be studied with IUE data. Assuming
solar abundances, the amount of halo gas detected represents _ 2 percent of
that found in the galactic disk.
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ELECTRON DENSITIES FOR SIX PLANETARY NEBULAE AND HM SGE DERIVED

FROM THE C III] _1907/1909 RATIO

WALTER A. FEIBELMAN

Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center

ABSTRACT

Electron densities for IC 418, NGC 6572, IC 1297, NGC 3242, NGC 6818,

NGC 3211, and HM Sge derived from high-dispersion IUE C II0 spectrograms

are consistently higher than those derived from either surface brightness

measurements of forbidden line intensity ratios in:the visible. The nebulae

were selected for a range of excitation classes from 3 to 9. Line splitting

due to expansion velocities is observed for three objects. The great width

of the _1909 C III] line in HM Sge suggests large expansion velocities.

The results described are part of an ongoing observational program of

planetary nebulae in collaboration with A. Boggess, R. W. Hobbs, and
C. W. McCracken.

INTRODUCTION

The usefulness of the CilI] 11907/_1909 ratio as a diagnostic tool for
determining electron densities in planetary nebulae has been recognized for

some time (Osterbrock 1970; Loulergue and Nussbaumer 1976). Observations of

24 planetary nebulae by means of the International Ultraviolet Explorer (IUE)

satellite have shown that in the low resolution (_7_) mode'C III] _1909 is

usually the strongest emission feature (Boggess, Feibelman and McCracken

1980). The hlgh-dlspersion spectrographs of IUE easily resolve the pair of

C III] lines. The instruments have been described in detail elsewhere
(Boggess et el. 1978). We report results on six planetary nebulae and

HM Sge observed in the high-resolutlon (0.i_) mode to determine the 11907/
%1909 ratios from them.

DATA AND DISCUSSION

Loulergue and Nussbaumer (1976) have pointed out that in the regime of

Ne < 106 cm-3, characteristic of planetary nebulae, the magnetic quadrupole

transition 2s2 !S0 - 2s 2p 3P20 at _1906.68 has an _missivity comparable to
the intercombination transition 2s2 IS 0 - 2s 2p 3FlU at _1908.73.

Subsequently, Nussbaumer and Schild (1979) published new curves for the
relative emission strengths of the %1906.68/_1908.73 ratio, based on improved

data for the collision strengths. These curves for the ratio of the C II_
pair versus log Ne permit one to derive electron densities from the IUE high-
resolution data.

The planetary nebulae IC 418, NGC 6572, IC 1297, NGC_3242, NGC 6818,

NGC 3211, and HM Sge (which is suspected of being a proto-planetary in its

early stages of'development) have been observed in the hlgh-resolution mode

and the C III] _1907/_1909 ratios have been determlned. Dates of observation
and exposure times for the nebulae are summarized in Table i. All spectro-

grams were obtained through the large aperture centered on the nuclei. The
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results are shown in Table 2, where the electron densities derived from

these ratios in conjunction with the curves of Nussbaumer and Schild (1979)
are listed in the last column. Also shown in Table 2 are values of electron

densities given by Aller (1965) based on H8 surface brightness data, and

densities derived by Aller and Walker (1970) from forbidden line intensity

ratios. For all planetaries listed in Table 2, ranging in excitation class

from 3 to 9, the lowest electron densities are the ones derived from the H8

data, while the highest were obtained from the present IUE data based on

the C III2 ratios.

Relatively little is known about IC 1297 from ground-based observations.

Its excitation class is estimated here to be in the range of 7 - 8, and the

electron temperature is assumed to be II,O00K. Observations of IC 1297 are

needed to verify these assumptions. The high-resolution spectrogra__s of

NGC 3242, and a lesser degree those of NGC 3211 and NGC 6818, show splitting

of the C III] lines due to Doppler velocities. The remainder of the
planetaries do not show this effect. For NGC 3242 an expansion velocity of

39 km/sec is obtained, which is in very good agreement with the average

value of 39.8 km/sec given by Wilson (1950). Examples of the split lines for

NGC 3242 and the single lines for NGC 6572 are shown in Fig. 1 and Fig. 2.

Flower, Nussbaumer, and Schild (1979) obtained a value of 0.02 for

the C III] %1907/%1909 ratio for HM Sge observed in 1978, implying log Ne _ 6,
m s

corresponding to log Ne _6.5 when derived from the updated curves by

Nussbaumer and Schild (1979). On June 2, 1979, we obtained a 180 minute

exposure of HM Sge which had a better S/N ratio than the relatively short
(40 mir_) exposure by Flower et al. (1979)_. The weak _1907 component is

superimposed on the very extended blue wing of the strong, asymmetric %1909

component, shown in Fig. 3, making a precise determination of the %1907/

_1909 ratio difficult. An upper limit of the electron density can be set as

log Ne%106 , derived from R_0.04. The presence of a narrow spike in the
%1909 line profile suggests the possibility that the emission plasma consists

of two separate components.

•The great width of the %1909 line in HM Sge yields a large expansion

velocity. Flower et al. (1979) give a value of >118 km/sec, but the

present data yield only _63 km/sec. The maximum velocity ma_y be a more

significant quantity to consider because of the asymmetry of the line

profile. Wallerstein (1978) found Vma x = 1700 km/sec for He + He II
derived from the full width at the base of the line in HM Sge on

September 2, 1977, but also listed on a wide range of lesser velocities for

'other ions. The present IUE data result in Vma x = 353 km/sec and 375 km/sec

derived from the C III] _1909 and Mg II %2798, _2803 resonance lines,
respectively.

CONCLUSIONS

Electron densities, based on the C III] %1907/ %1909 intensity ratios

for six planetary nebulae are consistently higher than those derived from

surface brightness or forbidden line intensity ratios in the visible. The

nebular expansion velocity of 39 km/sec for NGC 3242 is in good agreement

with ground-based observations by Wilson (1950). HM Sge has an expansion
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velocity and electron density substantially greater than those of typical

planetary nebulae, and the complex structure in the %1909 line profile

suggests the existence of more than one emission region in the line of

sight. It remains to be determined whether these shells will evolve into

a classical planetary nebula structure.

The assistance of the IUE Observatory staff and their expertise in the

acquisition of the observational material is gratefully acknowledged.

Special thanks go to Drs. D. Klingl_smith and R. Fahey for the development

of the computer programs used in the data reduction.
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TABLE I.- HIGH-DISPERSION OBSERVATIONS OF PLANETARY NEBULAE

Object Date IUE Image Number Exposure (min)

IC 418 18 Dec 1978 LWR 3200 40

NGC 3211 18 Dec 1978 LWR 3204 90

NGC 3242 18 Dec 1978 LWR 3206 60

NGC 6818 7 April 1979 LWR 4211 150

IC 1297 7 April 1979 LWR 4212 120

NGC 6572 7 April 1979 I_WR 4213 i00

HM Sge 20 Dec 1978 LWR 3219 28

HM Sge 2 June 1979 SWP 5429 180
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TABLE II.-ELECTRON DENSITIES FOR PLANETARY NEBULAE

Nebula Excitation T (xl0--'4) C III] _1907/_1909 log N
Class e Ratio e

(Ref. a) (Ref. a & c) Ref. a Ref. b This work

IC 418 3 0.91 (c) 0.93 4.27 4.22 4.4

NGC 6572 5 1.08 (a) 0.80 4.14 4.00 4.5

IC 1297 (7-8) - (I.0) - - 4.4*

NGC 3242 7 i.I0 (a) 1.09 3.87 3.90 4.2

NGC 6818 9 1.80 (a) 1.19 3.75 3.84 4.1

NGC 3211 9 1.37 (c) I.II 3.44 - 4.1

HM Sge - - 0.04 - - 6.0#

0%

oo Ref. a: Aller (1965; N derived from H8 data.e

Ref. b: Aller and Walker (1970); N derived from forbidden lines.e

Ref. c: Torres_Peimbert and Peimbert (1977); N derived from [0 III] data.e

Not es:

Excitation class for IC 1297 not listed in Ref. a. The value shown is estimated.

* = assuming T -- II,000K. # = assuming T = 12,000K.e e



~ i g .  1 - S e c t i o n  of II1E e c h e l l e  spec t rogram showing t h e  C II?] A1906.68 
and 1908.73 l i n e s  f o r  NGC 3242. 
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Fig. 2 - Same as Fig. I, for NGC 6572
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Fig. 3 - Same as Fig. i, for HM Sge. The FWHM for the 1908.73 line is 0.8_.
The total width is % 4.75_.
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SILICON AND MAGNESIUM IN PLANETARY NEBULAE

J.P. Harrington
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ABSTRACT

The IUE satellite spectra of some planetary nebulae show features due to

silicon and magnesium: Si III] _ 1883, 1892; Si IV X% 1394, 1403; Mg II

XX 2796, 2804 and [Mg VJ %X 2784, 2929. With the aid of modeling techniques,
we can find the corresponding elemental abundances, which have not hitherto

been known for planetary nebulae. In addition to previous observations of NGC

7662 and IC 418, we now have data for NGC 2440, Hu I-2, IC 2003 and IC 2165.

Silicon appears depleted by up to an order of magnitude relative to the sun.

Large variations of magnesium abundance are found, which are likely to reflect

differing degrees of depletion due to grain formation. Such observations may

offer new insight into the formation of interstellar grains.

INTRODUCTION

It is known that elements such as Mg, AI, Si, Ca and Fe, which form

refractory compounds, are strongly depleted in the interstellar medium,

presumably by the formation of grains (ref.l). We would like to know if such

depletions occur in planetary nebulae, for this would be direct evidence of

grains within the ionized gas and the pattern of depletion could provide
information about the formation and composition of the dust. Shields (ref. 2)

has shown that Fe is depleted in a number of planetary nebulae; otherwise
little is known about the abundance of refractory elements in these objects.

OBSERVATIONS

SILICON

Lines of Si III] _1882.7, X1892.0 and Si IV _1393.8, _1402.8 are seen in

the IUE spectra of planetaries. The Si III] lines are close to the strong C

III] %1906.7, X1908.7 doublet, while the Si IV lines are intermeshed with the

O IV] X1397.2, 1399.8, 1401.2, 1404.8, 1407.4 quintet. A high-dlspersion

spectrum of NGC 7662 (SWP 4106 - 400 min.) obtained by Dr. S.R. Heap clearly
shows the individual components of Si III], Si IV and O IV]. For most

nebulae, the Si lines are too faint to observe at high-dispersion, so we must

rely on low-dispersion data. Low-dispersion observations of NGC 7662 with the

small aperture (which gives somewhat better resolution than the large

aperture) show the Si III] %1883 and Si IV %1394 lines (ref. 3). (The Si
III] XI883/XI892 ratio, like C III] _1907/%1909, is density-sensitive, with a

low density limit of about 1.5. In NGC 7662 this ratio is seen at high-

*NRC/NAS Resident Research Associate

623



dispersion to be greater than unity; thus for objects where we only obserw_.

the %1883 line we have assumed the low-density ratio.) We have measured the

flux in Si III %1883 in four additional nebulae with the large slot in low

dispersion. The results are presented in Table I. For NGC 2440, the
photowrite shows the spatially extended image of the % 1883 llne.

Si IV is usually substantially weaker than O IV]. When the Si IV

contribution to the blend becomes comparable to 0 IV], the feature shows _l

distinct blueward shift, since the %1394 line is twice the intensity of

%1403. This effect is observed in Hu I-2, the nebula with the largest Si IIIir
intensity.

MAGNESIUM

The Mg II %2796.4, %2803.5 doublet is a strong feature in a few

planetaries, e.g. IC 418 (ref. 4). It has also been observed in the high-

excitation object NGC 7027 (ref. 5). We observe faint Mg II emission in IC

2165 and NGC 2440. In the latter case, the lines are also seen at high
dispersion (LWR 6257).

Lines of [Mg V] at %2783.9 and %2929.2 were identified in NGC 7027 (ref,

5). The %2784/%2929 intensity ratio should be 3.6. We see the [Mg V] %278_i
line very clearly in our high-dispersion spectrum of NGC 2440 and there i_

also a feature of the expected intensity at %2929. The [Mg V] lines have the
same width as the other nebular lines.

We have measured the [Mg V] %2784 flux in the low dispersion spectra of
three objects: NGC 2440, IC 2165 and Hu 1-2. In IC 2165 there is clear

stratification: the [Mg V] image is almost stellar while the Mg II image i_

very extended. This is also seen when the spectrum is traced with different
slit heights.

INTERPRETATION

MODELS

We have constructed preliminary models of three nebulae. Details of the

atomic data adopted and of the numerical procedures employed will be given

elsewhere (ref. 6). It should be noted that the photoionization cross section

of Mg+ (ref. 7) is unusually small (0.28 Mb at threshold; of. 6.3 Mb for

H°). This leads to a hi_her fractional abundance of Mg+ than for other singly

ionized species. The Si_2 and Si+3 photoionization cross sections we use (ref.
8, 9) are also many times smaller than the quantum defect values sometimes
employed (e.g., ref. i0).

In Table 2 model predictions for IC 2165 and NGC 2440 are compared with

observations. The model for IC 2003 is given elsewhere in this volume (ref.
II), where the CN0 abundances of the three nebulae are discussed. All models

employ blackbody stellar fluxes and simple density distributions. The

defining parameters for the models of IC 2003, IC 2165 and NGC 2440,

respectively, are as follows: Stellar temperature: i00,000 K; 135,000 K;

180,000 K. Stellar luminosity: 1.3 x 104 LQ; 2.6 x 103 LQ; 1.9 x 103 LQ.
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Adopted distance: 7.6 kpc; 2.8 kpc; 2.3 kpc. Inner and outer radii: 0.06-.12

pc; 0.007-0.055 pc; 0.022- 0.122 pc. Fillin_ factor: 0.043; 0.5; 0.14.
Hydrogen density of filled volume: constant at I0_ cm _; constan_ at 7.2 x 103
cm-3; nH = r-_, decreasing from 1.4 x 104 cm-3 to 2.75 x i0_ cm-3. He/H
ratio: 0.13; 0.13; 0.154.

We attempted to fit the [0 III] %5007/%4363 temperature sensitive ratio
and to match the overall ionization structure even if a fit to the total flux

in some of the emission lines could not be achieved. We can use these models

as a basis for the interpretation of the Si and Mg features.

SILICON

The silicon abundances in our models were adjusted to match the observed

Si III] %1883 intensity. Table I shows the resultant Si/O ratios. The solar
value of Si/O is 0.052 (ref. 12, 13). Thus silicon would appear to be

depleted by up to an order of magnitude in these nebulae. We do not yet have

a model of Hu I-2, but it is likely that the Si depletion for this object is
less than for the others.

It can be seen from Table 2 that the Si IV intensities which result from

our adopted abundances are consistent with the observational result that 0 IV]
is the dominant contributor to the _1400 blend. Because the collisional

excitation rate for the Si+3 ion is 36 times larger than that of the 0+3 ion,

a Si/O ratio near solar would lead to the domination of this feature by Si IV;
this is not observed even in Hu 1-2.

MAGNESIUM

Because of the small photoionization cross section for Mg+ and the large

collisional cross section for Mg II 2S-2p° _ ~ 17), we would expect Mg II

%2800 to be prominent in the UV spectra of planetary nebulae unless Mg is

strongly depleted. In IC 418, _2800 is strong and an approximately solar Mg/H
ratio has been derived for this object (ref. 4). On the other hand, in the

Orion nebula (which is of similar excitation), %2800 is not seen. This

implies an order of magnitude depletion of Mg (ref. 14). A depletion is also

implied by the absence of _ II %2800 in high excitation planetaries; e.g. NGC

7662 (ref. 15,6). The fact that Mg II %2800 is not observed in most of the

nebulae examined by Boggess, Feibelman and McCraken (ref. 16) implies that the
depletion is widespread.

The situation becomes more complex, however, when we consider planetarles

in which [Mg V] is observed. An analysis of NGC 7027 by P_quignot and
Stasifiska (ref. 17) showed that no single Mg abundance could simultaneously

reproduce the intensities of both [Mg V] %2784 and Mg II _2800. They were led

to propose an abundance gradient, with Mg/H near solar in the inner region of

the object and strongly depleted in the outer region.

We find Just the same situation in IC 2165 and NGC 2440. The Mg

abundances of the models in Table 2 have been adjusted to match the observed

Mg II %2800 fluxes. The resultant Mg/H ratios are 10-6 for IC 2165 and 8 x
10-7 for NGC 2440, compared to the solar Mg/H ratio of 4.2 x 10-5 (ref. 13).
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However, if we were to adjust Mg/H to match th_ [Mg V] _2784 llne, the ratios
would be 2.5 x 10-5 for IC 2165 and 3.5 x i0- , not significantly different

from the solar value. (Compounding the difficulty is the fact that the

models, even with the low abundances adopted, produce a Mg I] _4571 intensltF

much greater than observed. There might be charge-transfer effects which

would prevent the existence of as much Mg ° in the ionized gas as the models

predlct, however. )

P_qulgnot and Staslnska propose that the carbon-rlch nature of NGC 7027

is responsible for locking up the O in CO at the time of grain formation, so

the Mg condenses as a metal rather than some more refractory compound, and

thus can later evaporate in the Inner regions of the nebula. This scheme

might also be invoked for IC 2165, but in the case of NGC 2440, we find that

C/O < I (ref. Ii).

In any case, unless our ideas of the ionization structure for Mg are
completely in error, further study of this "Mg ll-[Mg V] anomaly" in planetary

nebulae promises us insights into the formation and/or destruction of grains

in differing chemical environments.
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TABLE 1 -- Si III] X1883 FLUXES AND Si/O RATIOS

IC IC NGC Hu

2003 2165 2440 1 - 2

F(Sl III] X1883) erg/_m2/s 4.10 -14 4.10 -14 1.7x10 -13 6.xlO -14
l(Si III] X1883,92) ta_ 3.0 3.2 5.8 II.

(Si/O) Abundance Ratio 0.006 0.006 0.005 --

(a) Relative to I(HS) = I00, corrected for reddening (ref. II);

I(XI883)/I(XI892) = 1.5 assumed.
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TABLE 2. LINE INTENSITIES: OBSERVATIONS AND MODEL PREDICTIONS.

IC 2165 , NGC 2440 ,

LINE OBS. # MODEL tion OBS. % MODEL tlo n

%1241N V 45. 40. 1.81 I00. 95. 1.61

%1394,03 Si IV { 4.3 1.50 { 5.6 1.55
%1401,5 0 IV] 39. 18.3 1.68 54. 28.4 1.58

%1406,17 S IV] 1.7 1.50 1.2 1.55
%1485 N IV] 47. 50. 1.57 220. 170. 1.57

%1549 C IV 970. 960. 1.55 500. 585. 1.57

%1640 He II 260. 290. 1.73 350. 480. 1.56

%1664 0 llI] 33. 35. 1.42 42. 42. 1.41

%1750 N III] 37. 29. 1.42 170. 170. 1.44

%1883,92 Silll 3.2 3.2 1.47 5.8 5.8 1.52
%1908 C III] 850. 725. 1.43 750. 660. 1.40

%2328 C II] 81. 33. 1.40 97. 80. 1.15

%2424 _e IV] II0. 83. 1.62 160. 160. 1.49

%2470 [O II] ...... 17. 22. 1.20

%2784 [Mg V] 5.2 0.21 1.87 8.3 0.19 1.60

%2800 Mg II 6.4 6.2 1.40 3.9 3.8 1.21
%3426 [Ne V] 63: 65 1.78 140: 134. 1.57

%3727 [0 II] 62. 55. 1.38 230. 310. 1.20

%3869 [Ne III] ii0. 150. 1.41 140. 140. 1.26

%4267 C II 0.46 0.15 1.43 0.38 0.18 1.40

%4363 [0 llI] 22. 18. 1.42 28. 22. 1.41

%4571Mg I] 0.6 5.1 1.39 0.2 5.4 1.18
%4686 He II 42. 40. 1.73 58. 68. 1.56

%4861H8 I00. I00. 1.51 I00. I00. 1.46

%5007 [0 III] 190. 920. 1.42 1500. 1200. 1.41
_5200 [N I] ...... 13. 30. 1.00

15755 [N II] 0.5: 2.1 1.38 17. 31. 1.19

%5876 He I Ii. ll.6 1.42 II.3 13.6 1.31

%6300 [O I] 3.2 0.6 1.37 24. 29. 1.05

%6312 IS ili] 1.7 2.0 1.41 2.3 1.9 1.38

%6584 IN II] 45. 54. 1.38 970. 1200. 1.19

%6723 [S II] 6. 5.3 1.39 29. 28. 1.16

%7325 [O II] 6. 8.9 1.38 16. 27. 1.20

#The UV observations are discussed in ref. II. The optical data is from

ref. 18 and 19. Intensities have been corrected for reddening (ref. II).

_Optical data from ref. 18, 20 and 21.

*Model temperature weighted by Ne Nio n, in units of 104 K. See ref. ii.
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Fig. 1 - The Si III] k1883 feature on the wing of C III] 11909
in NGC 2440.
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Fig. 2 - The XI400 Si IV - 0 IV] blend in Hu 1-2. The length of
the vertical lines indicates the theoretical relative

intensity of the line component.

630



F
'L

.I.
IX

(X
tO

"m
)

..
=

.-
.-

..
.-

..
..

..
..

..
l

"
i'

<
.1

oo I _
,

0 m o
!

_
|

_"
_

_"





ELEMENTAL ABUNDANCES IN HIGH-EXCITATION PLANETARY NEBULAE

P.A. Marionni*

Electro-Optics Branch, GSFC

J.P. Harrington

Astronomy Program, U. of Md.

ABSTRACT

The IUE satellite has been used to obtain low dispersion spectra of the
high excitation planetary nebulae IC 351,'IC 2003, NGC 2022, IC 2165, NGC 2440,

Hu 1-2, and IC 5217. Numerical modeling has been undertaken to determine the

chemical composition of these objects with particular emphasis on obtaining

elemental carbon and nitrogen abundances. Preliminary results for several nebu-

lae suggest large variations in the C/N ratio from object to object.

INTRODUCTION

Ultraviolet (UV) observations can aid in the assessment of elemental carbon

and nitrogen abundances in planetary nebulae (cf. ref. I). Presented here are

low dispersion UV observations of seven high excitation nebulae. Three ap-

proaches of varying degrees of complexity are used to infer carbon to nitrogen

abundances (C/N) for some of the objects observed.

OBSERVATIONS AND DATA REDUCTION

Our IUE observations were performed in 1979 August and November. Selection

criteria for the objects studied were a) nebulae of high excitation; b) except

for Hu 1-2, nebulae included in the study of Torres-Peimbert and Peimbert (ref.

2); and c) except for NGC 2440 and to some extent NGC 2022, nebulae with angu-

lar sizes comparable to or less than the large entrance aperture. All spectra

presented here were taken with the large entrance aperture, low dispersion con-
figuration, using both the long wavelength redundant (LWR) and short wavelength
prime (SWP) cameras.

Data reduction consisted of examination and extraction of spectra from the

55-1ine spatially resolved files provided to guest IUE observers. Integration
of emission line features over effective slit heights commensurate with the

angular extents of individual nebulae somewhat enhanced our signal to noise

ratio. A spurious feature N7_10 _ longward (on lines 21 through 23-24) of the

NIII] _ 1751 _ emission line has been removed from our data. A median smoothing
of the background was employed. Conversion to an absolute flux scale was ac-

complished via interpolation of a tabulated IUE standard calibration (ref. 3).

Our results are contained in Table I. For each object the observed emission

line intensities, F(X), have been corrected for interstellar extinction to the

dimensionless quantities Ic(k ) using the expression log[Ic(X)] = 2 + cf(X) +

*NRC/NAS Resident Research Associate
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log (F(k)/F(Hfl)]. Here c is the logarithmic extinction coefficient, f(k) is
based on the prescription of Seaton (ref. 4), and F(Hfl) is the observed HI flux
at X4861 _ taken from various sources. The use of the intensity ratio

F(HelI _4686 _/F(HeII _1640 _) in deriving interstellar reddening depends upml

the portion of a given nebula observed in both the optical and ultraviolet an([
the validity of the UV extinction law in the direction of that object. Becau_;e

of uncertainties in these quantities, additional criteria (mainly available

radio data, optical studies, the 2200 _ interstellar feature, and, where
measurable, the UV continuum of the central source of excitation) have been
used in the determination of extinction coefficients.

Except for IC 2005, where c = 0.57 ± 0.05, errors in c, if f(k) is assumed

correct, may be as large as 0.2, and these extinction estimates are presented

only to facilitate further analysis. In the case of NGC 2440, 45% of the ob-

ject.is estimated to have been overlaid by the entrance aperture.

A better than 10% consistency error in the ratio of strong lines, and _25%

repeatability error is estimated for our SWP data. For all weak lines, and for

all LWR data excepting the [NelV] _2422 _ feature, our assessment of the con-
tinuum level was the limiting factor to our accuracy, with probable errors up
to 50% for the weakest features.

ANALYSIS

The interpretations of UV spectra from high-excitation nebulae are charac-

terized by several major difficulties, and are thus implicitly model-dependent.

First, rates of collisional excitation of UV transitions are extremely sensitive

to temperature variations which can exist in high-excitation nebulae. Second=.

charge transfer processes become more important in determining specific ioniza-
tion structures, since the neutral fraction of hydrogen is correspondingly

higher for the lower mean photoionization efficiencies from higher temperature
excitation sources. Recent calculations of a charge transfer rate involving

OIV + HI_OIII + HII (ref. 5) so change the structure of previously calculated

models that, due to lack of time, we have employed a refined Landau-Zener ap-

proximation (ref. 6 ) to this rate. We thins do not attempt to derive oxygen
abundances on the basis of UV lines, and our thermal structures may be in error.

Finally, the ions CIII, CIV, NIII, and NIV can coexist both in high temperature

regions where the thermal structure is dominated by their own cooling (HelIl

zones) and regions of lower temperature dominated by [OIll] forbidden line

cooling; thus UV emission lines predominantly represent those ions in regions

of high temperature.

The following analysis depends upon many atomic rates, which we cannot ref-

erence due to space limitations. References to these and the specific computa-

tional methods used will appear elsewhere (ref. 7 ). It should be noted, however,
that the electron collisional cross sections used in the analysis

of the NIII] X1751 _ and CIII] k1909 _ lines are those of Jackson (ref, 8)

and Duft0n etal. (ref. 9).

Visual inspection of the dominant UV emission lines of carbon and nitrogen

in Table I suggests large variations in C/N ratios, if the ionic distributions of
CIII and NIII and/or CIV and NIV are similar. More quantitatively, Shields (ref.
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10), in a discussion of quasar spectra, has pointed out that the emission line ,

ratios Ic(CIII_ _1909 _)/Ic(NIII ] _1751 K) and to a lesser extent Ic(CIV _1549 A)/
Ic(NIV ] _1487 A) are relatively insensitive to the details of specific ionizing
distributions. Both from direct comparison of the collisiona1 excitation rates
involved, and the results of all our attempt s to construct detailed numerical
models for the objects in this study, the relationship C/N ~ .15 I( _1909)/
I(X1751) and C/N ~.15 I( X1549)/I(_1487) should usually be accurate to within
a factor of two over the range of effective stellar temperatures 90,000 K to
200,000 K, nebular electron densities 2 x 103 - 2 x 104 , and C/N .5 to 5. Plane-.
paralle! (ref. ll ) and extended (ref. 12 ) model atmosphere flux distributions
as well as blackbodies have been considered in the models used to test these

relations. This relation will break down when a significant fraction of the ob-
served nebular volume is in higher stages of ionization. The application of
this "ratio" method to the observations is presented in Table II.

An alternative method of deriving C/N ratios is to treat the transitions
responsible for the dominant UV emission lines CIII] _1909 _, CIV X1549 _,
NIII] X1487 _'and NV] X1240 _ as simple two-level atomic systems, collisionally
popuIated at specific electron temperatures. Computational models in conjunc-
tion with optical observations may be developed to derive an average electron

temperature, tio n, weighted by the ionic abundances of each ion and the electron
density integrated over the nebular volume. This differs little from classical
approaches to deriving elemental abundances from emission line intensities, but
the constraint on thermal equilibrium is addressed. The tion may be applied in
conjunction with observed UV line intensities to find the absolute ionic abun-
dances directly. Examples of temperature distributions for NGC 2440 and NGC 2165
are presented elsewhere (ref.il3) and in Table IIl. Application of this method
to our UV data toward deriving elemental C and N abundances is presented in
Table If.

• Finally, detailed computations for a given nebula may be undertaken. Models
of NGC 2440 and NGC 2165 are given elsewhere in this volume (ref. 13). The
results of a calculation for IC 2005 are displayed in Table III, and C/N abun-
dance-¥a_X6sand adopted abundances for all preliminary models are presented in
Table II. Simple blackbodies and constant density distributions have limita-
tions; but one is at least able to reach a terminal state. We find that under
these limitations, further variations in relative C and N abundances unfavorably
redistribute the emergent intensities in these lines and lead to less acceptable
thermal structures. More realistic density variations could be addressed by
radio synthesis via the VLA, or, for objects of greater angular extent, optical
monochromatic images.

The three methods we have used to address tbe problem of C/N abundance

variations, when applied to the same set of UV and optical observations and an-
alyzed via the same atomic data, are seen to yield reasonably consistent results.
While the absolute abundances derived from UV lines may be regarded with some
reserve because of their extreme sensitivity to the assumed electron temperature,
we would emphasize that the ratios of UV lines are much less sensitive. The
difference between NGC 2440 and Hu 1-2 on the one hand, and IC 2003 and IC 2165
on the other, must surely reflect real composition variations.
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TABLE I. - OBSERVED UV EMISSION LINE INTENSITIES #

(corrected for interstellar extinction)

Ion f(_) IC 351 a IC 2003b NGC 2022 c,_ IC 2165 d NGC 2440 e Hu i-2f IC 5217g

1240 NV I.640 ...... 45. I00. 190. 38. :

1335 CII 1.417 . -....... 8.4: -- 6. :
1400 OIV],SiIV 1.307 -- 17. II0.: 39. 54. 52. --

1487 NIV] i.229 9. : 17. : -- 47. 220. 200. 14. :

1549 CIV I.183 190. 320. 820. 970. 500. 540. 54.

1640 HeII i.136 180. 330. 610. 260. 350. 460. 54.

1664 OIII] i.128 -- 20. -- 33. 42. 39. 26.

1751 NIII] I.119 18 16. -- 37. 170. 180. 9.5:

1909 CIII] 1.229 200 320. 410. 850. 750. 398. II0.

1909 CIII] 1.229 -- 350. 410. 830. 757. 560. : 140. :

2328 CII] I.348 -- 5. : -- 81. 97. 63. 40. :

2422 [NeIV] I.120 -- 45. 210. ii0. 160. 150. 7.5 :
2471 [OII] 1.023 ........ 17. -- --

2512 HeII 0.954 ...... 12. 19. -- --

2734 HeII 0.700 13 : Ii. 17. 21. 4.1:

2784 [blgV] 0.659 ...... 5.2 8.3 17. --

2800 MgII 0.646 ...... 6.4 3.9 -- 1.7:
2837 OIII 0.619 -- 9.: -- 9.1 7.5 6.7 2.7
3048 OIII 0.494 -- 71. 30. : 8.5 13.7 30. 6.3

3204 HeII 0.424 .... 17. : 79. 86. 37. 12.

C 0.35 0.37 0.60 0.64 0.4 0.70 0.55

F(H_) (10-12 ergs cm-2 s-l) 3.8 6.31 6.6 12.6 0.45 x 33.1 6.3 6.92

* ref. 4; t High Background; (:) uncertain; # Relative to Ic(H_) = I00,
a) SWP 6264, 6259; b) SWP 7260, 7261, LWR 6255; c) SWP 6260, 6261, LWR 5431; d) SWP 7259, 6262, LWR 5432;
e) SWP 7262, 7264, LWR 6256, 6258; f) SWP 7258, LWR 6254; g) SWP 6257, 7257, LWR 5429.



TABLE II. ABSOLUTE AND RELATIVE ELEMENTAL ABUNDANCES

Method IC 351 IC 2003 IC 2165 NGC 2440 Hu 1-2

C/N CIII]/NIII] Ratio 1.7 3.0 3.4 0.66 0.33
C/N CIV/NIV] Ratio 3.2: 2.8: 3.1 0.34 0.41

C/N tion -- 3.6 3.7 0.62 0.70
C/N Model -- 4.0 4.0 0.60 --

C/H tio n -- 3.2(-4) 2.7(-4) 2.3(-4) --
C/H Model -- 4.0(-4) 2.7(-4) 2.9(-4) --

N/H tion -- 8.9(-5) 7.3(-5) 3.7(-4) --
N/H Model -- 1.0(-4) 6.7(-5) 4.8(-4) --
O/H Model -- 3.3(-4) 1.7(-4) 3.6(-4) --

TABLE IIio - OBSERVATIONAL FLUXES AND MODEL PREDICTIONS FOR IC 2003

Mode 1

X ti°n I (X) FluxesIon f(X)* (10 '4 K) c

1400 I OIV] 1.307 1.36 17.a Ii.44.1SilV] 1.27 a
1487 NIV] 1.229 1.30 17. : 19.
1549 CIV i.183 1.40 310.b 443.

1640 HeII i.136 I.34 .330.b 344.

1664 OIII] i.128 1.21 20a,24 b 24.

1751 NIII] i.119 1.22 16a,21 b 19.

1909 CIII] 1.229 1.22 321.b 464.

1909 CIII] 1.229 1.22 350.c 464.

2328 CII] 1.348 I.19 5.c 16.
2424 [NelV] i.120 1.32 45.c 48.
2734 HeII 0.700 i.34 13. :c ii.

3726, 29 [OII] 0.315 i.18 34.d 21.

3869 [NelII] 0. 270 i.20 91.d 74.
4267 CII 0. 155 1.22 1.5e 0.25

4363 [OIII] 0.130 1.21 16. :d 17.
4471 Hel 0. 105 1.20 3.9d 4.1

4686 HeII 0.045 i.34 53. d 50.

4861 HI 0.000 i.24 i00. I00.

5007 [OIII] -0.300 1.21 1083.d 1250.

5755 [NII] -0. 190 i.18 0.82 d 0.55
5876 Hel -0.210 1.20 i0.6d ii.0

6306 I [01] -0.285 i. 16 3.6 d 4.3[SIII] 1.21

6583 [NIl] -0.340 i.18 17.d 17.

7325 [011] -0.435 I.18 3.6d 3.9

* refs. 4,2; (:) uncertain.

a) SWP 7261-90m; b) SWP 7260-30m; c) LWR 6255-45m; d) ref. 14; e) ref. 15.
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THE HIGH'EXCITATION PLANETARY NEBULAE

NGC 3918 AND IC 2448

S. Torres-Peimbert, M. Pefia and E. Daltabuit
Instituto de Astronom_a

Universidad Nacional Aut6noma de Mgxico

ABSTRACT

We present IUE observations of NGC 3918 and IC 2448. Combining these ob-

servations with data in the optical range and computed model structures we

derive the chemical composition for these objects. For NGC 3918 we obtain
log C= -3.02, log N= -3.61 and log O= -3.22; while for IC 2448 we obtain

log C= -3.44, log N= -3.81 and log O= -3.54.

8

INTRODUCTION

These planetary nebulae are ideally suited for observations with IUE since

they _ave high surface brightness and small angular size.

They have been observed in the visual range by Torres-Peimbert and Peim-

bert (ref. 1). They derive for NGC 3918 N(He)/N(H)= .ll2, log N= -3.72,

log O= -3.10 and log Ne= -3.84 and for IC 2448 N(He)/N(H)= .lll, log N= -4.49,

log O= "3.39 and log Ne= -4.08 under the assumption of t2= 0.035.

OBSERVATIONS

For NGC 3918 we have the following large aperture exposures: SWP 1906

(7 min), SWP 3191 (20 min), SWP 3192 (i0 min), LWR 1767 (12 min), LWR 2753

(20 min), LWR 2754 (i0 min), LWR 2809 (6 min) and the following small aperture
exposures: SWP 1906 (20 min), SWP 3216 (15 min), LWR 2809 (12 min). For

IC 2448 we only have available the large aperture exposures:SWP 3194 (30 min)
and LWR 2756 (30 min).

We have applied the mean calibration correction (ref. 2) to the observed

fluxes to derive absolute fluxes. We present in Figurel composite large
aperture spectra of these objects.

In Table II we present the derived intrinsic fluxes for all emission

lines, I(k), the observed fluxes F(1641) and F(H_) and the reddening correction

at Hfl, C(HA). To obtain the intrinsic fluxes we have used the relation log
I(k)/I(HS)= log F(k)/F(HS)+C(HS)f(k). We have derived the reddening correction
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by assumir_ that: i) the fluxes relative to H8 in the visual range are the
same for the observed region as for the entire nebula, 2) the reddening law_
f(_), behaves as the expression given by Seaton (ref. 3) and 3) the intensity
ratio of the Hell recombination lines I(1641)/1(4686) is 6.6 (ref. h).

The internal errors in the measurements, as estimated from the differe,tt
exposures, are 415% for NGC 3918, and presumably similar for IC 2448. For
IC 2448 the listed flux for _1549 is only an upper limit, since the line wai_
saturated.

MODEL IONIZATION STRUCTURES

We have computed model ionization structures that will be described in
detailelsewhere. The models predict line intensities forC, N, 0, Ne, Mg,
Si and S. For comparison we present a few representative models in Table III.

To try to fit NGC 3918 we computed models for an exciting star of T,=
150,000 (from ref. 5). We have tried unsuccessfully to adjust both I(5007)
and I(1909) simultaneously by varying density distribution and chemical abu=-
dances. The resonant lines of CIV, NV and MgIl appear systematically too
bright in our models. This effect has been noted by'other authors (refs. 6
and 7) who explain it by dust absorption. In order to adjust the lines of
low ionization, it is necessary to assume that the nebula is density bounded.

For our models of IC 2448 we have adopted an exciting star of T,=125a000.
We encounter the same problems in our attempt to adjust 1(5007) andl(1909)
and have found it necessary to assume a density bound nebula to improve the
fit for ions of low stages of ionization. For this object wedo not have
observations of the faint lines and thus have less restrictions for our model.

IONIC ABUNDANCES

For NGC 3918 from the ratiol(1666)/l(5007) of 0++ we obtain the same
temperature as from I(4363)/I(5007). We also are able to derive a temperature
of 13800 °K from the I(1602)/I(2423) ratio of Ne+1; however none of our models
predict the temperature of the highly ionized region to be drastically differ-
ent for the 0++ region.

To derive ionic abundances we adopted an empirical scheme of dividing the
nebulae in three regions: thoseof low, medium and high stages of ionization.
For elements in lowstages of ionization we have assumed the observed T(NII)
to be applicable. Our models do not predict such a sharp decrease in temper-
ature in the outer shells and thus the derived abundances are probably over-
estimated, but these ions are not dominant in either nebula. For the
elements in the intermediate stages we have used T(OIII) as derived from ob-
servations (ref. i); and for the higher stages of ionization we have used tem-
peratures 600 K higher'than T(OIII), since our models predict this tempera- _
ture variation. We have assumed t2= 0.0 for our derivation of the ionic abun-
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dances. The results are listed in Table II. For both objects, the 0++ abun-
dances derived from A5007 and A1666 are in excellent agreement and give us confi-
dence in the adopted reddening.

All ionic abundances derived frc_ultraviolet lines are highly depend-
ent on temperatures, and we typically expect errors of _0.10 dex in the ionic
determinations for errors of ±300 °K.

DISCUSSION

We have derived total abundances from the ionic ones. In the case of

NGC 3918, for oxygen and nitrogen we have added all the ionic abundances in a
straightforward way. For carbon we have taken into account only I(1909) and
from comparison with our models we have adopted a ratio of relative volumes of
carbon to oxygen x(C++)/x(0++)= 0.74. In the case of IC 2448 we have added
0+ and 0++, and have corrected by a factor icf= He/(He+), which is in agree-
ment with our models. For nitrogen we have adopted an intermediate value be-
tween those derived from the comparison of our models and N+_ and N+_ . For
carbon we have assumed that the resonance line I(1549) has been depleted by a
factor of 2 due to dust and have added all other ions. Comparison with our
models shows that the carbon abundance is probably underestimated. The total
abundances relative to Ikydrogenin NGC 3918 are log O= -3.22, log N= -3.61
and 10g C= -3.02; in IC 2448 are log O= -3.54, log N= -3.81 and log C= -3.44.

We are grateful to M. Peimbert for fruitful discussions.
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TABLE I .- UNREDDENED.FLUXES
RELATIVE TO H8a)

Ion I(A)/I(H_)
NGC 3918 IC 2448

1215 HI <-0.51 -0.41
1240 _-V -0.54 -0.25
1401 OI_ +SIV+SilV -0.46 ....
1488 NIV] -0.43 _l. O0
1549 CIV +0.64 +0.37
1575 [_eV] .... -i.01
1602 [_elV] -1.17
1641 HeII +0.43 +0140

1666 OIII_ -0.55 -0.63
1749 NII_ -0.63 4-0.82
1909 CllI_ +0.69 _+0.58
2298 ........ -o.75

2326 Cil]+_in) -o.38 -o.99
2386 NeII -1.57
2423 +O.ll
2_71 [bill -0.98 ....
2512 Hell -1.33 ....
2734 Hell -1.03 -1.12

2800 Mgll <-1.34 <-i.i0
2837 0111 -0.98 -1.17
3023+47 0111 -0.73 -1.06
3133 OIII -0.04 -0.26
3204 HelI -0.66 -0.83

,i

l--ogF(164i) .... -10.05 -10.69
log F(HS) .... -10.03 -10.84
c(as) .... + 0.40 + o.22

a) LogI(X)II(H_).
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TABLE II.- TEMPERATURE, D_NSITY
AND IONIC ABUNDANCESaj

NGC 3918 IC 2448

T(NII) 8900 9400b)
T(OIII) 12100 12500.,
T(NelV) 13800 13100°)
Ne(SII) 9000 12000
Ne(rms) 4600 1700

C+ 2326 -3.84 -4.62
C++ 1909 -3.52 9-3.72
C+3 1549 -3.82 -4.20
N+ 6584 -4.68 -6.17
N++ 1749 -4.11 64.40
N+3 1488 -4.00 54.71
N+_ 1240 -4.21 -4.05
0+ 3727 -4.06 -5.08
0++ 5007 -3.54 -3.71
0++ 1666 -3.55 -3.72
0+3 1401 -3.46:
Ne++ 3869 -4.28 -4[38
Ne+3 2_23 -4.09 -4.90
S+ 6717+31 -6.30 -7.51:
S++ 6311 -4.99 ....
S+3 1393 -4.50:
Ar ++ 7136 -5.97 -6:51:

a)
Given in log N(x+m)/N(H+).

b) Adopted.
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TABLE III.-COMPARISON OF MODELS WITH OBSERVATIONS.

LINE INTENSITIES,TEMPERATURES AND RELATIVE VOLUMES. a)

NGC 3918 IG 2448

Obs. N1 N2 N3 Obs. I1 I2

HeI 4471 3,8 3.1 3.0 3.1 4.0 3.3 3.0

Hell 4686 44.0 41.8 44.0 43.1 38.0 34.7 41.2

CI_ 2326 41.0 122.0 34.7 133.0 i0.0 9.1 12.0
CII_ 1909 490.0 1070.0 567.0 1170.0 3380.0 411.0 460.0
CIV 1549 450.0 2540.0 1950.0 1970.0 230.0 i010.0 885.0

[_I] 5200 0.5 0.0 0.0 0.1 ..... 0.0 0.0
I_. 6584 66.0 45.0 24.9 60.7 2.5 10.5 14.2

NIIIJ 1749 23.0 56.6 60.1 59.4 _ 15.0 51.5 57.3
NIV] 1488 37.0 71.0 ll2.0 54.0 . 65.7 55.2
NV 1240 29.0 174.0 296.0 104.0 56[0 8.3 6.1

[09_ 6300 3.8 13.0 4.7 15.2 . 0.0 0.i

_II]. 3727 61.0 277.0 222.0 349.0 "613 28.3 39.9

DIII] 5007 1570.0 1590.0 2210.0 1630.0 1060.0 1400.0 1290.0
OIVJ 1401 <35.0 18.8 39.9 16.4 ..... 40.5 14.2

T(C .) .... 12600 12830 11890 .... 13240 13260

T(C++) .... 12680 12940 12050 .... 13340 13330
T(C +_) 13530 14180 12930 .... 13540 13480

T(N +) 8900 12590 12820 11900 .... 13250 13270
T(O+) .... 12620 12830 11840 .... 13110 13130

T(O ++) 12100 12700 12970 12100 12500 13250 13260

x(C +) .... 0.035 0.017 0.041 .... 0.008 0.010

x(C ++) .... 0.363 0.329 0.441 .... 0.383 0.432

x(C e3) .... 0.386 0.415 0.340 .... 0.574 0.525

x(N +) .... 0.015 O.OO8 0.018 .... O.OO5 O.OO7

x(N++) .... 0.438 0.395 0.520 .... 0.481 0.541

x(N +3) .... 0.295 0.318 0.255 .... 0.477 0.420

x(O +) .155 0.iii 0.066 0.137 .030 0.018 0.020

x(O ++) .513 0.447 0.461 0.421 .676 0.653 0.602

x(O +3) .... 0.195 0.213 0.228 .... 0.300 0.349

N H (cm-3) 4600 5000 5000 5000 1700 4000 2000
e h) .26 1.0 1.0 0.5 .02 1.0 1.0

log O/H -3.22 -3.30 -3.20 -3.20 -3.54 -3.54 -3.54

log C/O +0.20 +0.40 0.00 +0.40 +0.i0 +0.i0 +0.i0

log N/O -0.39 -0.20 -0.30 -0.20 -0.27 -0.16 -0.16

Ri (pc) c) ..... 001 .001 .001 ..... 001 .107
R e (pc) .05 .068 .067 .084 .13 .o74 .ll6
R. (R@) d) .... 0.10 O.10 O.10 .... 0.10 0.i0

T, (103°K) .... 150 150 150 .... 125 125

a) Relative to H6, where I(H6) = 100, b) e is the filling factor.

T(x+m)E fNeN(X+m)dV/fNeN(X) dV. c) Ri, Ro are inner and outer radii.

x(X+m)_fNeN(X+m)dV/fNeN(X) dV. d) R,, T, are central stars parameters.

647





ANALYSIS OF HIGH EXCITATION PLANETARY NEBULAE

L. H. Aller and C. D. Keyes

Astronomy Department, University of California, Los Angeles

ABSTRACT

Combination of extensive ground-based spectroscopic observation of high

excitation planetary with IUE data permit determination not only of improved

diagnostics but also better abundances for elements such as C and N that are

well-represented in the ultraviolet spectra A and also C, Ar and metals Na, Ca
and K whose lines appear in the %3200-8100X region. We summarize here some

of the principal results from a cooperative program being carried out in col-

laboration with S. J. Czyzak of Ohio State, G. Shields of the University of

Texas, and B. J. O'Mara and J. E. Ross of the University of Queensland.

INTRODUCTION

In our preliminary survey (ref.l), short-wave IUE data were affected by

image-processing difficulties that introduced systematic errors. These errors

have now been eliminated. Table 1 lists the measured intensities. Succes-

sive columns list approximate wavelengths, identifications, and for each

nebula (except NGC 6'741 and 6886) the logarithm of the flux in ergs cm-2sec -I

as received at the top of the earth's atmosphere. Quality is indicated by

a, b, c, d, e. Lines indicated by a or b are fairly strong; their accidental

errors should be of the order of 10%. Lines of quality c may have errors

amounting to 25 - 35%, while those of quality d are seriously affected by
noise; errors here can easily amount to 50 - 100%. We use e to indicate that

the feature is believed to be present; the tabulated intensity is to be
understood as essentially an upper limit. Thus ionic concentrations estimated

from lines of quality d are very uncertain; those from e quality lines are

upper limits. See Figs. 1,2,3

In principle, objects of small angular size that fit into the large slot
present no difficulties for determination of interstellar extinction. Follow-

ing Seaton (ref.2) one may compare the Hell intensity ratio 1(%1640)/1(%4686).

Although NGC 2440 has some outlying ansae, most of its radiation is accepted.
The nebular angular sizes of NGC 2392 and 6302 exceed that of the slot. For

NGC 6302 we find an extinction constant C = 1.44 from the Hell %1640/%2734

intensity ratio as compared with 1.41 from a comparison of radio and optical
data (ref.3). For NGC 2392, C = 0.15 is in accord with the 1640/2734 ratio

when account is taken of the %2734 intensity measurement.

The availability of extensive ground-based data covering a wide gamut of

ionization stages (ref.4 and unpublished data for NGC 2867, NGC 2440, NGC 6741,

NGC 6302, and Me 2-1) has made possible a more thorough investigation of

these objects than otherwise possible. For example, lines of [C%11], [Chill],

[C%IV], [Arlll], [ArlV], and [ArV] but especially [Nelll], [NelV] %4724, 25,

and [NeV] help bridge the gap from domains of low to those of high excitation.

Strata producing these lines overlap those responsible for lines of CIII, CIV,
NIII, NIV, NV, and OIV observed with the IUE. If a reasonable estimate of the

electron density can be found, we can use the [NelV] auroral/nebular line
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ratio to estimate the electron temperature in these hotter, inner regions
(eqn.4 of ref. 1).

In our earller analysls (ref.l) we obtained diagnostics from optlcal

region lines and calculated ionic concentrations from both optlcal and UV data.

We found the ionization correction factors (ICF's) by interpolation in a grid
of theoretical models based on Casslnelli's (ref.5) stellar fluxes and a fixed

chemical composition. These grid models give a correct general excitation

level but did not represent specific llne intensities closely.

Our new method is to calculate individuallzedspherlcally symmetrical

models for each nebula. We iterate an appropriate grid model, modifying the
stellar energy distribution and truncation of the nebular radius to fit the

observed intensity ratios for Hel/Hell, [0111]/[011], and [NeV]/[NelII].

Lastly individual elemental abundances are adjusted to reproduce the observed

optical region llne intensities. This objective could be achieved for transl-

tlons of ions of He, N, O, and Ne observed with ground-based equipment but

our present models are less satisfactory for the forbidden llne of S, C_ and
Ar. Curiously, if the lines of [ArlV] and [ArV] are represented, %7135 of

[Arlll] is too strong. The effect is exactly opposite to that found for our

models of low-excltatlon nebulae. Inclusion of latest available charge ex-

change cross-sectlons, recombination coefficients, etc., has had a profound
effect on our new series of models.

Spherically symmetrical shells or constant density models cannot predict

successfully all nebular llne intensities. By representing certain excltatloIL

ratios we hope that the general ionization pattern is adequately predicted.
We then use the models to derive the ICF's and to estimate the electron tem-

perature in the hotter inner regions. The [NelV] aur/neb ratios support these

estlma_8_, although because of the high excitation potentials, the hottest
portions of Ne+++ zones tend to be favored. We can derive the chemical com-

position by a best fit of the predicted intensities or by calculating ionic

concentrations in the usual way and then using the models to derive the ICF's.

We prefer the latter method, although both procedures agree reasonably well

for most elements. The discordances tend to be larger for the clumpy nebulae_

NGC 2392 and NGC 2440, particularly for nitrogen when the model representation

was based on fitting the [Nil] lines.

Although a reasonably good representation is found for visual region

lines, agreement is less satisfactory in the ultraviolet. Many lines are

weak and accidental errors are large which makes comparison difficult. The

predicted NV 1239/41 intensities exceed the observed values which suggests
the models predict too high a level of ionization for nitrogen. The predicted

Clil/CIV intensity ratio always exceeds the observed one, presumably because
of optical depth effects (ref.6). The predicted OIV 1403/09 intensity, how-

ever, tends to be less than the observed one. Theoretical predictions of the

0111 1661/66 feature tend to agree with the observed values, thus providing
an independent check on the calibration and on the interstellar extinction.

Although theoretical and observed [NelV] aur/neb ratios tend to agree, when
differences occur, they suggest that the electron temperature exceeds model

predictions. Curiously, although a condition of acceptance of a model is that

the [NelII]/[NeV] line ratios are correctly represented, predicted [NelV]
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intensities are too weak. Possibly a modification of the assumed stellar

energy flux or an improvement in the cross-sections would remove this discor-
dance.

The theoretical models suffer from simplistic assumptions about geometry

and density. Obviously, they are poor approximations for NGC 2440 and NGC
2392; no such model can predict even approximately a satisfactory spectrum

for NGC 6302. For this nebula, only approximate ICF's can be found.

Table 2 compares abundance estimates with those of a previous survey

based exclusively on ground-based data (ref.7) and solar values (ref.8).

Shields, Czyzak, and Aller are carrying out an analysis of NGC 2440 in which

the straightjacket of a constant density structure is no longer imposed.

(For consistency we treat NGC 2440 here on the same basis as the other nebu-

lae). Note that low carbon abundances are found in the clumpy planetaries,

NGC 2392, 2440, and especially 6302 which are not well represented in the

constant density approximation. All of these nebulae appear to be nitrogen

rich. Perhaps hlgh-excltatlon planetaries originate exclusively from rela-

tively massive stars in which nitrogen building has been prominent. Further-
more, the relatively small departures of the abundances of S, C, At, and K

from solar values suggest that these nebulae, particularly, cane from stars

that did not differ greatly from a solar-type composition.

Becket and Iben (ref.9) have calculated asymptotic giant branch evolution

of intermediate mass stars. They discuss abundance modifications for stars of

different mass and composition for the first dredge-up phase on the red giant

branch and for the second dredge-up phase on the asymptotic giant branch. The

depletion of C and 0 and the enrichment of He and N depends on mass and ini-
tial composition, being the more marked the greater the mass and the initial

He and/or heavy metal content. For massive (5-11 solar mass) progenitor stars,

our observed abundance modifications agree qualitatively with their results

(cf. their table 6) but the predicted helium enhancement is greater than the

observed. Probably few planetaries have progenitor stars as massive as five
solar masses.

Alternately, following Scalo, Despain, and Ulrich (ref.10) we can con-

sider highly evolved stars with double shells which develop high temperatures

(50 -80 x l0 s OK) at the bottom of their convective envelopes between shell

flashes. Near the upper end of this temperature range, full CNO processing

can occur; carbon will be destroyed, and nitrogen will be enhanced. Helium

will not be produced in excessive amounts. Stars down to a lower limit of
1.5 solar masses can be involved.

In surmnary, use of IUE data helps enormously in our understanding of the

spectra of gaseous nebulae and enables us to handle the problem of chemical

compositions more accurately. Curiously, in a number of instances the simple

extrapolation methods suggested by Seaton, Pelmbert and Costero, and others

for N, O, and Ne seem to work rather well.

%
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TABLE I,-LOGARITHM OF !NTENSETIES OF NEBULAR LINES

NGC NGC NGC Me NGC

l iden 2392 2440 2867 2-1 6302

1239/41 NV -ii.96b -II.45a -12.5:e -12.1e -12.095
1335 CII -ii.98 c -12.15d -12.45e

1391 SilV ''

1403, 1409 OIV -ii,53b -ll,60b -12°64d _Ii.79 c -12,38b

1487 NIV -ii.49h _10_95a _II,gQc -II.99d -ii.66a

1548/50 CIV _ll.06a _10.56a -10,81a -I0.62a -Ii.65a

1640 Hell -10.72a -I0.57a -10.795 -I0.90a -ll.80a

1661/66 O111 -ii.34b -Ii.52a -ii.98c -12.06e -12.33b
1747 NIV -ii.23a -ll.08a -12.06c -12.21d -II.68a

1892 Silll -ii.48c -ii.76b -12.70c

1906/09 CIII -i0.69b -i0.37a -i0.38a 'lO.80a -ii.83a

2326/28 CII -ii.76c -ii.46a -Ii.25a -12.10c
2422 [NelV] -ll.17b -ll.06a -ll.71b -ii.26a -ii.87a
2470 O11 -ii.84c -12.16d -12.64d
2511 Hell -II.88c -12.1 e -12.30c -12.73d

2734 Hell -12.08c -ii.87c -12.13c -12.27c -12.66c

2798/2800 Mgll -12.12d
2830 Hel -12.05c -12.14c -12.62d -12.75d

3024 O111 -12.4:c _12.8:d
3047 O111 -12.14d -12.05c -12.42d -12.32d

3133 O111 -ll.71b -ii.04c -ll.16a -12.39a -ii.52b
3187 Hel -ii.96c
3204 HeII -Ii.45b -ii.76c -ii.89b -ii.92c

TABLE 2.-SIrMMARY OF ABUNDANCE ESTIMATES

NGC NGC NGC Me NGC NGC NGC mean Solar
2392 2440 2867 2-1 6302 6741 6886 mean ref.7 ref.8

He 10.96 11.08 11.05 Ii.01 11.27 11.04 ii.01 11.03 11.02 11.08

C 8.35 8.37 9.03 8.88 8.04 9.01 8.83 8.77 9.10 8.62
N 8.32 8.78 8.13 8.23 8.96 8.4 8.8 8.58 7.97 7.94
O •8.56 8.61 8.65 8.73 8.71 8.74 8.63 8.67 8.66 8.84

Ne 7.69 8.03 7.91 8.20 8.02 8.34 8.21 8.11 8.02 8.1
Na 6.26 6.29 6.27 6.23 6.28
S 6.78 6.43 6.75 7.13 6.81 6.91 6.48 6.82 6.97 7.2

C_ 5.11 5.28 5.20 5.29 5.56 5.36 5_39 5.34 5.26 5.5
Ar 6.12 6.47 6.25 6.41 6.93 6,63 6.51 6.55 6.38 6.0
K 4.75 4.64 5.38 5.48 4,68 5.18 5.15 4.90 5.16

Ca 4.80 4.90 5.03 5.37 5.38 4.87 5.12 5.10 6.35

Extinct. 0.15 0.67 0.52 0.28 1.44 1.30 1.09
Coeff.

•Extinct. Coeff. = Iog[FT(H_)/FoCH_)]

where Fo(HS) = observed H8 flux.

FT(HS) = H8 flux corrected for interstellar extinction.
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Figure i. Calibrated IUE spectra. (a) For NGC 3918 we have added SWP 1906 and

SWP 3192 for _< 1950 A and all available large aperture spectrograms

for longer wavelengths. (b) For IC 2h_8 we have combined SWP 319h and

LWR 2756.
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DISCOVERY OF THE MOLECULAR HYDROGEN ION (H2+)
IN THE PLANETARY NEBULAE

Sara R. Heap and Theodore P. Stecher

Laboratory for Astronomy and Sola_ Physics
NASA-Goddard Space Flight Center

Greenbelt, MD 20771

ABSTRACT

Low-dispersion spectra of fifteen planetaries and hot subdwarfs were
obtained with the SWP camera on IUE and continuous flux distributions

corrected for interstellar extinction were derived. Several planetaries,
particularly the young planetaries of high surface-brightness, show
anomalous flux distributions. The most anomalous case is NGC 6210. We

suggest that these anomalies may be explained as absorption by H2+
in the nebula. For the case of NGC 6210, we derive a column density,
N(H2+) = 8 x lOl6 cm-2.

OBSERVATIONS

During the first year of observation with the IUE, we made a survey
of planetary nebulae with the short-wavelength spectrograph, mainly for
the purpose of investigating winds in the central stars, but in the
process, we derived continuous flux distributions for these objects. The
results of this survey are that planetaries have flux distributions like

what you would expect from hot central stars (i.e., fluxes increasing
steadily toward shorter wavelengths), but a couple of planetaries had odd
flux distributions.

Figure l shows the flux distribution for a typical case, NGC 1535,
and for the most anomalous case, NGC 6210. The fluxes in the figure are
absolute fluxes corrected for interstellar reddening and normalized
arbitrarily so that F_(1950A)= I. We use NGC 1535 as a standard of
comparison with NGC 6210, because the two central stars appear to have
almost identical properties. The visual spectra indicate that both are
early 0 stars with higher-than-main sequence gravities (Refs. l, 2). As
you can see from Figure l, the ultraviolet line spectra of the two stars
are also strikingly similar: in both, N V 1240 is a very strong P Cygni
feature, while C IV x1550 is weaker and fully in emission; and in both,
the subordinate line of OV x1371 is also a strong P Cygni line. What is
markedly different between the two spectra is their continuous flux
distributions: the flux of NGC 1535 increases steadily toward shorter
wavelengths, as you would expect for a hot star, but the flux of NGC 6210
drops off from its extrapolated values at wavelengths shorter than about
15ooA.Clearly, there is some source of absorption at the shorter
wavelengths.
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It is difficultto explainthis differenceas the effect of
interstellarextinction,since several lines of evidence indicatethat
both NGC 1535 and NGC 6210 have similar,low amountsof reddening. The
ratio of nebularradio flux densityto Ha flux yields a color excess,
E(B-V) = 0.09 for NGC 1535 and E(B-V) = 0.06 for NGC 6210 (Ref. 3). The
Ca II K line is weak in both visual spectra. In the case of NGC 6210, we
obtained an LWR spectrumand found that the x2200 extinctionbump is
consistentwith a color excess, E(B-V)= 0.06.

INTERPRETATION

The two questionswe have to ask, then, are (1) what is absorbing
far-UV flux from the central star of NGC 6210, and (_here does the
absorbingmaterialoriginate? The first questionis relativelyeasy to
answer becausethe flux deficiencylooks just like the signatureof the
molecularhydrogen ion, H2+. This identificationis supportedby a
quantitativecomparisonof the observationswith the theoretical
absorptionpropertiesof H2+. Figure 2 shows this comparison. The
jagged line is the ratio of the relativefluxes of the two planetaries,
while the smooth curve is the run of H2+ absorption,e-T, for
H2+ in the ground vibrationalstate,based on cross-sections
calculatedby Dunn (Ref. 4) and a column densityof 8 x lO16 per cm2.

The other question,where does the absorptioncome from, is also not
difficultto answer becausethere are not too many places left to look.
As I mentionedearlier,the spectraof the central stars of NGC 1535 and
NGC 6210 are similar,and the amount of reddeningof these two objects is
also similar,so we can rule out the stellaratmosphereand the
interstellarmedium as the place in which the H2+ originates. There
is just one place left to look, and that is the nebula itself.

Does this interpretationmake sense? Should we expect H2+ in
planetarynebulae? The answer,as Black (Ref. 5) has pointedout, is no,
If you are consideringa steady-_tatenebula. But NGC 6210 is a young
nebula,still opticallythick in H I (Ref. 6), so let us consider
evolving nebulae,as illustratedin Figure 3. It is generallybelieved
that planetarynebulaeare the former envelopesof red giants. These
envelopeswere sloughedoff due to the mechanicalforce of radiation
pressureexertedon the gas and dust (Refs.7, 8). Since the envelopes
of red giants are basicallycomposedof molecularhydrogen,and since the
formationof the nebula is believedto be a co)d flow, we can expect a
planetarynebula to be initiallycomposedof H2. The lossof the red
giant envelope,however,exposes the hot, inner stellarcore, and
radiationfrom the core, which is now seen as a central star, then
proceedsto ionizethe nebula. As the ionizationfront advancesthrough
the expandingnebula, it forms a thin shell of H2+:

H2 + h_ ) H2+ + e.
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The H2+ generatedby photo-ionizationwill be distributedamong
variousvibrationalstates,but what we observeis absorptionby H2+

from the_ vibrationalstate. We haven'tdone the necessary
calculations,but it seems plausiblethat most of the H2+ generated
by photo-ionizationrelaxesto the ground state as the result of
collisions. Ground-stateH2+ is destroyedby the inner edge of the
H2+ shell by photo-dissociation:

H2+ + hv > H+ + H,

(It is this processthat producesthe absorptionthat we observe in
NGC 6210) and by dissociativerecombination,

H2+ + e > H + H.
•

Supportingcircumstantialevldenceon Hp shells in young
planetarynebulaecomes from the successrat_ of findingmolecular
hydrogenin planetarynebulae. In a survey of nine planetaries,
Beckwith et al. (Ref. 9) found Hp emission in five, four of which were
young, high-densitynebulaeor their progenitors. All five nebulaewith

detectableH2 showed [0 I] as does NGC 6210.
\

We believeour detectionof H2+ in NGC 6210 is significantnot
only because it representsa first detectionof H2+ in planetary
nebulae, but also because it should help to clarifyour pictureof
nebularevolution.
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Figure I. Relative Flux Distributions of NGC 1535 (SWP 3374) and
NGC 6210 (SUP 3327). The raw fluxes contain 'ITFerrors, but the
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corrected for interstellar extinction on the assumption that E(B-V) =
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Figure 2. Comparison of the Observed Flux Ratio with Predicted

Absorption b_/H2_. The 'jagged line is the ratio of the relative
fluxes shown in Figure I. The smooth curve is exp (-Na_).
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AN ATLAS OF EMISSION LINE FLUXES OF PLANETARY

O

NEBULAE IN THE I150-3200A REGION

A. Boggess, W. A. Feibelman and C. W. McCracken

Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

ABSTRACT

-12 -2 -i
Emission line fluxes in units of i0 erg cm sec for 28

planetary nebulae are presented. The nebulae were chosen to

cover a wide range of excitation classes, apparent diameters, location in the

sky, and types of central stars. All objects were observed in the low-

dispersion mode of the IUE spectrographs, using the large entrance aperture.

INTRODUCTION

Ultraviolet observations have an important role to play in the study and

interpretation of planetary nebulae. The range from 1200 to 3200_ contains

lines of carbon, nitrogen, oxygen and silicon in ionization stages difficult

to observe from the ground. In addition, forbidden lines from ions such as

three and four times ionized neon and argon provide opportunities for

probing the high temperature regions of these objects. The first spectra
obtained of planetaries throughout this range were those of NGC7027 and

NGC7662, by Bohlin and his collaborators using sounding rockets (i, 2).

However, it has only been with the advent of the IUE that such data could be

obtained routinely for a large number of nebulae to m = 12. With this in

mind, a systematic program of observing planetary nebulae has been conducted

during the first two years of IUE operations in order to provide data on

these objects covering a wide range of excitation class, apparent diameter,

and spectral type of the central star. The results presented here are from low

dispersion observations of 28 planetary nebulae. Intensities of the emission

lines in these objects are given in the accompanying tables. Plots of the

actual calibrated spectra will be published elsewhere.

OBSERVATIONS

All the planetary nebulae listed in the accompanying tables have been

observed in the low-dispersion mode, corresponding to a resolution of about

7_, through the 10"x20" large apertures, with the nebulae centered in the

aperture. Thus the resulting data correspond essentially to slitless spectra

of the nebulae and their central stars. The majority of the objects

(about 75%) are small enough so that the measured fluxes represent those of

the entire nebula. Many of the nebulae have been observed more than once to

extend the dynamic range of the data, and in these cases the fluxes tabulated

are from the spectrogram yielding the best signal-to-noise ratio for the

line in question.

663



The fluxes have been generated from the net extracted spectra and corrected,

when necessary, for ITF errors. The data have been converted to absolute

units using the calibration curve of Bohlin, et al. (3). All the spectra
were processed for "extended source extraction" in order to measure the total

emission in the entrance aperture, even when the nebula was known to be small

or semi-stellar. As a test, a few of these small objects were processed in

both "extended source" and "point source" extraction and the results were

identical, as one would expect. For those objects that exceed the entrance
aperture dimension, allowances have to be made to convert the measured fluxes

into actual percentages of the entire flux emitted by the nebula and the

position angle may have to be considered, too.

The tabulated emission line fluxes are believed to have internal

accuracies of ±10%, except for those values shown in brackets where the

accuracy may be on the order of ±20%. This lower accuracy is usually due to

weaker lines with low S/N ratio or because of high-radiation backgrounds

during the time of observation. To these errors, one must add the uncertainty
of the IUE absolute calibration, which is estimated to be about 10%. No

corrections for interstellar extinction have been applied. The presence of

geocoronal^Ly-_ on all spectra prevents any measurements of nebular features

within~15X of Ly-_ .

Although determinations of intensity ratios of doublets for establishing
electron densities or electron temperatures, llne profiles, expansion

velocities and line splitting will require high-dispersion spectrograms of

the objects studied so far, there are nevertheless some preliminary con-

clusions that can be drawn from the low-resolutlon spectra. The sampling

of 28 objects is sufficiently large to make some general statements:

i) There are remarkable differences among the UV spectra even between objects

of similar excitation class and extinction. 2) All nebulae show CIII] k1907-

09 and this feature can be used as an indicator in surveys for nebular emission
objects. 3) Objects that are classified as low/excitatlon nebulae in the

visible generally show the emission lines of CII_, _II]and MgII. 4) HeII
may be present in both low- and hlgh-excltatlon nebulae, and a few planetarles

show mixtures of both very high- and low-excitatlon lines. 5) Those classified

as high-excitation objects show NV,[NelVI and[MgV]lines.

RESULTS

In the accompanying tables the nebulae have been grouped roughly according
to excitation class. The tables give excitation classes and nebular

diameters from Lang (4) and spectral types of central stars from A_½er (5).,2

All__ntries give the measured emission line fluxes in units of I0 erg cm
sec . Fluxes of lower accuracy are shown in brackets. Letter entries in
the tables are defined as follows:

a = absorption line
b = blended lines

p = emission component of P-Cygni feature

s = a few pixels saturated

WR = broad emission feature of Wolf-Rayet type

z = line is probably present.
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Table 1

Emission Line Fluxes for Low Excitation Planetary Nebulae

I BD 3003639 I IC418 IC2149 I IC3568
Diameter (arcsec) 3.0 12.4 8.6 18

Excitation Class 1 3 4 5

Central Star WC9 07fp 07.5fp 05f

1239/41 NV 7.71 - - -

1309 SiII 9.60 - - .

1335 c_ 6.64 (21.85) - -
1403/09 olv] 4 57 - - -
1487 NI_ 5.14 - 3.93 -

1548/50 CIV a 16.64p 3.05p 3.42p
1640 HeII 5.23 - - -

1661/66 OII_ 2.91 - - -

1674 ? 3..80 - - -

1747 NIII 5.78 - - -

1892 SiIII 4.23 - - -

1907/09 CII_ 44.63 29.92 4.94 7.11
2297 c_ 28.59 -
2325129 c_ ,[0_ 20.37 82.52 208
2470 [0_ - 27.50 119
2798 MgII - 29.75s - -

2830 HeI 12.78 - - -

3047 OIII - 1.23 - -

3095 ? - 6.64 - -

3133 OIII - 6.64 - -

3188 HeI, OIII - - z (0.27)
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Table 2

Emission Line Fluxes From Moderately High Excitation

Planetary Nebulae

I J320 I IC4846 NGC6891 Hu 2 - 1 I NGC7026

Diameter 6.4 2.0 12.6 - 11.2

(arcsec)

Excitation 5 5 5 - 6

Class

Central - - 07f - OVI

Star

1309 SiII - - - (0.15) (0.04)

1371 OV .... 0.30

1487 NIVJ (0.55) - (1.67) - 0.12

1548 CIV 5.41 - 3.86p a 0.83

1640 HeII 1.88 - - - 0.67

1661/66 OII_ .....

1718 NIV,SiI_ - - (0.41) - -

1747 NIII - - - (0.19) -
1892 SiIII 0.20 ....

1907/09 czi_ 7.76 047 3.12 1.77 0.49
2325/29 cz_],_ 1.07 (0.43) - 1.94 -
2423/26 _eIVJ 0.52 ....
2470 _I_ - (0.70) - (0.98) -

2734 HeII (0.30) (0.90) - - -

2946 HeI (0.22) ....

3047 OIII 0.49 (0.39) - z -

3133 OIII 2.32 - (0.84) - 1.17

3188 HeI,OIII - (0.17) (0.88) 2.21 -
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Table 3

Emission Line Fluxes for Moderately High

Excitation Planetary Nebulae

INGC6572 I IC4997 I NGC6565 NGC6644 1 NGC3132
Diameter 16.4 i. 6 9.0 2.6 (56)

(arcsec)

Excitation 5 5 6 6 6p

Class

Central Of+WR OftWR - - A+sdO

Star

1239/41 NV (2.33) 0.56 0.29 - -

1309 SiII 0.82 (0.93) - - -

1335 CII z 0.29 - 0.31 -

1371 OV 1.91 - (0.81) - -

1403/09 OIV_ (1.03) 0.09 - - -
1487 NI_J z 0.15 - - -

1548/50 CIV 2.66p 3.51 0.78 9.50 -
1575 [NeVJ - - 0.44 - -
1640 HeII 1.57 0.34 2.04 2.39 6.62

1661/66 OII_ .. 0.95 5.11 - 0.89 0.74

1718 NIV, SiI_ 2.03 - - - z
1747 Nizz 1.32 2.16 0.48 - 0.75
1817 [NeII_ ,SiII - 0.23 - - -
1892 SiIII (0.72) 0.33 - - -

1907/09 CII_ 50.52s 17.67 2.55 12.31s 4.21
2252 HeII - 0.26 - -- -

2325/29 CII 3, _III 3 10.47 2.35 0.98 1.71 -

2423/26 _eIVJ - - (0.37) 0.71

2470 5.62 1.59 (0.49) 0.60 -
2511 HeII - z - - -

2734 HelI - z - - (0.58)
2798/03 MgII - 1.90 - 1.66s -

2830 HeI 1.84s 0.33 - 0.24 (0.33)

2852 MgI - z - - -

2946 HeI (0.70) 0.38 - - -

3047 OIII - (0.18) (0.33) - -

3133 OIII - - 1.12 2.65 2.27

3188 HeI,OIII 2.33 - - (0.98) -

3204 HeII - (1.96) - - -

, , , ,,

667



Table 4

Emission Line Fluxes for High Excitation Planetary Nebulae

I NGC1535 J900 NGC324211 IC1297 I HM Sge* I NGC7009

Diameter 18.4 9.4 (40) - - 26.8

(arcsec)

Excitation 7 7 7 - - 7p

Class cont.
Central 07 em? cont? - -

Star

1239/41 NV 29.71 (0.23) 5.63 - 0.87 21.91

1286 ? (2.98) .... '

1309 SiII (3.46) .....

1335 CII (0.24) - - (0.09) -

1371 OV 7.82 - (1.06) 2.41 0.35 4.98p
1391 S_IV .... 0.25 -

1403/09 OIVJ (3.43) (0.18) - 0.68 0.31 -

1487 NIVJ - 0.51 (3.85) z i. 15 z

1548/50 CIV i0.74 5.23 -- 7.62 5.02 i0.86

1575 [Ne_ z - - 0.42 (0.12) 4.36

1640 HeII 14.30 1.68 118.30 14.98 3.44b,WR 43.00

1661/66 OII_ _ z (0.24) - 1.38 2.66b 3.68
1718 NIV,SiI_ .... 2.07b,WR -

1747 NIII 7.84 - - 1.30 5.15b 1.29

1817 _eII_ ,SiII .... 0.57 -- - -
2101 CIIi - - (0.93) - - -

2252 HeII - - 0.87 - - -

2297 c_ - - 519 - - 260
2328/29 r__z3,[o_J - 1.o7 2.01 0.90 1.67 1.93
2423/26 LNeIV_ - 0.52 9.15 0.70 0.36 1.93

2470 D__ .... 0.22 -
2511 Hell - - 0.85 z - (0.64)

2734 HeII - 0.30 2.45 0.52 0.20 1.73

2784 _gv3 - - - (0.71)- -
2798/03 Mg_ .... 7.16
2830 Hel 1.18 - 3.33 0.77 1.75 3.68

2946 Hel ..... 1.17

3024 OIII - - 2.65b - - (0.97)b

3047 OIII - 0.50 6.04b 0.47 0.19 3.99b

3133 OIII 3.81 2.30 36.188 4.41 0.43 24.81

3188 HeI,OIII - - - (1.18) - 3.21b

3204 HeII - z 6.41 - z 3.56b

*The fluxes of HM Sge are for the first set of observations, 6 June 1978.

Considerable changes have occurred duringthe past two years and will be
described elsewhere.
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Table 5

Emission Line Fluxes for Very High Excitation Planetary Nebulae

I IC2165 NGC3211 INGC6818 I NGC7027 Hu 1 - 2

Diameter 8.0 13.8 18.4 14.2 5

(arcsec)

Excitation 9 8 9 lOp i0

Class

Central cont? ? cont. - -

Star

1239/41 NV 0.44 0.46 0.47 (0.71) 0.71

1309 SiII - - - 1.21 -

1335 CII - 0.17 - z -

1391 si_v - - (1.54) - -
o_vJ 0.82 1.74 - - 0.541403/09

1487 NIVJ 1.02 1.72 2.22 0.65 1.85
1548/50 _IV 21.95 4.42 7.05 17.06 5.49

1575 eVJ - - z - -

1640 HeII 6.71 14.90 21.888 3.47 5.55

1661/66 OIII_ 0.62 1.12 1.78 z -
1747 NIII 063 107 151 153
1817 _eIIIJ,SiII 0.18 ....
1892 SiIII z b z b 0.67 z b -

CIII_ 21.84bs 28.83b 35.92 9.64b 3.951907/09

2252 HeII 1.00 - - 1.03 -

2297 CIII - - 0.21 - -

2325/29 CII], _IIIJ 1.36 1.21 2.11 1.90 0.43

2423/26 _eIV_ 2.70s 5.44s 8.37 1.02 2.26
2470 _IIJ - - - 0.53 -
2511 HeII 0.28 0.29 0.57 - 0.22

2734 HelI 1.31 0.96 1.23 0.49 0.36

_gv3 0.37 0.27 0.50 2.29b -2784

2830 HeI 0.86 0.34 0.72 0.40b -

2929 MgII - - 0.ii 0.27 -
3024 OIII 0.36 - 0.54 0.67 -

3047 OIII 1.80 0.80 1.20b 1.17 0.37

3133 OIII 9.83s 4.23 8.33 11.03 0.87

3204 HerI 2.40 (2.12) 3.30 1.61 (i. 00)

669





THE CARBONABUNDANCEIN TWOH II

REGIONSOF THE SMALLMAGELLANICCLOUD

Reginald J. Dufour and RaymondJ. Talbot, Jr.
Rice University

Gregory A. Shields
University of Texas at Austin

ABSTRACT

Observations of the ultraviolet spectra of two locations in the H II
region NGC346 and of the entire H II region IC 1644 in the Small Magellanic
Cloud (SMC) were made using the International Ultraviolet Explorer (IUE)
satellite. From measurements of the C III] L1909 lines, the abundance of
carbon in the nebulae was derived using theoretical model analysis combined
with ground-based spectrophotometry of other emission lines. The abundance of
C relative to H in the SMCwas found to be lower by -0.9 dex compared with the
Sun and lower by -0.8 dex compared with the Orion Nebula. This C deficiency
is similar to that of O, Ne, S, and Ar in the SMC, but not as great as found
for N (_ - 1.2 dex). Therefore, it is concluded that the sites and history
of C nucleosynthesis in galaxies is similar to that of O, Ne, S, and Ar, in
contrast to that of N, which appears to be more complex, perhaps because of a
mixture of secondary primary sources or a significant contribution from inter-
mediate-mass long-lived stars.

INTRODUCTION

The Large and Small Magellanic Clouds (LMC and SMC) provide a unique
opportunity to study in detail the structure and composition of two galaxies
representing an earlier epoch in the chemical evolution of galaxies compared
with our own. Recent ground-based spectroscopic studies of H II regions in
the Clouds by the Peimberts (refs., 1,2), Aller et al. (refs. 3,4), Pagel et
al. (ref. 5), and Dufour (refs, 6.7), show that [O/H] is -0.5 in the LMCand
-0.9 in the SMC(where the bracketed ratio represents the difference of the
logarithm of the abundance ratio between the galaxy and the sun). Nitrogen
shows the greatest deficiency of all elements studied (He, N, O, Ne, S, and
At) with [N/H] _ -I.I in the LMCand [N/H] _ -1.4 in the SMC. Also, helium is
slightly deficient in H II regions in the Clouds compared with similar nebulae
in the Galaxy.

While spectrophotometric studies of H II regions in the Magellanic Clouds
with ground-based telescopes have resulted in the accurate determination of
the abundances of a number of elements of astrophysical importance, others,
such as carbon, can only be readily observed in the ultraviolet. Therefore,
we have initiated observations of the ultraviolet spectra in the
_I135-3255 A range of several H II regions in the LMCand SMCwith the Inter-
national Ultraviolet Explorer (IUE) satellite. In this note we report the
first results of observations of two H II regions in the SMC.
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OBSERVATIONSAND RESULTS

The spectra of two H II regions in the SMC, NGC346 and IC 1644, were
obtained in May 1979 with the Short Wavelength Prime (SWP) and Long Wavelength
Redundant (LWR) cameras of the IUE at low dispersion. The SWPobservations
covered the XL1135-2085 region with a spectral purity of 30 X. The I0 x 20 arc
second elliptical aperture was used in all of the observations. Emphasis w_s
placed on the SWPobservations in order to measure the C III] k1909 and C I_
k1549 lines necessary for determining the carbon abundance.

The nebula NGC346 is the most prominent H II region in the SMClocated
in the northeast area of the main body of stars. It is listed as N66 in
Henize's (ref. 8) catalog of LMCand SMCemission nebulae. Since the nebula
has a significant apparent size, 490 x 580 arc seconds, two locations were
observed: N66A--a bright knot located in the southern part of the nebula, and
N66NW--a smooth star-free area located in the northwest lobe of the nebula.
These two locations were chosen primarily because there exists published
ground-based photoelectric spectrophotometry of them (refs. 2, 7).

The nebula IC 1644 is a small ( ~ I0 arc second diameter) H II sphere of
high surface brightness located southeast of the SMCbar in the Shapley's
"wing" feature. It is listed as N81 in Henize's catalog. Dufour et al.
(refs. 7, 9) have published photoelectric and photographic spectrophotomet_,/
for all significant emission lines in the _3727-7136 spectral "region of NSI
from ground-based observations.

Generally two or more integrations of each location were obtained with
the SWPand LWRcameras. A log of the observations is given in Table I. The
observations of NGC346/N66A and NGC346/N66NWregions were obtained during
the USI shift and have low particle background. The IC 1644/N81 observations
were obtained during the US2 shift and have very high particle noise back-
grounds. In addition, the underlying stellar continuum is considerable for
NGC346/N66A and particularly so for IC 1644/N81. Because of the high
particle background and stellar continuum encountered in the IC 1644/N81.
observations, only two lO-minute SWPintegrations were usable for quanti-
tative measurements of the five obtained.

The photometrically and geometrically corrected spectra on the GO tapes
prepared by NASA/GSFCwere analyzed using interactive picture processing

systems at Rice University and at NASA/JSCin Houston. SWPspectra processed
with the incorrect Intensity Transfer Function were corrected with the three-
agency 4th file method. The resulting 55 line x 602 word spectra background
arrays where then analyzed using a FORTHinteractive spectral analysis system
originally developed by F.H. Schiffer, III at NASA/JSC. This permitted us to
use a variety of smoothing, background subtraction, and spectral extraction
techniques optimized for each observation. The only prominent lines (other
than Ly _ predominantly from the geocorona) detected in the nebulae were the
C lllJ _1909 pair unresolved on our own spectra; as was Mg II
LL2796,2804, which might have been expected to be detectable on some of the
LWRspectra.

Measurements of the C III] k1909 strengths were made using an interactive
Tektronixs cursor routine to set continuum levels and integrate areas.
Several measurements of each line were made in an attempt to evaluate the
magnitude of possible errors due to the prejudice of the operator in setting
the continuum level, estimating the line width, etc. Comparison of the line
strengths measured on two different spectra of a given object provided an
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estimate of the instrumentalerrors. The areas in instrumentalunits (FN)
were convertedto the observedflux in ergs sec"_ cm"_ using the large aper-
ture SWP calibrationfor low dispersionderived by Bohlin et al. (ref. 10).
These were correctedfor interstellarextinction(which is rather small for
the SMC) using the UV extinctioncurve of Savage and Mathis (ref. 11) along
with publishedextinctionsfor the nebulaefromground-based observationsof
the H_/H# ratios. The 1909 reddening-correctedfluxeswere then scaled to
the HB fluxes observedfor each regionby previousinvestigations. For the
two regionsin NGC 346 we used the ratio of the areas of the IUE and ground-
based entrance apertures;while for the smallernebula IC 1644 we assumedthat
it was entirelywithin both the IUE and ground-basedapertures.

The line intensitiesfor C Ill] L1909 derived from our observationsalong
with those of other importantdiagnosticlines observedfrom the ground are
presentedin Table II. We also presentestimatedupper limitsto the
C IV _1549 and Mg II _2800 lines derived from the IUE spectra. We give esti-
mated errors for the _1909 intensitiesbased primarilyon the uncertaintiesin
the measurementsof the line profiles. The actual errors for _1909 may be two
or three times larger,due to the uncertaintiesin scalingthe IUE _1909 fluxes
to the ground-basedH# fluxes as well as uncertaintiesin the absolute
calibrationof the IUE SWP spectra. The ground-basedobservationswere made
with photoelectricscannersand have probableerrors of the order of 10 percent.
Other relevantdata about the nebulaeare presentedin the tables also.

ANALYSISANDDISCUSSION

Elementalabundancesfor H, He, C, N, O, Ne, S, and Ar in the nebulae
were derivedby Shields using a nebula modelingcode similarto that used in
previousstudiesof H II regionsin M101 (ref. 12) and M83 (ref. 13). Since
all three nebulae have rather similarspectra,we used a singlemodel
differentialanalysisapproach. A "standardmodel" was calculatedto match
the spectrumof NGC 346/N66A (T*eff = 45,000°K)and used to derive the temper-
ature fluctuationsfor variousions comparedwith T(O++) obtainedvia the [0
Ill] L_5007/4363ratio. The computedfluctuationswere used with the observed
[0 Ill] temperaturesand line strengthsto calculatevariousionic abundances
for those ions with observedlines. Elementalabundanceswere then inferred
from these ionic abundancesusing ionizationcorrectionsfor ions without
observed lines from the standardmodel. The final resultsare presentedin
Table Ill.

Using the estimatedupper limits to the strengthsof the C IV _1649 lines

for N_C 346/N66A in the model,.wefound that about 92 percentof the carbon in
th_±H zone was in the form of C++. Consequently,the correctionsfor C+ and
CTTT in the SMC nebulaeare small, so the fact that we did not observeC IV

should not significantlyaffect the accuracyof the C+_bundancesderived.
Based on model and observationaluncertaintiesin T(O ) alone,we estimate
that the uncertaintyin the C abundancefor the variousnebulae is about 0.1
dex. The good, but possiblyfortuitous,agreementof the C abundancesbetween
the three nebulae suggeststhat the accuracy by which the C abundanceis now
known in the SMC is better than ± 0.2 in the logarithm. Since this model is
also the first theoreticalmodel analysisof an H II region in the SMC, it is
gratifyingto note that the other abundancescalculatedagree very well with
those of previousinvestigationsfor which the analyseswere based on standard
nebulardiagnosticformulae.
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On the right side of table 3 we give the logarithmicdifferencesbetween_
the SMC mean abundancesand those determinedfor the Sun (ref. 14 for C,N, ai_d.....
O; ref..15for He, Ne, Mg, S, and Ar) and for the Orion Nebula (ref. 16). I't
is clear from inspectionof the table that the C/O ratio in the SMC is essen..
tiall_ identicalto that found for the Sun and the Orion Nebu'la,The
abundancedeficiencyof C relativetoH in'the SMC 'com'pa'redwith the Sun and
Orion is clearlymore similarto that of the elementsO, Ne, S, and Ar than to
that of N, Which is substantiallymore deficientthan the others. Therefore,
we concludethat the nucleosynthesisof C foll@wscloseIxthat of O_ Net St
and Ar as predictedby theoreticalnucleosynthesismodels(refs.17,18) . The
large variationof N/O while C/O remainsconstant impliesthat the stellar
sourcesof N do not contributea large fractionof the C.

It is of interestto comparethis result with the recent study of abun-
dances in severalhigh excitationplanetarynebulaewith the IUE by Aller and
Keyes (ref. 19). Severalof the nebulaestudiedwere overabundantin N by
factorsof 5-10compared to solar and Orion values. None of these N-rich
nebulaeshowed significantenhancementsin the C abundance. These resultsand
ours suggestthat the site(s)of C nucleosynthesisis the same as that of O,
Ne, S, and At. The processes,,presumablyfrom intermediatemass stars (ref.
20), which subsequentlyenrich galaxieswith N later in their evolutionappar-
ently do not significantlyaffect the relative abundancesof C, O, Ne, S, and
Ar.

We also note in ending that the Mg abundancefound for the two locations
in NGC 346 using our estimatedupper limit is at least 1.4 dex lower than the
solar value. Unlessthe nucleosynthesisof Mg is similarto that of N in the
SMC, which is unlikely,the low abundanceof Mg is apparentlydue to its
depletionby dust in the H II regions. The magnitudeof this depletionis
then rather surprising,when one notes that the dust contentof the SMC is
very low comparedwlth the LMC and our galaxy.
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TABLE I -- IUE OBSERVATIONSLOG

Nebula SWPExposures LWRExposures
(min) (min)

NGC346/N66A 30,120 130
NGC346/N66NW 120,180 30,30

IC 1644/N81 10,10,15" 20,20,20
20*, 60* 30*

*Not usable due to saturated pixels + high background
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TABLE II - LINE INTENSITIES FOR SMCH II REGIONS

_(A) ION NGC346 NGC 346 IC 1644N66A N66NW N81

1548,1551 C IV <20 <15 <30
1907,1909 C III] 123.±19.* 120.±10.* 162.±32.*
2796,2804 Mg II <20: <20. -
3726,3729 [0 II] 95.5 108. 128.

-3869 [Ne III] 44.7 35.0 37.8
4340 Hy 46.8 46.6 45.5
4363 [0 llI] 7.08 6.07 6.44
4471 He I --- 3.33 3.50
4861 H_ I00. !00. lOO.
4959 [0 llI] --- 172. 177.
5007 [0 Ill] 513. 501. 525.
5876 He I 10.2 11.0 11.9
6312 [S Ill] 2.6: 1.8 ---
6563 Ha 282. 286. 286.
6584 IN II] 4.37 6.38 6.30
6678 He I 2.95 3.51 3.08

6716 [S II] 6.76 _ 14.4 6.0
6730 [S Ill 4.47 J 5.4
7136 [Ar III] 9.77 -- 6.7:

7320,7330 [0 II] 2.34

C(HB) 0.17 0.07 0.04
log I(HB) -11.41 - 11.12 -11.02

reference (optical) 1 7 7, 9

*Errors quoted for _1909 are based on comparative statistics between two
observations; actual errors due to absolute calibration of IUE and zero point
transfers may be two or three times larger.
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TABLEIll-- MODELABUNDANCERESULTS

(1) (2) {3) (4) (5) (6) (7) ,',)

rlr,C 346 NGC 346 IC 1644 MEAN SUN ORION
_ _ SM'---C"(_'efs.14; 15) (-_ (4)- (5) C;!- (';)

lle 10.91 10.92 10.94 10.92 --- 11.00 .... f)_:']-
c 7.64 /.76 7.85 7.75 8.67 8.52 -0.92 -F).77

c_ N 6.49 6.69 6.68 6.62 7.99 7.76 -1.37 -I.l,i
"J 0 8.00 8.06 8.06 8.04 8.92 8.15 -0.88 _,71

r_e 7.23 7.20 7.20 7.21 8.03 7.90 -0.82 -F).69
Mg <6.1 <6.1 --- <6.1 7.52 --- <1.4 ---
S 6.4: 6.6: 6.6: 6.6: 7.20 7.41 -0.6 -!.8
Ar 5.80 --- 5.66 5.73 6.57 6.7: °0.84 -I.0

C/N 1.15 1.07 1.17 1.13 0.68 0.76 0.45 r}.37
C/O -0.36 -0.30 -0.21 -0.29 -0.25 -0.23 -0.04 -(].r16
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ABSTRACT

Individual massive stars with W_l__ <-6 have huge stellar winds thatcreate interstellar bubbles. Stars masses greater than 8M O (4M8?)

are considered supernova progenitors. These massive stars are numerous in

OB associations where few supernova remnants are detected. Model calculations

describing the evolution of an association show: i) that la[ge, hot cavities

are formed by pushing the ambient gas into neutral shells; 2) that the shell

radii change with galactocentric radius, 3) that only thirty percent of the
interstellar medium is in the form of supercavities and 4) that a consequence

is that only a small fraction of supernovae form supernova remnants. These

results have strong bearing on interpretation of interstellar studies being

done by IUE and by HEAO-B.

INTRODUCTION

The previous talk (ref. i) described the observable interstellar

bubble being driven by an 0 star, HD148937. Other talks (ref. 2,3) discussed

IUE observations of supernova remnants which presumably had massive stars as

progenitors. We know that O and B stars form as associations throughout

the galactic plane. If individual stars can dramatically alter the inter-

stellar medium, we are led to wonder what an OB association would do. The

model calculations discussed here described the bulk properties of how the

surrounding interstellar medium is changed as an OB association evolved. The

resultant structure of the interstellar medium,an be studied by IUE and

HEAO-B and indeed such studies are underway at present.

THE BASIS FOR CONSIDERING SUPERBUBBLES

Our interest in the structure of the interstellar medium has been

whetted by a recent emission line survey of the Milky Way (ref. 4). It

presents a photographic record of nearby dust clouds and ionized hydrogen

regions with a rough excitation classification being possible by singly-

ionized sulfur imagery and by doubly-ionized oxygen imagery. Several new

supernova remnants (ref. 5, 6) were discovered from this data. Many inter-
stellar bubbles in the form of bowshocks (ref. 7), arcs and shells (ref. 8

and 9) were newly detected. However, ionization structure around OB
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associations varied considerably. We were led to ask how a supernova

remnant, formed within an OB association, would be detected. The answer

proved non-trivial, but opened up the realization that OB associations play

a major role in determining structure of the interstellar medium.

Supernova remnants within our galaxy present an enigma: there do not

seem to be enough. Based upon statistics of supernova events within similar

galaxies, we should expecC one every thirty years (ref. i0). If we assume

that pulsars are stellar remnants left over from supernova events, then pul_Ir

statistics imply a supernova every ten years (ref. II). We might expect that
for every supernova there should exist, for a finite time, a supernova

remnant generated by the ejecta propagating through the interstellar medium.

Yet the supernova rate derived from statistics of supernova remnants is

about one every eighty years (ref. 12).

Related to this puzzle is the apparent lack of supernova remnants

within OB associations. There simply is a lack of non-thermal radio emission

plus associated filamentary optical shells within OB associations.

An intriguing clue comes from 21-cm studies (ref. 13), that large shells

of neutral hydrogen having i00 to 2000 pc radii were scattered throughout the

galactic plane. Because the associated kinetic energies exceeded the

available energy of a supernova by a factor of i00, Heiles (ref. 13)

postulated a type III supernova event. We find a more reasonable explanatio,L

is available based upon evolutionary products of an OB association.

AN EVOLUTIONARY MODEL OF OB ASSOCIATIONS

A simple model was devised based upon the kinematic properties of stellar

winds plus supernovae in an OB association (ref. 14). The model could be"

divided into three phases: A. Bubble _hase, B. First Supernova Phase, and
C. Late Supernova Phase. The bubble phase lasts for about 3xlO6 years during

which the approximately thirty stars with Mbo I <-6 push the interstellar
medium away with the combined stellar winds. For a typical OB association

these most massive stars have the following averaged properties: Mbo I = .8.8,

M_I0-6M O yr-I, vt-_2000 km s-1, where Mbo I is the bolometric magnitude, M
is the mass loss rate in solar masses, MO, per year, and vt is the terminal
wind velocity. For an individual star an interstellar bubble is driven

outward by the stellar wind. The bubble radius is (ref. 15):

27 -1/5 1/5 3/5pc= n L36 t6 (I)

with outward moving velocity of

-1/5 1/5 t6-2/5 -iVB = 16 n L36 km s (2)

where
-i

1 _ vt 1036 ergs s (3)L36 =

(n = ambient interstellar medium number density and t6 = time in 106years).
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The first supernova phase begins at about 3x106 years when the 30 most

massive stars (M_>15M_ become supernovae. The ejecta initially has little
interstellar gas to shock until it has expanded to the shell radius (_5 pc).

Because the shell is mostly HI and H2 gas and because the ejecta is very
dilute when it shocks the shell, the temperature is not very high and the

shell evolution is well described by the snowplow model for supernovae. The

shell expands with time as:

MIV I

= RI4 + 3 (t-tl)I/4 (4)Rs(t)
n_HmH_

wit h

3MIV I

Vs(R S) = RS-3 4_mHn=

This phase lasts until the shell stalls or until the second wave of

supernovae occur.

The second supernova phase commences as stars down to 8M become supernovae.

This occurs at t _i07 years and serves to maintain and/or enlarge the shell.

Approximately 180 stars exceed 8M@ and contribute to the second phase. The
shell radius becomes 170 to 700 pc before stalling. We note that if stars

as low as 4MO become supernovae, then the shell will continue to expand
and be maintained longer.

The model calculations included number densities with scale heights

and gravitational restoring forces depending upon the z-distance and for

three galactocentric radii: 5 kpc, i0 kpc and 20 kpc. As the gravitational

force only affects the bubble in the z-direction, bubble radii', etc. were

calculated for parallel to the plane and perpendicular to the plane

(Table i). The radii perpendicular to the plane, being least affected by

galactic rotation, are felt more reliable. We find that the bubble radius

changes with galactocentric radius as calculated by our model (Figure i).

Of about 50 hydrogen shells, we find only six to be associable with OB
associations. This is nQt surprising as the larger bubbles would surround

very evolved associations with remaining spectral types trending towards A.

Moreover, interstellar extinction prevents detecting the more distant
associations. Approximately thirty percent, not ninety percent, of the

interstellar medium is superbubble interiors. This indeed will produce only

arcs, or partial shells as shells break into adjacent shells, setting up hot,
ionized tunnels.

MODELLING THE SUPERNOVA REMNANT OCCURRENCES

We realized that supernovae occurring within an interstellar bubble

or superbubble would not create the classically detectable supernova remnants.

Basically, a supernova remnant is the product of ejecta interacting with the

ambient interstellar gas (ref. 16). Until the supernova ejecta (_ 5M_) has

swept an equivalent amount of material, the ejecta is in free expansion.
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By the time the supernova eJecta has expanded to encounter the shell boundary
it is too diffuse and only a brief flash (like BarnardWs Loo_) is detected.

Studies of detected supernova remnants both in the Milky Way and the

Magellanic Clouds suggest supernova remnants are detectable only if the
ambient density exceeds O. 1 om -3.

A compensating factor includes the knowledge that many runaway stars

occur and some B stars diffuse from the association beyond the hot cavity

into the neutral shell. About two-thirds of all stars are in binary systems.
In a massive binary system, the more massive star explodes and tends to flin,;

the less massive star away. The lower-massed star then becomes a runaway
star. (Twenty percent of all OB stars appear to be runaways (ref. 17)).

Tho_erunaway OB stars that escape the hot cavity create the detectable
supernova remnants.

Only a small fraction escape the supercavities. Since the shell radii

are much smaller at 5 kpc, more escape the hot cavity than at I0 kpc. No
OB stars escape the hot cavity at 20 kpc. Hence_ the model demonstrates a

very galactoc.entric distribution of supernova remnants. We also note that

the OB stars that escape are on the lower mass portion of the OB star mass

function. There indeed may be a narrow mass range of OB stars that produce
detectable supernova remnants. Based upon thirty percent of the interstellar

medium being supercavities, the following percentages of supernovae create
detectable supernova remnants:

R gal = 5 kpc 15 percent to 30 percent

-- 10 kpc 9 percent to 23 percent
= 20 kpc 0 percent

The dlstrlhution of supernova remnants is maximum near the galactic center and
zero beyond 20 parsecs. Radio" observations bear" this out.

CLOSING COMMENTS

The superbubbles, along with hot supercavltles around OB associations

provide a model for comparing interstellar column densities, velocity
components and degree of ionization. Perhaps the most important test reglon8

are young OB associations, llke Orion OB I, where the first supernova events

should have occurred. Very highly ionized gases should be interior, with
rapidly expanding HII, HI and H2 shell components.

We note that a Crab-like supernova remnant, namely eJecta still

interacting with the expelled magnetic fields, will be detectable for several

thousand years. With a 50,000 year interval between supernovae within a
specific OB association, about six percent of the OB associations would have

a detectable supernova remnant at any given time. However, very hot interiors

with isothermal X-ray emission should occur for much longer times. We

point out that the Carina Nebula has a diffuse component seen by HEAO-B
(ref. 18) and suggest more detailed studies be done to check our models. We

are already investigating several superbubbles in our galaxy using IUE and

HEAO-B, and we are studying shell structures inthe Magellanic Clouds using
HEAO-B. "
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TABLE . EXPANSIONOF SHELLSAT SELECTEDDISTANCESFROHTHE

GALACTICNUCLEUS,RGAL, IN THE GALACTICPLANE

(kpc) v(km s"1) Parallel to the Plane Perpendicular to the Plane

Rgal t(lO6yr 1. Rs(PC) n(cm"3 ) t(lO6yr 1. Rs(PC) _(cm'3) §

A. End of Bubble Phase

S 17 3 85 3 3 85 3

|0 21 3 106 1 3 105 1

20 33 3 168 0.1 3 168 O.l

S. End of Ftrst Supernovll Burst Phase (H _15H(_

5 5 8.6 137 3 9 170. 0.44

10 S 11 185 ] 10 207 0.37

20 5 1g 357 O.1 17 384 0.054
| , • ...... ,, -, , w,, ,, i

C. End of Second Supernova Burst Phase (H _ 8HQ)

5 14 179 :) - 170_ 0.44

10 5 19 251 1 37 497 0.086

20 5 43 520 0.1 46 693 0.033

• t Is the total characterJsttc ttme of the shell expansion through each phase.

+ Expans|on has exceeded Rcrtt and the shell size ts now 11mtted by gravttat|onal deceleration (see text).

§ n _s the average of the regton between the tntt_al z and ftnal z for each phase and |s derived as;

z2 z2 e"zlh dz
_1flo ,_

n=
413,,(z 3 - z 3
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THE YOUNG Of STAR HD148937 AND ITS ASSOCIATED

INTERSTELLAR BUBBLE - H II REGION
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ABSTRACT

HD148937 and nebulosities surrounding the star are found to be closely

inter-related. IUE spectroscopy of HD148937 shows the star to be a young
Of star with low mass loss. Properties of the surrounding interstellar bubble

and the H II region support the implied youth of HD148937,

DESCRIPTION OF NEBULOSITIES

The peculiar Of star HD148937 with its symmetrical S-shaped nebulae,
NGC 6164 and 6165 plus the two gaseous shell structures enshrouding this star

make it one of the most intriguing objects in the sky.

As photographs reveal, the outermost shell is very thin, dusty, and

very nearly circular. This shell extends 44' to the northeast and 64' to
the west of HD148937. The mottled appearance and the increase of dust to the

east may indicate that the eastern rim of this shell is interacting with the
nebula NGC 6188.

Enclosed within this thin shell is what appears to be an H II region.

Narrow bandpass photography shows diffuse emission in Ha and tO III] %5007

emanating from this interior region. The inner periphery of this H II region

is marked by a thin filamentary arcuate structure traced out by well defined

[0 III] emission. This inner filamentary shell or 'halo' has a major axis of
20' and a minor axis of 15' (aligned with the major and minor axes of the
inner nebulosities NGC 6164-5). The filamentary nature of this halo is

identical to that seen in shock interfaces in supernova remnants. Inside

this halo appears to be a real hole in the diffuse emission. The detectable

emission in this region is limited to the well defined blobs defining NGC 6164-5.

The inner nebular complex NGC 6164-5 shows remarkable symmetry and has

been considered a planetary nebula. However, Westerlund (1960) rejected this

hypothesis based upon the luminosity of HD148937. The notable investigation
of Pismis (1974), concluded that the symmetry of these blobs of gas were

indeed strong evidence that they were ejected by the central star.

THE CENTRAL STAR: HD148937

The central star HD148937 has been identified as an extreme Of star

classified as either 06f (Westerlund 1960) or 07f (Hutchings 1976).

_esterlund by assuming membership in the ARA OBI association derived
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M = _6.2 corresponding to a distance of 1400 pc. However, Hutchings,
bVased upon the Ha equivalent width, derived a more luminous Mv = -7.2 + 0.4

Recently, from studies of IUE high,dispersion spectra, Hutchlngs
and Rudloff (1980) find high mass-loss rates for extreme Of stars. Yet, the

two extreme Of stars HDI08 and HD148937 were exceptions and did not fit into

this scheme. The UV resonance profiles of C IV and Si IV in these stars weze

unsaturated indicating mass-loss rates of 2x10-7M yr-I, a rate two orders
of magnitude below what is expected from extreme Of stars. The reason for

these low mass-loss rates remain unexplained. A clue may be found in that

Hutchlngs and Rudloff refer to a_ private communication by Walborn who noted

that these stars are quite different in their spectral morphology from other

Of stars; an aspect also described by Westerlund (1960) in the case of
HDI48937.

The narrow bandpass photographs show very strong diffuse [0 III]
indicating a rather hot 0 star exciting NGC6188, the nebula immediately to

the east of HD148937. Two 0 stars HD150135 (06.4V) and HD150136 (05111)

fall on the sky where the most intense emission is observed.

In Table I, the pertinent information for these stars is given. By

adopting M = -5.0 for a typical 06.5V star (Panagla 1973) and assuming

Interactlo v of the large circular shell and NGC6188, we deduce a distance

of 1200 for both HD150135 and HD148937. This in turn implies a M = -5.7

for HD148937. This is a luminosity much less than found by Hutch_ngs (1976)

and slightly lower than adopted by Westerlund (1960). Clearly the H II

region around HD148937 is in the foreground to NGC6188 and likely interacting
with it. As such, M = -5.7 represents an approximate upper limit to the

luminosity of HD1489_7

Examination of an IUE high-dispersion spectrum of HD148937 loaned to

us by Peter Conti revealed that it closely mimicked UV spectra of 0 stars

like the subdwarf HD48798 and the MK spectral standard 15 Mon (07 V). One

might add that by accepting that HD148937 is near the main sequence that the

low mass-loss rate found for this star in the UV is no longer discrepant

since mass-loss rates of main-sequence stars are much lower.

PHYSICAL CONDITIONS AND AGES OF NEBULOSITIES

In order to estimate the physical conditions in the outer nebula we

adopt the approach of Lasker (1967, 1966) in describing H II regions. For

this discussion the interstellar medium interior to the filamentary 'halo'

can be ignored. Using the data from Panagia (1973) and taking radii of

the H II region corresponding to the range of possible luminosities and
distances of HD148937 (i.e. ZAMS to a star of M = -5.7) we can derivev
the parameters describing the physical conditions of the expanding H II

region surrounding HD148937.

As a H II region expands into the interstellar medium at some point

a compressed neutral shell forms just ahead of the ionization front. This

best describes what we see in the outer nebula surrounding HD148937. In

this case, the thin dust shell delineates the compressed neutral gas.
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With the relative thickness of this dust shell (l-ri/rs), and the physical
dimensions in hand we can use the models and approximations of Lasker (1960,

1966) to estimate the physical conditions and age of this H II region. The

results are given in Table 2 for values for a star with Mv = -4.7 (a star
near the ZAMS) and for a star with M = -5.7. These results indicate thatv
the H II region is quite young with an age on the order of 3x105 to 6x105 yrs.

If we consider that the inner shell or filamentary halo is due to an

interstellar bubble, the snowplow approximation gives for the radius of the

bubble (Weaver, McCray, and Castor 1977)

R 27 n6-I/5 1/5 t63/5= L3 6 pc.

This was determined by scaling the mass-loss rate found by Hutchings and

Rudloff to the lower luminosities found relevant here. Taking the angular

dimensions of the inner halo structure, we find the range of deduced ages

varying from 2.4xi05 to 5xi05 years for the less and more luminous cases at

790 and 1200pc respectively. These results compare favorably with the ages

determined for the H II region for these same two cases.

CONCLUS ION

The ages implied from the interstellar bubbles and the H II region

imply a young age and are in relatively good agreement. In addition, the UV

spectrum is very similar to other high gravity 0 stars. The evidence

strongly favors the interpretation that HD148937 is an unevolved 0 star.

The inner S-shaped nebulosity (NGC 6164-5) may in fact be due to

instabilities which have occurred in a very young 0 star. The remarkable

symmetry of this nebulosity has lead Pismls (1974) to suggest that this

material was ejected from the polar regions of the central star.

The strong similarities of this nebulosity to planetary nebulae plus

the fact that HD148937 is quite bright (M = 6.71) suggest that similar

objects may be masquerading as planetary _ebulae.

Table i

HD148937 and the Exciting Stars of NGC 6188

star(HD#) Sp. Type V

148 937 06-07V 6.71 i. 98

150135 06.5V 6.89 i.47

150136+ 05111 5.62 i.44

+ possible binary
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Table 2

Physical Conditions of the H II Region

CASE A CASE B

distance 790 pc 1200 pc

ionization radius 12 pc q 18.5 pc
interior number densities I0 cm - 13,4 cm-3

shell density 37.70 cm-3 50-95 cm -3

ambient number density 17-18 cm-3 22.5-24

I- (ri/r s) .05-. 09 .05-. 09

tchar 3.5xi05 yr. 5xl05 yr.

So 8-8.5 pc 12.5-13 pc
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Figure I - The nebulosities surrounding HD148937 as imaged by the SRC

Schmidt telescope using IIIaJ emulsion and GG395 filter.

Innermost is the S-shaped nebulosity, NGC6154-5, centered upon

HD148937. Faintly discernible is the hollow cavity immediately

surrounding the star. The cavity is sharply Bounded by

filamentary structure initially detected as [0 II_ filaments.

The H II region, extending two degrees, is faintly detected

here but well--defined in Ha imagery. The H II region is bounded

by a thin, dusty shell surrounding the entire structure.
NGC 6188 is seen to the east.
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ABSTRACT

The Crab Nebula is marginally observable with the IUE. Observations
of the optically brightest filamentary regions, made with IUE in August
1979, show the C IV x1549, He II x1640, and C III] x1909 emisslon lines.
The intensities of these lines have been compared with visual-wavelength
data. It appears that carbon is not overabundant in the Crab; carbon/-
oxygen is approximately "normal" _ oxygen is slightly scarcer than
"normal" as a fraction of the total mass.

INTRODUCTION

The Crab Nebula is the only young supernova remnant (i.e., one
composed of supernova ejecta rather--r_-FTan of swept-up interstellar matter)
which can be detected with the IUE. In August 1979, several IUE shifts
were devoted to surveying a few spots in the nebula, using the large
(IOX20 arc sec) apertures, at low dispersion. The brightest spot found in
this preliminary work will be further observed in 1980. The results of
the 1979 work, described here, are preliminary. It appears that only near
the brightest spot does the nebula produce ultraviolet emission line
fluxes that are bright enough to be measured with the IUE. This is a
region of superimposed "filaments" southwest of the pulsar, near the
"bright filament" of Davidson (ref. I) and "position 2" of Miller (ref. 2).

OBSERVATIONS

The present results are based on two exposures with the short-wave
spectrograph, with integration times of 260 and 420 minutes, respectively
(Figures i and 2). At the bright region that we observed, the C IV x1549,
He II x1640, and C III] x1909 lines appear to have been detected;
radiation hits also affected the data shown in the Figures.
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The He II _1640 brightness is essential, because it allows comparison
with relative line intensities in the visual wavelength region, thanks to
the theoretical intrinsic relation (ref. 3) between the He II
recombination lines,

I(_1640)/I(_4686) _ 7.

No observations reported in refs. 1 and 2 were taken at positions
that coincide exactly with the location in the nebula that was observed
with IUE. However, for the purpose of the present preliminary analysis,
we may average these previous results for the bright filamentary region.
The lines that we take into account here are listed in Table I, where we
have assumed a reddening for the Crab,

EB-V = 0.5 mag

from ref. 4. The adopted reddening was used to correct the visual line
ratios, [0 III]/HB/He ll/He I, and separately to correct the ultraviolet
line ratios, C lll]/He II/C IV; then the previously-mentioned intrinsic
ratio of the He II _1640/_4686 recombination lines was used to combine all
of the relative intensities on the common scale of Table I.

The visual wavelength data of Table I were taken from refs. 1 and 2.
Differences between these two references are lessthan 20 percent and'
probably real, due to the slightly different locations that were
observed. The ultraviolet data (present work) in Table I must be regarded
as very rough estimates, with errors as large as a factor of 1.5 quite
possible.

DISCUSSION

Ultimately, appropriate photoionization calculations will be required
to support a full analysis of the data in Table I and the further
measurements to be obtained this year. In the meantime, some rough
estimates will be instructive.

Theoretically, each blob or filament in the Crab Nebula is expected
to have a stratified structure in photoionization equilibrium (ref. 5).
An illustrative model is shown in Figure 3. The scheme shown in the
figure is supported, to some extent, by temperature estimates from the
lines of [S II] and [0 III] (refs. 2 and 6). Zones B and C in the model
are too cool to contribute significantly to the ultraviolet lines that we
observed. Therefore, in this analysis, we consider only zone A. The
[0 III] _4363/_5007 temperature estimates generally give values around
14,000 - 15,000 K for this zone. (Actually these are averages, since
there must be a temperature gradient within the zone.)

The intensity ratio of the He II _4686/He I _4471 recombination lines
in the Crab Nebula shows that most of the helium in zone A is in the form
of He+ , not He++ , in particular,
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n(He++)In(He+) ~ 0.1.

This probably means that 03+ and C4+ are negligible compared with
0++ and C3+, respectively. Thus, in zone A we have C++, C3+,
0+, and 0++. It is very unlikely that more than 50 percent of the
oxygen in zone A is 0+. Most likely, in zone A, at least 60 percent of
the oxygen is 0++ (see ref. 6). In the following discussion, we keep
this in mind and consider only the C Ill], C IV, and [0 Ill] lines.

Using conventional values for collision strengths (ref. 8),

(46,500 K) n(C++1I(C III] _1909) % 13 e -
I([0 III] xx4959, 5007) T n(O++)

and

(64,400 K) n(C3+)I(C IV x1549) "_ 50 e -

I([0 III] xx4959, 5007) "" T n(O++)

The line intensities reported in Table I then imply ionic abundance ratios
for various representative temperatures, as listed in Table II. Note that
the most likely temperature is around 15,000 K.

It seems clear that the carbon/oxygen ratio in the Crab is not very
large. Also included in Table I are the observed relative line
intensities in the high-excitation planetary nebula NGC 7662 (ref. 7),
normalized to HB. The intensities of the lines observed in the Crab,
which are attributed to zone A, are remarkably similar to those found in
the planetary nebula. Since NGC 7662 was extensively modeled in ref. 7,
an idea of the abundances in the Crab may also be obtained under the
assumption that the physical conditions are similar. For NGC 7662, the
carbon abundance was found to be solar and the C/O ratio was equal to

unity, with the oxygen abundance less than solar. The temperature of the
inner zone of NGC 7662, where the C IV line is formed, was 14,000 K. It
is somewhat surprising that the C IV line is so strong in the Crab, since
the C3+ ions are reduced by dielectronic recombination and by charge
transfer on neutral hydrogen, which is much more abundant in the Crab.
The inferred carbon/oxygen ratio in the Crab does not confirm the
prediction of Arnett's (ref. 9) Case B, in which the supernova ejected all
mass above the helium-burning shell, nor does it confirm the suspicion of
Davidson (ref, 6). It is consistent with the Arnett Case A, in which all
mass above the oxygen-burning shell is ejected. There are, however, a
variety of models for the presupernova star and not all have been
accompanied by explicit abundance predictions for the remnant nebula.
Considering that some 0+ must be present, but has been omitted from this
analysis, it is probable that
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n(oxygen) : mn(°+) + n(°++)] zone A

1 within a factor of two

It is importantto recall that in the Crab Nebula,the abundanceof oxygen
by mass is lower than solar (ref. 6). Incidentally,note that the
CIV/C Ill] ratio is considerablyhigher (perhapsby 3 to 5 times) than
anticipatedfrom the simplestphotoionizationcalculations. It is too
soon to say whether this indicatesa seriousdifficultyfor such
calculations. It is unfortunatethat the 0 Ill] _1663 line cannot be
measured as a check on this matter. The line is expectedto be faint and
its positioncorrespondsto a reseaumark; a similarcomment appliesto
N Ill near _1750.

The interstellarabsorptionfeature at _2200 was observed in the
•continuumand will providean independentdeterminationof the extinction
along the line of sight to the Crab Nebula. The extinctionalso can be
independentlydeterminedfrom the ratio of the He II recombinationlines,
which is known from theory,once the absolutefluxes are available.
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TABLE I. SOMERELATIVE LINE INTENSITIES IN THE
BRIGHT FILAMENTARY REGION OF THE CRAB NEBULA

(corrected for interstellar reddening)

Identification Crab Nebula NGC 7662

[0 III] 4959, 5007 16. 15.5
HB 4861 1.0 1.0
He II 4686 0.7 0.4
He I 4471 0.3 0.03
C III] 1909 7.5 5.5
He II 1640 5. 3.0
C IV 1549 5. 7.3

Crab Nebula Data: Visual lines from refs. 1 and 2.
NGC 7662 Data: From ref. 7.

TABLE II. C/O IONIC ABUNDANCERATIOS IN THE
CRAB NEBULA ZONE A

T n(C++) n(C 3+)

(K) n(O++) n(O++)

12,000 1.74 1.29
14,000 1.00 0.60
16,000 0.66 0.34
18,000 0.48 0.22
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Figure I. Results of 260-min exposure initiated at 02:51G.M.T. on
August 15, 1980.
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Figure 2. Results of 420-min exposure initiated at,02:55 G.M.T. on
August 13, 1980.
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STRATIFIED FILAMENT IN
PHOTOIONIZATION EQUILIBRIUM

ZONE A

H+, He+, some He++.

C++ , some C+++

O++, some O+++ & O+

T _ 12,000 - 18,000K

ZONE B

H+, He, C ++, O+

T = 6,000 - 10,000K

ZONE C

H, He, ...

Figure 3. Schematic model for stratified filament in photoionization
equilibrium in the Crab Nebula.
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IUE OBSERVATIONSOF THE CRAB PULSAR

P. Benvenuti,L. Bianchi,A. Cassatella,d. Clavel,d. Darius,
A. Heck, H.V. Penston,AstronomyDivision,ESTEC,

VillafrancaSatelliteTracking Station,
ESA, Madrid,Spain

F. Macchetto,AstronomyDivision,ESTEC, SSD,
ESA, Noordwijk,The Netherlands

P.L. Selvelli

AstronomicalObservatory,
Trieste, Italy

d. Zamorano
AstrophysicalDepartment
Universidad Complature

Madrid,Spain

ABSTRACT

The Crab Nebula Pulsar has been observedwith IUE in the long and short
wavelengthranges. The Pulsar was successfullydetected in two long wave-
length images as a brighterpoint-likespectrumabove the nebular
background. The detectionfailed in two short wavelengthimageswhich shows
only a nebularcontinuum. The extractedspectra,after subtractionof the
nebularcontribution,were retainedin bands of 50A and averaged. There is
no positive evidenceof spectralfeaturesapart from the interstellar
absorptionat 2200A. The spectrum is in excellentagreementwith the
optical data. An attemptto dereddenthe spectrumusing the standardUV
extinctioncurve (Ref. 1) and a visual extinctionof Av = 1.6 (Ref. 2)
produced an unexpectedflux excess in the 2200A region. Using the nebular
data in the short and long wavelengthrange and assuminga power law as a
plausibledescriptionof the unreddenednebularemission,we have derived an
extinctioncurve in the directionof the Crab Nebula. Our curve differs
from the standardone, showinga narrowerand bl_e shifted2200A bump.

We conclude that the UV spectrumof the Crab Pulsar can be interpreted,
along with the near IR and visual one, as speculationradiationpoweredby
electronswith a range of differentenergies.

However,before observingthe spectralindex of the spectrum,further
investigationhas to be carriedon for a better determinationof the UV
interstellarextinctionin the directionof the Crab Nebula.
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DISCUSSION - PART V

Savage: Do you see damping wings in the strong Si II lines?

Joseph: Yes. The %1193 and _1260 lines are blended making them dif-

ficult to determine, but the %1526 line does have damping wings which

are possibly asymmetric.

Blades: In conjunction with M. J. Bailow (UCL) I have studied at very

high resolution the interstellar Na I D lines in these Carina sight-lines.
We used the 1.9 m Mt. Stomlo reflector at code focus with a photon counting

detector which resulted in a velocity resolution of 1-3 km s-_ (FWHM).

The interstellar Na I profiles are highly complex; in many cases the

structure within the profiles is very similar to that shown in your Ca

II K profiles. In addition, we find complex Na I profiles in sight-lines
that are well away from the center of the nebula.

Hesser: Nolan Walbarn and I found evidence for D-line structure in

three stars many years ago from CTIO coud_ spectra; he has also been

studying the D lines with the much improved resolution of the echelle

pectrograph on the CTIO 4-m telescope. In the IUE data for Mg II 2796
in HD 93131 we also see evidence for multiple components where none

were suspected in the original k-line survey. Nevertheless, the dif-
ferences between lines seen towards the inner and outer portions of the

nebula are dramatic, and suggest that the structure definitely origi-

nates within this giant H II region.

Peimbert: Which is the angular extent covered by the multiple line

profiles?

Hesser: In our original optical search the complex profiles were limited
to stars within about 15 arc min of _ car. However, the discovery of

new absorption line components in the very strong UV lines suggests that
stars near the outer boundaries of the original survey should be re-examined

for weak structure. A component in the Mg II 2796 _ line in the spectrum

of HI) 93131 suggests that multiple components, albeit weaker and fewer,

may persist over a larger area. Also, it may be useful to recall that
the nebular emission lines ([N II], [O III], Ha) are broad and double to

distances as large as 2.5° from the center of the Carlna Nebula, as shown

by Malcolm Smith and collaborators.

Peimbert: Do you have other results for the C/H ratio based on other
stars?

Lien: No; so far we have analyzed only one star in detail.

Penst0n: I was interested in what you said about the background. At

VILSPA we have been working on a high dispersion calibration: this work

also suggests that at the short-wavelength ends the background is indeed
contaminated by the data. Consequently, we would favor the type of

procedure you recommend. But I wonder if anyone else has any other
comments--for example, when one compares the equivalent widths between

Copernicus and IUE what does this say?
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Lien: So far, the only other background subtraction technique I've

encountered is assuming a gaussian overlap of orders. As to the comparison
with Copernicus observations, it is something I plan to do in the future.

de Boer: Are you aware of the fact that SWP spectra which have IUE flux

in the gross spectrum above 80000, suffer from nonlinearity in the ITF
without being flagged as "saturated"?

Lien: Yes, and I have been careful not to stack in data for which this
condition occurs.

de Boer: I also wonder about your background correction. There is only

one way to find outwhether your line goes down to the camera background

or not: print out the flux numbers per pixel. In our LMC-SMC high
dispersion spectra we do not need an additional background correction to

the interorder level (de Boer and Savage 1980 Ap.J. 238 in press; Savage

and de Boer 1980 this symposium). A more general remark on your C II
lines: how much absorption do you expect from the foreground medium?

That all by itself would add absorption width to the supposed b=2 kms CO
cloud! I just do not believe the result as you present it.

Lien: Our lines are not resolved by the IUE, and so even lines on the

saturated or low part of the damping part of the curve of growth will

not reach zero flux level. The distance to the cloud in question is ~ 300

pc, and thus we feel that whatever is in front of it is negligible, in
regard to the addition of "wings" to the line.

Jenkinsi If I understood correctly, you have attempted to derive a
-I

column density for carbon using the 1335 C II lines assuming b=5 ka, s

I don't see how your result can be at all reliable for lines as strong

as you have shown, since they must be heavily saturated and well up on
the flat part of the curve of growth.

Lien_l The line ison the damping part of the curve of growth for b < 5
km s , and the CO velocity as seen in the ratio is 2 km s , thus th--e

column density is independent of the velocity, if it has the same velocity
dispersion as the CO.

Ra_nond: To be compressed, the cloud must have been shocked to around
10-K. You have a density, the cooling time can be estimated. Is it
compatible with the age of the remnant?

Wallerstein: Yes, the cooling time is compatible with the age of 104
years.

Stecher: What influence does _Pup and yVel have on your model if your
cloud and the stars are at the same distance?

Wallerstein: Very little. Both stars are rather far away, _ Pup is 10°
away and yVel is 5° away. At our high densities the radiation field is
not an important source of excitation.

Peimbert: What can be saSd about the Mg/R ratio for the region where
you detected the X2800 ME line?
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Raymond: The Mg II lines are brighter compared with O III than predicted

by the models by about a factor of 2. This is probably because the

region observed is not a clean, single-veloclty shock.

de Boer: Out to which distance did you have problems with scattered

light from the Trapezium stars?

Perry: None of our survey areas were close enough to the Trapezium to

cause any problem since the scattered light from the stars can be sub-
tracted from our emission line data as long as the detector is not

saturated.

Maran: Are you at a point in your analysis yet where you can say whether

these data actually will give more information on the spatial distribution

of physical parameters than is available from visible-light filtergrams?

Perry: Our efforts so far have been concentrated on generating the
basic mosaics. We intend to pursue the several lines of analysis mentioned

in the discussion section, notably the C/O abundance question and dust

scattering/extinction properties, both of which are more sensitively
addressed in the context of the UV data than in the visible.

Peimbert: Have you looked into the [Ne IV] %2422/X2425 ratio to check

the discrepancy between the %1907/X1909 and the Visually determined
densities?

Feibelman: We now have data on a number of planetary nebulae for the

[Ne IV] %2422/%2425 ratio but have not yet determined electron densities

from them. We plan to do this in the near future.

Aller: I'd like to second Peimbert's suggestion about measuring the [Ne

IV] nebular line ratio. These data when combined with the auroral %4724,26

[Ne IV] transition give both Ne and Te. Ar IV and some other ions

also indicated an enhanced density in central requires of high excitation,
but there is some fear that theoretical nebular line ratios in 3p

configurations may be uncertain.

Feibelman: Yes, we plan to examine the [Ne IV] lines for both Ne and Te.

There may be stratification effects that play a role in [At IV].

Aller: There are measured Si II, Mg I, etc. lines in visible regime

which might supply helpful additional information. It is curious that

[Ca V] indicates a high degree of depletion for Ca from particle forma-

tion, yet you find [Mg V] indicating a situation of essentially no

depletionf

Feibelman: Yes, there are the Si recombination lines in the visual

but they are very faint and I do not know of any recombination rated
calculations that would be necessary to make use of them. The Mg I] %4751

line is included in our models, which for these two nebulae, predict

this line to be stronger than observed. Because of the small photoioni,o
zation cross section of Mg _ a much larger fraction of Mg than H is

neutral. Perhaps charge transfer would prevent this. It is interesting
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that a model of IC 418 with a solar Mg abundance, which gives the right

Mg II X2gO0 intensity, also gives about the right Mg I] intensity. Not

only is Mg different from Ca or Fe in that it is not depleted anywhere.

One would like to know why this nebula is so different.

Peimbert: From your ME V data it seems that you need to increase the

high energy end of the stellar continuum in the m0dels and by fitting

the C III lines, and not the resonance C IV lines, you would find a

higher carbon abundance.

Harrington: The ionization potential of Mg IV is so high that one could

great!y increase the flux in that part of the spectrum without much

impact on the bulk of the radiation at lower frequencies which ionizes C

III to C IV. However, the ionization potential of Ne IV is not much
lower than that of Mg IV and in fact our models fit the [Ne V] line

intensities. Thus the problem does not seem to lle with the flux at

very short wavelengths.

Savage: Do the nebulae you have observed have infrared excesses that

might be attributed to dust?

Harrington: A number of them do if you look at the paper by Cohen and

Barlow (1974). It is interesting that the ratio of IR luminosity to L_

luminosity given in this tabulation is often around 0.3, so that not all
the L_ is being absorbed and converted to IR. This is relevant to the

problem of how much of the radiation inUV resonance lines, like C

IV A1549, may be absorbed by internal dust. I think we should be cautious,

because the optical de_th in L_ is greater than that in other lines, so
that if there is a lot of absorption for the other lines, we might

expect almost all the Lu to be converted to IR. And there are planetaries

like NGC 7662 that have very small IR eXcesses, and yet show evidence
for depletion of refractory elements, and thus must contain somedust.

Panagia: I wonder whether you can find any indication that the observed

C IV line intensities are systematically lower than the model predictions.
Such an effect would imply the presence of internal dust as found for

example in NGC 7027 (Perinotto, et al., 1980, A.&A., in press).

Marionni: The failure to reproduce correct I( 1 1909) and I( _ 1549)

intensities, and more particularly their ratio, could well be due to

internal dust absorption of the resonant _ 1549 doublet. This was first
suggested by the failure of simple models to interpret the UV emission

from NGC 7027 (Bohlln, et al., Ap. J., 202, 1975). Since dielectronic

recombination and charge-transfer will favor C III] emission at the
expense of.C IV if there are density enhancements in He - zones, however,

and we have not addressed such density structures here, it would be

premature to attribute all problems to dust (see the talk by W. A.

Felbelman, this symposium). You might, however, compare our unusually

hlgh-denslty and low-filllng factor for IC 2003 with reality (cf. Barker_

Ap. J_ 219_ 1978), and see that we've had to strain things to get the observed
I( k 1909)/I( k 1549) from our models. Without increased density in

regions of high temperature, yes, k 1549 always seems to be predicted

too strong. Most of the objects we observed are not strong IR emitters.
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Raymond: For objects this compact, can you be sure that features in the

stellar spectrum, such as C IV, don't affect the apparent line fluxes7

Torres-Peimbert: From the spatially resolved spectra (and photowrites)

it is possible to differentiate the stellar emission, and there don't

seem to be any significant differences in the line profile. It can also

be seen that C IV 11549 and He II 11641 are more centrally condensed than
C III 11909.

Dufour: How did you treat temperature fluctuations in your models? Did

you notice any relationship between the C/O ratio and the magnitude of

the OIH depletion in the nebulae?

Aller: The temperature fluctuations came out directly from the model.

The CIO ratio is not closely correlated with O/H ratio; for the small
sample the scatter is considerable; we will have to examine many more

objects.

Peimbert: Have you compared the C++ abundance derived from the 1909 C
III lines and the 4267 C II recombination line?

Aller: We have, and the results seem to be disappointing in the sense

that the ionic concentration implied by the intensity of 4267 tends to

be too large. This problem has to be solved because we can observe 4267

in faint objects such as SMC planetaries and we'd like to use it for
abundance determinations. We have a restricted sample of hlgh-excitation

objects and it is necessary to study additional planetaries,

Marionni: What methods did you employ to relate UV line fluxes obtained

from NGC 6302 to optical fluxes, given that the angular extent of the
object is much greater than the I0" x 20" slit size available on IUE?

Aller: We used the ratio of 1640 and 2734 He II lines together with

optical data to derive c = 1.44 which is in good agreement with some

data by Dufour and Eason. The IDS data refer to the bright central

core. We have some information about spatial variations from IPCS, but

the optical and IUE data do not refer to exactly the same areas. The

IPCS data suggest the effects are not larger.

Jenkins: Have you tried correlating 0 VI column densities With the

probable positions of the bubbles?

Gull: We hope to do such in the very near future.

D'Odorico: Most galactic SNR detected at optical wavelengths are not

associated with O, B stars. If the star responsible for the explosion

is a runaway B star, would you expect to see the young association at a

small angular distance from the remnant?

Gull: Young associations would produce supernovae from primarily 0

stars. These 0 stars would still be within the hot cavity when they

become supernovae. The remnant-creating supernovae would come from B

stars which either as runaways or evaporation from the association have

escaped the low-density cavity.

_07



Blades: Would you like to comment and enlarge upon your statement that
interstellar absorption lines may be used as tracers of the structure of

these superbubbles? In particular, do your models predict the level of

ionization of interstellar species?

Gull: Much of the interior of young cavities may be 5 x 105 K at least

part of the time. However, the old superbubbles, where no further

supernovae occur within, would be substantially cooler where C IV, S IV,

etc. should be traceable. Intervening super cavities should be separable

by velocity components.

Savage: For such an important astronomical object it would be desirable

to correct for ultraviolet extinction by using extinctive curves derived

from stars in the general direction of the Crab Nebula. This would

allow you to approximately compensate for the fact that the ultraviolet

extinction curve does vary in shape from place to place in the galaxy.

Maran: I agree that this would be a useful project, although there are

a variety of ways to estimate the extinction between the sun and the
Crab Nebula.

Peimbert: What is the O/H enrichment expected under case A (if the

enrichment of O/H is significant you can rule out case A from the optical

observation of Davidson)?

Maran: According to Arnett (1975) there indeed is much more oxygen in
Case A than in Case B.
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NEW INSIGHT INTO THE PHYSICAL STATE OF GALAXIES AND QUASARS

Richard F. Green

Steward Observatory, University of Arizona

Data from the International Ultraviolet Explorer satellite have revolu-

tionized many concepts in extragalactic astronomy. These include the physical

processes at work in the emitting gas characteristic of active objects, the
nature of the continuum source itself in those objects, and the constituent

hot stellar and gaseous components of normal galaxies. This review will not

be exhaustive, but will concentrate on several problems of extragalactic

research investigated with IUE.

NORMAL GALAXIES

The spectral energy distributions of normal galaxies contain information
valuable for "two related problems: population synthesis, for which optical

spectra alone are not sufficient to deduce the parameters relevant to hot
stars; and studies of high-redshlft galaxies to determine both cosmological

constants and galactic evolution.

Several of these difficult observations have been made with IUE, includ-

ing the nuclei of M81 and M87 (ref. i), M31 and M32 (ref. 2, 3), NGC 4472

(ref. 3), NGC 3379 (ref. 4), and NGC 1052 (ref. 5). The calibrated spectro-

photometry from IUE shows good agreement with that of ANS, in particular for
MBI and M81 (ref. 6), and in general for a large body of ANS galaxy observa-

tions (ref. 7).

All authors agree that the observations cannot be explained by a simple

extension below 2500 _ of the spectrum representative of a pure old metal-

rich population dominated by G and K stars. Simple spectral fitting suggests

the presence of a population of type AO for MSI (ref. I) to early F for
NGC 1052 (ref° 5). More sophisticated modeling for the bulge of M31 (ref. 3,

6) admits several possibilities. An acceptable fit is obtained from an old

Population I (M67) cluster horizontal branch plus blue stragglers. Much
better fits are derived for both long and short ultraviolet wavelengths from

Population II, globular cluster horizontal branches. These stars would
contribute 5 to 10% of the light in the V band and 75% of the light at 2000 _.

Several lines of evidence suggest that the UV light does not represent OB

associations. It will be important to assess the contribution of hot stars

between the red giant and white dwarf phases, such as planetary nebula nuclei,

sdO and sdB stars. An important implication of these results is the large

range in metallicity for elliptical systems, both in the presence of metal-

poor stars and in the requirement of a metal-enhanced population to offset

the dilution in optical absorption line strength produced by the redder

Population II stars that must co-exist with the horizontal branch.
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Ultraviolet observations of low-redshift galaxies may be used for com-

parison with optical observations of hlgh-redshlft galaxies. The two

absorption breaks used for redshift determination, one primarily from Mgll
at 2800 _ and one prlmarily from FeII at 2640 _, are both detected at their

expected strengths (refs. 2, 3). In general, galaxies observed through fixed

bandpasseswill reach, as a function of increasing redshift, a maximum

redward excursion in color, then become bluer again at higher redshifts. _or

spirals, this turning point is reached at Z _ 0.7 in V-R, while for elliptl-

cals it is found at Z _ 1.2 (ref. 7). Since spirals have more ultraviolet

flux relative to vlsual than elliptlcals, beyond some redshift brightest

cluster galaxies observed through a fixed bandpass will be giant spirals

rather than giant elllpticals. The above predictions may now be compared

with observations of hlgh-redshlft galaxies to learn about population
evolution.

A significant result of IUE has been the discovery of a highly ionized

halo around the Galaxy (refa 8, 9) and around the Large and Small Mggellanic

Clouds (refs. 8, i0). C IV and Si IV have been detected in absorption with

strengths implying column densities around 1014 cm -2 (refs. 8, ii). If the

gas is in co-rotation, then the velocity structure of the absorption against

stars in the Magellanic Clouds indicates that gas has been detected out to

10-15 kpc below the plane of the Galaxy. Electron collisional ionization

models suggest temperatures around 105 K. This result has been confirmed by

the discovery of C IV and Si IV in absorption at zero redshift against the

quasar 3C 273 (refs. 12, 13, 14), showing that the highly ionized gas is

globally distributed with comparable physical properties. N V has not been

observed, placing a limit on the excitation temperature. The existence of

this hot halo around our own (by definition, normal) galaxy strongly favors

the interpretation of C IV and Si IV absorption systems, observed in the line

of sight to high redshift quasars but at large velocity differences, as

arising in the halos of intervening galaxies.

ACTIVE GALAXIES

Ultraviolet observations of active galaxies are valuable in revealing

the presence of a hot star population, an ionizing non-thermal source, or

resonance emission lines giving information on the physical state of ionized

gas and the dynamics of the galactic system. Four individual cases are

presented as examples of the kinds of problems investigated with IUE.

Extragalactic H II regions are either isolated systems or well-defined

regions within a larger galaxy where active star formation is taking place.

Observations of three of these faint objects with IUE (ref. 15), produced

only upper limits in the Ly = emission flux in two of the cases, yielding a

Ly u/H_ flux ratio of less than 0.25. Ly _ was detected in emission in the

most metal-poor object with a flux ratio to HB of about 4, similar to that

seen in quasars, but with a line width of _ 150 km s-I, A proposed explana-

tion is the destruction of Ly _ photons by dust in the more metal abundant

objects, with concomitant reddening of the hot star continuum. The impli-

cation lles in the real difficulty in detecting primeval galaxies at high

redshift, because they may be characterized by neither a strong ultraviolet

continuum, nor strong ultraviolet emission lines.
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NGC 1052 is an active elliptical galaxy with a compact nuclear radio

source, strong optical emission lines, and a high MHI/_. Observation with
the short wavelength camera of IUE (ref. 5) shows no evidence of a non-thermal

ionizing continuum. The only emission lines seen are C II] %2326 and C III]

%1909, with no higher excitation lines. The observational pictureis
consistent with a shock heating model that brings the gas to around 104 K

and cools it through the observed lower excitation UV and optical lines,

although there is still some discrepancy in the predicted ultraviolet line
intensities.

PKS 2158-380 is an example of a radio galaxy with extended optical

emission lines, observed over a projected distance of 30 kpc. IUE spectra

(ref. 16) show that the gas is in a high ionization state; the presence of

He II %1640 out to great distances suggests that the conditions are not like

those of an H II region. The Ly _/HB flux ratio is consistent with the

recombination value at the low density of n e < 300 cm-3 found from optical
IS II] line ratios beyond 4 kpc from the nucleus. A non-thermal spectrum of

the form f_ _ _-1.3 _s observed in the nucleus, and provides enough ionizing
photons if the gas at 15 kpc radius can see them. The radio source is an

asymmetric double with a position angle 50° different from the axis of

rotation of the gas. The suggested morphology is that of a highly warped

plane of gas, possibly produced by accretion onto a non-spherical potential

with an axis different from any pre-existing symmetry axis.

The active galaxy and X-ray source NGC 7582 poses a problem: although

strong optical emission lines are observed, the IUE spectra show a steep

featureless continuum, with f9 _ 9-3.4 (ref. 17). The 2200 _ depression

yields a value for the extinction lower than that derived from the Balmer

decrement, but the complete absence of ultraviolet emission lines favors

the higher value. The evidence therefore suggests that the ratio of 2200

absorption strength to EB_ V may depart significantly from the average value
in the case of this galaxy and by implication, possibly in others as well.

This galaxy shows no Mg II emission, although on the basis of optical line

strengths, it should have been detected at twice the quoted upper limit. The

authors suggest that absorption must just cancel the emission.

_UASARS , SEYFERT GALAXIES AND BL LAC OBJECTS

These different manifestations of extreme activity in extragalactic

objects are combined in order to discuss some common physical problems.

HYDROGEN EMISSION LINES AND THE PRESENCE OF DUST

A number of investigators have studied the ratio of Ly _/H8 emission-

line intensities in low-redshift quasars and Seyfert galaxies (refs. i, 12,

13, 18, 19, 20, 21, 22, 23, 24). The combined result of all these measure-

ments is that the ratio for broad emission lines is around 6, with a very
small dispersion, while the simple approximation of optically thick radiative

recombination predicts a value of about 40. The H_/H_ ratio and Pa/He ratio

when measured (e.g., ref. 25) are more nearly consistent with the predictions

of recombination theory.
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The controversial question is whether selective extinction and reddening

by dust is required to e@plaln the observed llne ratios, and, as a corollary,
whether this dust is mixed into the broad-line emitting region or is inter-

vening. For a lucld discussion of the problem and related ultraviolet
observations, see ref. 26,

The presence of the A2175 _absorption feature at the emission'llne red-

shift provides definite evidence for dust in some Seyfert galaxies. _n

3C 120 (ref. 20), the inferred reddening of EB_ v - 0.38 is sufficient to
account for the entire discrepancy from the recombination value. On the

other hand, even though a substantlal correction for dust is inferred for

Mk 79 (ref. 20), Z Zw 1 and NGC 7469 (ref. 24), it cannot account for enough
"missing" Ly a photons.

Theoretically, dust is an attractive andefflcient way todestroy

resonantly trapped Ly _ photons. Some observational evidence suggests that

the He II k1640/Ly a ratio is enhanced by a factor of two over the theoreti-

cal expectation (ref. 27), a result of the attenuation of Ly u by a small

amount of internal dust. The problem is, that if enough dust were mixed into

the broad-line region to produce the observed Ly u/HB ratio, He II and C IV

would be strongly enhanced relative to Ly _, a result not observed (refs. 28,
29). The conclusion is therefore that the dust must be external to the

broad-line region (ref. 30).

Two observational probes are suggested (ref. 30) to test for reddening
by dust, neither of which is very sensitive to the details of temperature

and density for conditions expected in the broad llne emitting clouds. They
are the recombination ratios of He II _1640/14686 and 0 I A1303/18446. The

ratio for He II is observed to be 1.5- 2 (e.g., ref. 26); this value cor-

responda to a differential extinction of EB V _ 0.3, implying a factor of 6
to 8 COZTection in the Ly _/H8 ratio. _ For 3C 273, a measurement of 0 I _1303

yields EB_ v = 0.26 (ref. 26), while no k1303 emission was detected in NGC
4151 (ref. 26). In several cases, the data are therefore consistent with

a reddening by dust leading to a differential extinction of EB_ V _ 0.3, an
amount sufficient to account for the discrepancy between the observed Ly u/HB

flux ratios and those predicted for optically-thick recombination.

Several lines of evidence, however, argue against dust as the sole

responsible agent. The _2175 _ absorption featureis seldom seen in quasar
spectra at a strength comparable to that in 3C 120 or Mk79. As an example,

the total correction for 3C 273 amounts to EB V = 0.05 at the source and
EB_ V = 0.04 from the Galaxy (ref. 13). The discrepancy with the line ratio
probes may lie in measuring difficulties, in establishing the true continuum
level near the broad wings of Ly u and C IV A1550. An attempt to separate

the flux of strong line wings from the continuum in 3C 273 results in a

measurement (ref. 13) of He II and 0 I ultraviolet line fluxes three times

stronger than those quoted above, consistent with the low value of differ-
ential extinction inferred from the A2175 feature. In addition, the data on

Ly _/HS and H_/HB flux ratios for 19 Seyfert galaxies (ref, 24) are not

consistentwith a narrow intrinsic range0f emission-lineratios and variable

reddening, and cannot be characterized by any single reddening sequence.
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A general difficulty with dust is that the extinction is very sensitive

to the amount of dust present. The Seyfert galaxy data (ref. 24), after
correction for the differential extinction inferred from the _2175 feature,

show a scatter of only about a factor of two in the Ly =/H_ ratios. Since a

convincing argument has been made that much of the reddening must be external

to the broad line region, a remarkably constant column density is required to

produce the observed range of line ratios.

A different approach to the problem is to consider the energy budget.

Selective destruction of Ly _ radiation would lead to a significant excess

of ionizing photons over the number of Ly _ photons produced by recombination.

The photon budget balancing depends slightly on the assumed continuum shape

at the Lyman edge and strongly on the fraction of the sky covered by emission
line clouds as seen from the continuum source. For 3C 273 (refs. i, 12), if

all the Lyman continuum photons out to 2 or 4 Rydbergs are converted to

Balmer llne emission plus Ly u, then HB is found to be deficient by a factor

of 2-4 and Ly = by 10-20. Using the HB flux as a measure of the covering

fraction, Ly a is then suppressed by about a factor of 5. ' If a statistical

covering factor of 10% is used (ref. 23), then the Ly _ flux is approximately
consistent with its recombination value, and H_ is enhanced by up to a factor

of 5.

The enhancement of HB is favored in an analysis of the broad-lined radio

galaxy, 3C 390.3 (ref. 22). It was cleanly decomposed into a broad emission-

line component, with velocity width _ 5000 km s-l, and a sharp llne component
with width _ 400 km s,I. The Ly a/H8 intensity ratio is consistent with Case

B recombination for the sharp line component, whereas it is lower than that

value by a factor of 16 for the broad line component. Interpreted in terms

ofa photo ionization model including collisional excitation, Ly _ is carrying

its predicted share of the cooling, about 25%. The Balmer lines carry an

unexpectedly large fraction, more than 30%; this fraction is comparable in
the case of 3C 273.

Sophisticated line transfer calculations can reproduce the observed line

intensity ratios without invoking dust. A thermal balance model treating

photoionization and hydrogen exclted-state population equilibrium (ref. 31)
shows that ionization from excited states is significant in keeping the

emitting cloud up to 1/3 ionized into high optical depths, with a consequent

high electron density. At TT_ _ > 5 x 106 , the Ly _ line thermalizes by
electron collisional de-excitation. It ceases to be an effective coolant,

and the Balmer lines deep in the cloud are forced into that role. A careful

treatment of the Ly _ photon escape probability and frequency redistribution

(ref. 32) yields the result that the>Balmer lines and Paschen _ arise from a

region within in the cloud at TLy_c _ i00.

The perspective, then, is that there is evidence for dust, internal to

the emitting clouds from the enhanced He II %1640 emission relative to Ly _,
and external from the %2175 absorption feature. The narrow range in observed

Ly _/H_ intensities and the derived ionizing energy budgets suggest that the

departure from simplerecombination models is a line transfer effect through

optically thick clouds, wit_ a strong enhancement of Balmer line cooling.
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THE FE II PROBLEM

A substantial fraction of low-redshift quasars and Seyfert galaxies show
emission lines of permitted Fe II in the 4500 - 5200 _ region (refs. 33, 38).

These lines arise from excitation of ground state and low-lying metastable

levels to 5-6 eV levels, followed by radiative decay to 3 eV levels, with a

branching ratio of about i00 to i favoring the ultraviolet resonance transi-

tions. There is a marked similarity between Fe II and Mg II in both

excitation potential and relative abundance, yet while the Mg II emission

doublet at 12800 is a benchmark in quasar spectra, only upper limits were at

first provided by IUE for the Fe II multiplets in either absorption or
emission (refs. i, 12).

Three mechanisms have been proposed to explain the presence of the

optical Pe II lines (ref. 34). Radiative recombination is the least likely,

unless the Fe abundance is anomalously high. Resonance fluorescence of

continuum photons is a possibility with the optically thick emission-line

clouds trapping theultraviolet resonance photons, while the optical photons

leak out. The observational consequence would be that _ 90% of the quasars
show the ultraviolet resonance lines in emission, while the 10% with an

optically thick cloud in the line of sight would show absorption. The

theoretical difficulty is that with a covering factor as small as 10%, a very

large turbulent velocity is required in each cloud to absorb enough continuum

photons. Recent improvements in the collisional cross-sectlons for Fe II,

incorporating improved atomic data and a more elaborate atom (refs. 35, 36,

39), show that collisions could be very important in populating the upper
levels.

To study the situation, three extreme iron-line Seyferts, I Zw i, II Zw

136, and Mk 231 were observed with IUE (ref. 37). The Fe II ultraviolet

multiplets were clearly detected; the best estimate for the ratio of optical

to ultraviolet photons is _ 3 for I Zw i, _ 2 for II Zw 136, and 1-2 for Mk

231. These results are consistent with the predictions for collisional

excitation, with high optical depth in the ultraviolet lines. The previous

difficulty in detecting the ultraviolet Fe II emissionprobably results from
the fact that these 12 multiplets are broad and of low contrast; and are

easily seen only in places llke the "blue wing" of Mg II emission. The

question remains as to why only some quasars and Seyfert galaxies show Fe II;

it may provide a sensitive probe of optical depth or electron density when

the physicalconditions are better understood.

ABSORPTION SPECTRA OF QUASARS

Quasars are sources of continuum emission against which intervening

material can bedetected in absorption over very long lines of sight. They

therefore act as probes of both the local conditions of associated gas and

the intergalactic medium. Unfortunately, high-redshift quasars are faint

objects for IUE, so only the strongest absorption systems can be detected.

Thedlscovery of Lyman-edge absorption at the quasar emission redshift

signifies the presence of one of the optically thick emisslon-llne clouds in

the line of sight. The fraction of any randomly selected sample of quasars
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showing this absorption is an estimate of the covering factor, the fraction of

the sky seen from the continuum source covered by optically thick material.

None of a sample of seven high-redshift quasars observed with IUE (refs. 23,

44) showed Lyman edge absorption at the emission redshift. Ton 490 has a

substantial Lyman edge absorption (ref. 40), but it may very likely be

associated with a strong absorption system at i0,000 km s-i shift to the

violet. From a compilation of relevant IUE data (ref. 14), only one quasar

out of 13 shows this Lyman-edge absorption, yielding a covering factor of

8%. This result is in good agreement with that from a sample of 30 very

high-redshift quasars observed optically (ref. 41), a factor of _ 10%. As

seen above, the deter_.ination of the fraction of continuum flux absorbed is

critical to understanding the ionization structure and emission-line inten-

sities of the quasar gas.

High-redshlft quasars also provide a probe of the intergalactic medium

and intervening gas associated with galaxies and clusters. In three cases

(refs. 23, 42), flux has been detected below the He I ionization edge at

%504. The near-transparency of the intergalactic medium at these wavelengths

requires that the helium neutral fraction be very low; collisional ionization

models put a lower limit on the temperature of about 3 x 105 K (ref. 43). At

least 75% of the high-redshift quasars observed with IUE (refs° 14, 23) show

an optically thick Ly = - Ly edge absorption system along the line-of-sight,
most with a velocity difference with respect to the emission redshift of

order C. Follow-up optical observations (ref. 44) have revealed low excita-

tion metal-lines plus weak C IV in these systems. Their line-of-sight

density is _ 2 per unit redshift. With quasars as a probe, IUE observations

can therefore sample the distribution of galaxies andassociated halo gas at
redshifts around i.

THE CONTINUUM

BL Lac Object s

An obvious and essential property of BL Lac objects was revealed with the
first IUE observations (ref. i). The continuum flux is detected down to the

wavelength limit of instrumental sensitivity as a continuation of the optical

power law. No ultraviolet emission lines are detected, not even Ly _. Since

the ionizing photons are present, the conclusion must be that the absence of
emission lines is because of the absence of emitting gas. These objects

therefore provide an uncontaminated look at the continuum source itself.

The combination of a power-law spectrum, detectable linear polarization

of the optical light, and rapid time variability suggests a synchrotron

origin for some of the continuum radiation in BL Lac objects (ref. 45). IUE

observations in combination with measurements at many frequencies provide the

critical sampling of the electromagnetic spectrum that will be necessary to

discriminate among differing theoretical interpretations.

Mk 501 is one of the brighter BL Lac objects, and has been observed

quasi-simultaneously at radio, infrared, optical, ultraviolet, and X-ray

frequencies (ref. 46). The resulting spectrum shows a power law extending

from ultraviolet to X-rays, steepening toward very hard X-rays. The flat
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spectrum radio emission cannot be an extension of that power law. A crucial

step in the analysis is the separation of the power law from the dominant

contribution of the optical and infrared light by the galaxy surrounding the

active nucleus. Qualitatively different conclusions can be drawn depending
on the method used (ref. 47). By removing a standard galaxy energy distribu-
tion, the power-law is seen to flatten off in the near ultraviolet and visual.

This spectral flattening may be interpreted as a reflection of the radio

spectral turn-over, with the optical, ultraviolet and soft X-rays produced by
"self-Compton" scattering of the radio photons off the relativistic electrons.
Quantitative model fitting suggests a magnetic field of _ 4 x 10-4 G and a

variability time scale of _ 7 years. The steepening towardhard X-rays would
reflect a high energy cut-off in relativistic electrons at _ 4 GeV. These

data cannot rule out other models, however, such as inverse Compton scattering
off hot thermal electrons, or two separate synchrotron components, one for the
radio and one for the optical-ultravlolet.

Further observations show that neither the spectral energy distribution

of Mk 501 nor a limited range of model parameters characterize all BL Lac

objects uniquely. On the basis of simultaneous, multi-frequency observations

of 0735+178 (ref. 48), the self-Compton model predicts an emission region size
greater than 2.2 light years, but variability has been observed on a time

scale of a week. In addition, the object I Zw 187 (ref. 48) shows an X-ray

excess of a factor of i0 over the extrapolation of the power-law continuum,
and emits such a low radio power that a magnetic field in excess of 10 G is

required for inverse Compton scattering to be responsible for the higher
frequency radiation.

The variable power-law component in Seyfert galaxies and quasars may be

closely related to the BL Lac phenomenon. Multifrequency monitoring of the

variability of two such objects, the quasar III Z_ 2 and the Seyfert galaxy
Mk 509, (ref. 49), shows that, while they have varied only at the 10% level

in the ultraviolet, optical, and infrared, they have undergone substantial

variations, in phase, in the radio and in X-rays. Further time-resolved

observations may prove valuable in defining the relationship among components
of the continuum emission.

Quasars

The optical and ultraviolet spectral energy distributions of quasars are

more complex than those of BL Lac objects because of the presence of gas.

From continuum points selected to be free of the effects of emission lines,

an average optical-ultraviolet spectrum can be characterized by f_ _ _-0.6
(ref. 50). IUE observations of high redshift quasars (refs. 23, 44) show that

below _ i000 _, the flat spectrum breaks and assumes the form f_ _ _-2.5 down

to at least 400 _. This steep spectral slope is a property of the continuum

itself, as opposed to an effect of absorption or reddening, and is confirmed

by optical observations of quasars with Z > 3. One implication of this result
is that an extrapolation of the optical power law will overestimate the

ionizing flux at 2 Rydbergs by a factor of 2-4.
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A compilation of the entire spectral energy distribution of SC 273 is

shown in the Figure (ref. 13). The dot-dash line connected to the solid llne

of IUE observations is an empirical extrapolatlon(not a measurement), based

on the assumption that the far-ultraviolet energy distribution of 3C 273 is

similar to that of high redshift quasars observed with IUE. The Figure gives

the impresslon that there is an excess of flux in the ultraviolet. The

3000 _ "bump" and Ly _ two-photon emission can account for only a small
fraction of that light. One proposed interpretation is that the ultraviolet

radiation is a "thermal" excess, reminiscent of that seen in accretion disk

binary stars (e.g. ref. 51). If the excess flux in 3C 273 could be character-

ized by a single temperature, it would be _ 2 x 104 K (ref. 13). Accretion-
disk binaries exhibit a rang_ in temperatures from 1-3 x i04 K. The high

redshift quasars so far observed, however, seem to show the break in spectral

slope at the same wavelength to within % 200 _. One possibility is that

quasars have a closely regulated "thermal" emission mechanism near the
continuum source. Another possibility to be considered is that a wavelength-

defined effect may represent an atomic process not yet understood. Multi-

frequency observations of other quasars will be valuable in addressing this

question.

The results discussed here reflect the success of IUE in problems of

extragalactic research and the promise of future space astronomy efforts.
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ABSTRACT

The IUE obs_cvatlons of the nucleus of MI00 are presented and briefly
discussed.

INTRODUCTION

MIO0 = NGC 4321 is a spiral galaxy in which a bright Type II Supernova

(SN 1979c, mB (max) = 12TM) was discovered on April 19, 1979. Its spectral
evolution has been followed with IUE for more than two months (refs. 1,2).

At all epochs, the spectrum was dominated by continuous radiation on which

emission and absorption features were superimposed. The equivalent width

of most of the absorption features appeared not to vary with time suggesting

that they originated in the interstellar media of MI00 and our own galaxy.

However, the possibility remained that the absorption lines be formed in the

SN photosphere. Thus, the problem required some independent check for

obtaining a definite solution.

This prompted us to observe the nucleus of the galaxy with IUE in order
to discern bona fide interstellar features, which should be present in the

spectra of both SN 1979c and the nucleus, from those originated in the SN

photosphere which must be absent from the nucleus spectrum. Moreover, the
nucleus of MIO0 in itself is worth being studied because in blue plates it

presents interesting structure, namely, a central condensation (a core of

3") enveloped by a more diffuse region (a halo of _ 20") which contains
additional 4 condensations around the central core (ref. 3). Also, radio

observations with VLA have detected emission from a similarly extended area

(ref. 4) and X-ray observations with the Einstein Observatory have revealed

the presence of at least 2 condensations in the nuclear region (ref. 3).
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OBSERVATIONS AND DISCUSSION

The observations were made on April 18, 1980 (LWR 7542, exposure time
197m) and April 20, 1980 (SWP 8790, exposure time 420TM) at the ESA Satellite

Tracking Station in Villafranca del Castillo, Madrid, Spain. Since the large
slot (i0" x 20") was employed for both observations, two of the condensation_

were observed at the same time. The spectra are displayed in Figure 1 and 2

The main results of a preliminary analysis can be summarized as follows:

i) The spectra of both components are dominated by continuous emission
with approximate shapes F_ = 9- (upper component) and F9 = 9- " (lower
component). These imply relatively high color temperatures in the UV, of
the order of 15 to 20 x 103K.

2) The line spectrum consists mostly of absorption features which are

characteristic of the interstellar medium in both halos (e.g. Si IV 1400,

C IV 1550, A1 III 1850) and disks (e.g. Mg II 2800, C 1 1260-1330, C II 1335,

O 1 1305, Si II 1260-1304, S II 1250-59) of MI00 and our galaxy. This result
confirms the interstellar origin of most absorption lines found in the

SN 1979c spectra.

3) Emission lines, if present, are very weak. In fact, one may possibly

identify the lines He II 1640 and O 114 1663 in both spectra. However, it

is not clear whether they are real emissions or rather their appearance is

mimicked by the shoulders of nearby absorption lines. Also, the possible

presence of an emission component of the Mg II 2800 line in both spectra is

indicated by the lower absorption observed in the red portion of the Mg II

2800 line just in correspondence to the radial velocity of MIO0.
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IUE OBSERVATIONS OF THE NUCLEAR REGION OF M51

P. Benvenuti

ESA-IUE Observatory - MADRID

S. D'Odorico

European Southern Observatory - GENEVA

ABSTRACT

The nucleus of the Sc galaxy M51 = NGC 5194 has been observed with IUE

in the long and short wavelength range. Visual inspection and cross-cuts

perpendicular to the dispersion reveal the presence of a UV knot I0 arcsec

south of the nucleus of the galaxy. Separate spectra of the nucleus and of

the knot were extracted using the spatially resolved images.

The energy distribution of the nucleus fits the known blue and visual

spectrum. Shortward of 2800_, the nucleus and the knot have similar bright-

ness. In the 1200-2000_ range both spectra are essentially flat. The UV

knot has been identified with an Ha region at 500 pc from the center of the

galaxy.

The CIII] k1909_ and the [0II] k2470 lines have been detected both in

the nucleus and in the UV knot while upper limits have been set for the

CIV k1550_ and CII k2325_ emissions° The UV line intensities have been used

in conjunction with final line data to infer physical conditions and

abundances of the emitting gas (Benvenuti and D'Odorico, 1980, in preparation).

It is known from population synthesis work based on final observations

that the nucleus of M51 contains a predominantly old population. The UV data

will now be used together with existing final observations in an attempt to

solve the ambiguities of previous population synthesis work, in particular

the nature of the stars responsible for the observed UV flux. The UV knot

shows a spectrum with little contribution from yellow and red stars. At the

same time the number of stars of spectral type earlier than A@ has to be

small.

It has to be remarked that the presence of regions of completely

different stellar populations at distances as small as 500 pc would create

severe ambiguities in the interpretation of the spectra of galaxies at more

than 20 Mpc, where such regions would not be resolved.
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THE ULTRAVIOLET SPECTRA OF EARLY TYPE GALAXIES

G. Bruzual A. and H. Splnrad

Astronomy Department

University of Californla, Berkeley, Callfornia 94720

ABSTRACT

The average spectral energy distribution for a sample of bright ellipti-
cal galaxies is presented in the range AA 2000 to 3200 A. Spectral synthesis

indicates that elllptica1 galaxies are most likely older than 9 Gyrs. The

ultraviolet flux is consistent with a population of red horizontal branch stars,

as those present in metal-rich globular clusters. Data for distant (z _ 1)

flrst-ranked cluster galaxies show indications of spectral evolution.

INTRODUCTION

Detailed knowledge of the ultraviolet spectra (AA 2000-3200A) of early

type galaxies is important for at leastthree reasons. First, it may provide

clues about the presence of a hot stellar population which does not contribute

appreciably at optical wavelengths. Second, spectral features identified in

the spectra of nearby galaxies can be used as redshift indicators for distant

galaxies (up to z _ i). And, third, combining this information with our

notions of stellar evolution, some conclusions about the spectralevolution of

Ealaxles can be derived. In partlcular, the stellar population present in

first-ranked galaxies in distant clusters can be compared withthat expected

for galaxies of different morphological types at the corresponding age, and
hence the correctnessof the assumption of similarity of all flrst-ranked

cluster galaxies can be tested.

OBSEEVATIONS

Low resolution IUE spectra with moderateslgnal-to-nolseratlo in the
range from 2000 to 3200 _ are now available for several early type stellar

systems. Table I gives galaxy Identlflcatlonand morphologlcal type, exposure

time and IUE observer for the sample used in this paper. Figure 1 shows the

average spectral energy dlstrlbutlon, where each galaxy spectrum has been
normaiized at 2900 A and weighted according to the exposure time.

The most conspicuous spectral features that can be seen in this spectrum

are the Mg I (2852) and MEII (279_) absorption lines and the spectral discon-
tinuities at 2420, 2640, and 2900 A, which result from the blends of many me-

tallic lines. This spectrum lscharacterlstlc of a metal-rlch stellar popu-

latlon, as can be seen from the IUE spectra of globular clusters (ref. 3).

These features are prominent in spectral types A7 and F8 (ref. 4). No

emission lines have been detected in this s_ectral range. The high fre-
quency structure for A < 2300 and A > 3200 A is due to the low slgnal-to-
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noise ratio of the individual spectra at their edges, and does not represent

reproducible spectral features. This has been checked by comparison with a

ground based spectrum of M32 of high signal-to-noise ratio, down to I 3200 _.

The apparent sharp absorption features at l% 2400, 2580, and 3100 _ are due
to reseau marks in the IUE camera.

INTERPRETATION

The quality of the present data is high enough to allow an interpretation

of the spectrum in terms of the stellar population present in elliptical ga-

laxies. As part of a separate investigation (refs. 5 and 6), evolutionary

models for galaxy populations and spectra have been constructed. Elliptical
galaxies are well represented by a model in which initial star formation

takes place at a constant rate for a time interval of 1 Gyr, with an initial

mass function similar to that observed in the solar neighborhood (x=1.35),

and is zero afterwards. Evolutionary tracks for solar composition from

Ciardullo and Demarque (ref. 7) are used to follow the subsequent evolution

of the stellar population. The observed luminosity function for giants in

the solar vicinity, as derived by Tinsley and Gunn (ref. 8), is used to

complete the evolutionary tracks onto the giant branch. Standard stellar

spectra for solar metallicity are used to construct the resulting galaxy

spectrum with a resolution of 50 _ in the optical region. In the ultraviolet,

0A0-2 (ref. 4) spectra for stellar types earlier than GS, and IUE spectra ob-

tained by the a_thors for late type giants, complete the spectra with a re-
solution of i0 A to 2000 _.

The following results have been derived from these models.

(a) In the region from 2000 to 4000 _ the observed spectra are well re-

produced by the model at an age of 5 Gyr. However, this model has B-V = 0.83,
which is about 0.15 magnitude bluer than a typical giant elliptical. In addi-

tion, this young age implies formation redshifts for qo = 0 of 0.34 (Ho = 50)
or 1.04 (Ho = i00) which seem much too low for current views of massive ga-

laxy formation. The predicted B-V at z = 0.46 is 1.26 (Ho = i00). This is
too blue for the observed color of 1.4 (refs. 9 and i0). For a different
interpretation, see ref. ii.

(b) In the region from 5000 to 8000 X, the observed spectrum is not

reproduced until an age of 8 to 9 Gyr. However, by this time, the model is

deficient in ultraviolet light. We have interpreted this deficiency as

due to the lack of horizontal branch stars in our model. To test this hypo-

thesis we have added some light to the models from stars in the range F0 to
F8, which resemble well the spectra of metal-rich globular clusters (ref. 3).

The fraction of this light added to the models is arbitrary and depends on

the age assumed for the galaxies. Table II shows the fraction of light in-

side the V-band for three different stellar groups at three possible galaxy

ages. The fit to the observed spectrum from 2000 to 8000 _ is equally good

for any of these models. Thus, it does not seem possible to derive the typi-

cal age of the population on spectral grounds solely. Assumptions about the

evolution of the horizontal branch population, together with observed spectra

of galaxies at z > 0.4 may provide clues about the most plausible age. This
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is being explored in ref. i0.

c) Even though some light from giant stars hotter than those commonly

seen in the solar neighborhood is required to reproduce the galaxy data, these
stars are not hotter than FO (T_7200, B-V=0.30). In the HR diagram these stars

fall to the right of the RR Lyrae instability strip, and thus are character-
istic of a red horizontal branch (ref. 12). This is not surprising, given

the similarity of the galaxy spectra and those of metal-rlch globular clusters

(ref. 3). The number of horizontal branch stars required to reproduce the

spectra is equivalent to a few percent of the total number of stars in the

red giant branch. This ratio is given in the last llne of Table II. Most

likely these stars are more conspicuous in the elliptical galaxies than in the
solar neighborhood because of the intrinsic differences between both popula'

tlons and the larger volume sampled in the case of the galaxies.

SPECTRAL EVOLUTION

Figure 2 shows the observed spectral energy distribution for E galaxies

at z = 0, 0.2, 0.5, and i.i in the rest frame of the galaxies (refs. i0 and

3). The galaxies at z=0.5 and i.i are bluer in the range II 2700 - 3800

than the average nearby elliptical. Similarly, the amplitude of the 4000-_

discontinuity is lower in the distant E galaxies than in nearby ones. This

is expected from the normal evolution of the main sequence stars in these

galaxies (ref. 5). The extent to which star formation could be taking place

in these elliptlcals at z > 0.5, as well as the relative importance of hori-
zontal branch stars at the respective epoch is the subject of a separate inves-

tigation (ref. i0). Certainly, some luminous, red-color-selected E galaxies
have had no active star formation over the last 5-7 Gyrs.

CONCLUSIONS

Our spectral synthesis m_dels for the spectrum of elliptical galaxies

in the range l% 2000 to 8000 A imply that these systems are most likely older
than 8-9 Gyr. The flux in the region from 2000 to 3200 _ can be understood

as being produced by stars in the red horizontal branch, similar to those

observed in metal-rlch globular clusters. In this respect we disagree with
the recent results of O_Connell (ref. ii). Spectra of distant elliptical

galaxies show slight indications of evolution, consistent with our ideas about
stellar evolution.
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TABLES

Table I. Galaxies observed with IUE

Galaxy** Type LWR exposure Reference

M31 (nuc) Sb 8.5 hrs i,*
M32 dE2 5.5 *

NGC 3379 E1 7.0 2
NGC 4472 E2 10.5 *

• Data from authors.

•_ IUE aperture size was "large", an oval 10"x20"
in dimension.

Table II. Fraction of Flux in the V,band

Model age (Gyr) 9 13 16 •

Turnoff G5 G7 G9

[FO - F8] (HB) 0.05 0.09 0.13

Turnoff - M6V 0.44 0.37 0.34

Red Giants 0.51 0.54 0.53

N(HB)/N(RG)* 0.028 0.034 0.050

* Number ratio of horizontal branch to red giant stars.
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Figure 2. Observed spectralenergydistributionfor galaxiesat z=O, 0.2,
0.5, and 1.1 in the rest frame of the galaxles. (see refs. 10 and 13 for
details).
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IUE OBSERVATIONS OF SEYFERT GALAXIES 1

Chi-Chao Wu

Astronomy Dept., Computer Sciences Corporation

A. Boggess and T. R. Gull
Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

In this presentation we wish to discuss the following three topics:

• Lt_ /H_ ratio

• Continuous energy distribution

• Line profile

THE L_ / H_ RATIO

If the broad hydrogen lines in Seyfert galaxies and QSOs were produced by photo-

ionization - recombination plus a small contribution from collisional excitation, the

L_ / H/3 ratio would be about 40. However, the composite spectrum derived by com-
bining ground observations of high and low redshift QSOs shows L_ /H5 ~ 3(1). This
result has subsequently been confirmed for a few individual QSOs such as 3C 273(2),
PKS 0237-23(3) and B2 1225+31(4). With the IUE, it has become possible to measure
the Lt_ fluxes for a large number of Seyfert galaxies. Since the fluxes of Balmer lines
are already available from ground-based observations, we can derive the L_/H_

ratios for individual objects. In a recent paper (5) we presented the L_ fluxes for 19
objects. Fifteen of these objects were observed by ourselves, and published data were

used for the remaining four. The L_/H/3 ratios of type 1 Seyferts are also found to be
about a factor of 10 lower than predicted by recombination theory. The results are
summarized in Figure 1 where we plot the La /H/3 ratio against the Ht_ / H/_ ratio.

• Four reddening lines are also plotted in Figure 1. The origins of the reddening lines
labeled A,B,C, and D correspond toHa / HE = 2.8 and L_ / H/_ = 40,20, 10, and 5
respectively. The standard extinction curve of Code et al. (6) was used to construct
the reddening lines. Increments of 0.1 in E(B-V) are indicated by the tick marks along
each reddening line. If simple recombination plus collision produce the emission in
the broad line region (BLR) of Seyferts and QSOs, the observed points should concen-
trate at the origin of curve A; or, if there is dust along the line of sight, the observed
points would lie along curve A. As indicated in Figure 1, there is no such concentra-

tion of points. In fact, the observed points do not cluster about any of the four redden-
ing lines. Foreground reddening does not seem to play a major role in the low L_ / HE

ratio because, among the 19 objects, only I ZW 1, 3C 120, MKN 79 and NGC 7469 show

1
Partially supported by a NASA research contract NAS 5-25774

737



reasonably strong 2200 _ dust absorption features. On the average, these 4 objects do
have higher Ha / H_ ratios than most others. Another interesting point in Figure 1
is that the objects having the largest La / H_ ratios are the type 2 Seyfert MKN 78
and the narrow line component of 3C 390.3. The broad component of 3C 390.3 has the
low La / HE ratio typical of type 1 Seyferts (7). It seems that the low La / H_ ratic_
is characteristic for the BLR and is probably caused by high density effects (see Ref.
6).

THE CONTINUOUS ENERGY DISTRIBUTION

In figure 2 we plot the continuous energy distribution of NGC 4151 and MKN 509
from the X-ray region to the infrared. Filled circles and triangles are observational
data; solid and dashed lines are extrapolations. The X-ray fluxes are from the obser-
vations of Mushotzky et al. (9); the UV data (not corrected for reddening) are our own;
the optical data are from de Bruyn and Sargent (10); and the IR data are from Rleke (11).
For MKN 509 and some others, the spectrum may be turning over at 10.6 _m. But
from 3.6 /_m to 1200 _, the data seem to indicate a single power law. The UV - Itl
power law is significantly steeper than the X-ray power law. This is true for 5 other
Seyferts for which we have data from the X-rays to the UV and in a few cases to the
IR. In some cases, the extrapolated optical (UV - Ilt) spectrum falls above the observed
X-ray spectrum, suggesting a turnover in the UV, or alternatively a turn-up in the
soft X-rays. This turnover may occur at about 1200 _ as found by Green et al. (12)
for quasars. Photons in the spectral region between the Lyman limit and the soft
X-rays are the major source of heating for the emitting region, and Figure 2 makes it
apparent that simple extrapolation of the optical spectrum may grossly overestimate
the amount of energy available for heating.

Shields and Mushotzky (13) have studied the effect of hard X-rays on the emission
lines of Seyfert galaxies and QSOs. They find that hard X-ray photons enhance the
strength of high excitation lines. This result is confirmed by the UV spectra. Strong
X-ray Seyferts like MKN 509, ESO 141-G55, and MCG 2-68-22 have La/CIV ratios
of about 2 or less, whereas UV spectra of weaker X-ray sources, like I Zw 1 and
MKN 478, have La / CIV ratio of about 5.

THE LINE PROFILE

The CIV 1550 line is relatively free of contamination by other emission lines, so
it is suitable for line profile studies. In Figure 3, we have plotted the observed CIV
line of MKN 509 (stepped line). Superimposed on the 0bserveddata are the computed
profiles: 1. Gaussian (continuous curve); 2. Logarithmic (circles); and 3. The first
exponential integral function (triangles). ' It is clear, in this case at least, that the
Gaussian profile does not describe the observed data very well. At wavelengths not far
from the line center, the logarithmic and the first exponential integral function profiles
are essentially identical. In the far wings the first exponential integral function fits
the data better. Capriotti, Foltz, and Byard (14, 15) have derived expected profiles
of lines emitted by different kinematical and dynamical models of the BLR. They find
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that logarithmic profiles can be produced by a spherical ensemble of discrete emitting
clouds with s_eady state radial inflow or outflow. A ballistic radial outflow model pro-
duces profiles described by the first exponential integral function. As shown in
Figure 3, the CIV X1580 profile of MKN 609 is best fitted by the first exponential
integral function, indicating that the emitting clouds of the BLR are in ballistic outflow.

Our line profile fits were done independently for the blue portion and the red por-
tion of the line. As indicated in Figure 3, when the blue side of the line (open circles)
is reflected onto the red side, the red wing line profile (closed circles) is broader, in
agreement with the Balmer line asymmetries found by Osterbrock (16). Capriotti,
Foltz and Byard (11, 12) suggested that shielding of line photons by dust in the BLR or
in the emitting clouds is the cause for this asymmetry. Anderson (17) on the other
hand, proposed that the observed asymmetry is a result of gravitational redshift.
Either mechanism could fit the asymmetry of the CIV profile.
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Fig. 1. The La / H(3 - Ha / Hp diagram 
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THE UV VARIABILITY OF THE SEYFERT I

GALAXIES III Zw 2 AND MARKARIAN 509

John Huchra and Margaret Geller

Harvard-Smithsonian Center for Astrophysics

Donald Morton

Anglo-Australian Observatory

III Zw 2 and Markarian 509 are classified as classical Seyfert I

galaxies based on their broad emission line spectra and strong blue optical

continuum I. The optical spectra of both galaxies are similar -- Balmer

emission with a fullrwidth-zero-intensity of _ 150 _, weak Fe II emission
and weak He emission ±. The redshift of III Zw 2 is Z = 0.091, and its

magnitude and colors are V = 15.6, U-B = -0.70 and B-V = 0.52. The
redshift of Markarian 509 is Z = 0.034 and it has V _ 13.1, U-B = -0.98
and B-V = 0.22.

The two galaxies differ markedly in their radio properties. III Zw 2

is a strong source with a highly variable compact component2, 3 while MK 509

is a very weak source4, 5. Both galaxies show significant variations in

x-rays6,7 and MK 509 has shown variations at optical wavelengths as well 8.

We have made simultaneous observations in the ultraviolet, optical and

infrared in order to examine three fundamental aspects of the origin of

the continuum emission: (i) are these thermal and nonthermal components,

(2) how large is the emitting region, and (3) does the UV flux originate

in the same region responsible for the optical, IR, radio and/or x-ray
continuum emission?

The ultraviolet observations were made in the low dispersion mode

through the large aperture of IUE. Exposure times for Mk 509 were 40 min

in both short and long wavelength cameras; those for III Zw 2 were 3½ hours

in the short wavelength camera. Mk 509 was observed in May, August and

November of 1979. III Zw 2 was observed in May of 1978 and in May and

August of 1979. The average short wavelength spectra are shown in figure i;

more detailed discussions of these spectraowill be published later9, I0. We
measured UV fluxes in bandpasses of 70-200A free of strong emission lines.

Simultaneous optical data were obtained with a photon-counting reticon and

the 1.5 m Tillinghast Reflector at Mt. Hopkins. Broad band IR photometry

was obtained within I0 days of the UV measurements with the CFA InSb system

on the 2.1 m at KPNO. We also accumulated all other published opticalll,12,

13,14 IR 15,16,17,13 and x-ray 18 photometry. Additional unpublished x-ray 19

and r;dio 20 data were kindly made available by J. Delvaille and W. Dent
and T. Balonek.

Although we do not have sufficient simultaneous coverage to discuss .

timescales and detailed spectral changes, we have enough information to

743



discuss amplitudes and long term trends. Two ways of characterizing the

amplitude of variation are the ratio of the variance (_) to the mean (_)

and the ratio of the maximum excursion (Max E) to the mean. These yield

identical information if the deviations are characterized by a normal

distribution; however Max E/_ is much more sensitive to the presence of a

long tall in the distribution. It should be pointed out that it would be
better to use the median rather than mean for these characterizations

provided the median is well defined.

Table I gives estimates of G/_ and Max E/_ derived from all the

available data at the frequencies listed, n is the number of observations

and • is the mean flux density in each band. Figure 2 shows the energy

distributions from the x-ray to the radio. We also give an estimate of

the observational error for a single observation (a/_ has been corrected

for a obs) at each frequency. For the UV observations, the error in the

observed flux -- calculated by examining the pixel to pixel deviations

over our bandpasses -- is comparable to the measured calibration error in

IUE21: both are _ 6%. The other errors are as quoted by the observers.

For III Zw 2, the amplitude of the variations in the UV-O-IR range

is less than or of order 15% whereas in the x-ray and high frequency radio
the variations exceed 50%. The amplitude of the variations in Mk 509

decreases steadily from the x-ray to the infrared.

Figure 3 shows the behavior of III Zw 2 in the x-ray through radio

(high frequency) from May 1978 through Dec. 1979. The simultaneous

outburst in the radio and x-rays is apparent, but no such variation is seen

in the optical and IR. Although we do not have a UV measurement at the

peak of the outburst, the UV data in 1979 follow the optical data well but
do not follow the radio data.

For both objects, the overall energy distribution appears to be non-

thermal. It has been suggested that the IR continuum in III Zw 2 is due to

dustl7, 15, however the optical and UC observations of III Zw and 2 and Mk 509

suggest that this is not the case. The H_/HS/Hy ratios in both objects
indicate little reddening for the region of permitted llne formation and

the equivalent widths of the optical and UV lines do not vary. The IR-UV

spectra of III Zw 2 and Mk 509 have the same shape. Both are reasonably

well characterized by__ powerlaw with an emission feature at 3000 A (also
often seen in quasars ± ). Finally, there is no evidence for the 2200 A

feature in the long wavelength spectrum of Mk 50_6 If the IR were re-
radiated UV, we would expect to see this feature =_.

If the IR is not thermally reradlated UV flux, the low amplitude of

variability in UV-IR indicates that the region in whichthls radiation

originates is not the same as that in which the radio and X-rays are

produced. The simultaneous appearance of bursts in the radio and X-ray

implies that the X-radiation is inverse Compton scattered flux produced in
the compact radio component.
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Table 1 (a) ZZZ Zw 2 Variab£1ity

Band lo(j _ n a/. Max E/. log _ Bob I

(Hz) (ergl/om2/m/Hm)

2-6 Key 18.0 7 0.50 1.66 -28.91 .20

1475 A 15.31 2 m _ -26.14 .10
1595 A 15.27 3 0.12 0.22 -26.12 .10
1830 A 15.21 3 0.12 0.22 -25.92 .10

3500 _ 14.94 6 0.13 0.46 -25.43 .10
4500 _ 14.83 9 0.15 0.42 -25.39 .05
5500 A 14.74 8 0.12 0.44 -25.34 .05

7000 _ 14.63 7 0.12 0.44 -25.22 .05

1.25 p 14.38 14 0.11 0.46 -25.02 .05
1.65 p 14.26 12 0.13 0.45 -24.88 .05

2.20 p 14.13 13 0.10 0.38 -24.61 .05

3.5 p 13.93 4 (0.10) 0.29 -24.42 .10

i0.I p 13.48 1 -- "- -24.36 .20

90 GHZ ii.0 8 0.89 _.78 -22.65 .20

30 Ghz 10.5 8 0.33 0.91 -22.54 .10

15.5 GHz 10.2 21 0.17 0.64 -22.69 .07
7.9 GHz 9.9 ii 0.21 0.66 -22.79 .05

Table 1 (b) MK 509 Varlability

Band log u n u/_ Max E/p log f Uob s

(Hz) (ergs/cm2/s/Hz)

2-10 Key. 18.16 4 (0.27) (0.74) -28.67 .15

1430 _ 15.32 3 0.21 0.40 -25.34 .10

1760 _ 15.23 3 0.19 0.35 -25.23 .i0

2250 _ 15.12 3 0.16 0.31 -25.11 .10
2660 _ 15.05 3 0.11 0.20 -25.00 •10

3500 A 14.93 1 -- -- -24.82 .i0

4000 A 14.89 2 -- -- -24.87 .05
4700 A 14.81 4 0.11 0.25 -24.93 .03

5400 A 14.75 4 0.06 0.11 -24.90 .03

5900 _ 14.71 4 0.07 0.16 -24.88 .03

7000 _ 14.63 3 0. I0 0.23 -24.78 .05

lJ
1.25 P 14.38 3 0.01 0.05 -24.53 .03

1.65 p 14.26 3 0.01 0.02 -24.36 .03

2.20 _ 14.13 3 0.04 0.07 -24.18 .03

3.5 p 13.93 4 (0.11) -- -23.92 .15
10.1 p 13.48 1 -- -- -23.85

6 om 9.70 1 -- -- -25.40

21 cm 9.15 1 -- -- -24.90
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SIMULTANEOUS OBSERVATIONS OF ACTIVE

GALACTIC NUCLEI WITH IUE

J.N. Bregman, A.E. Glassgold, and P.J. Huggins

New York University

ABSTRACT

IUE observations of four active nuclei have been coordin-

ated with radio, infrared, and X-ray measurements to obtain

simultaneous determinations of their continuous spectra. The

results for the BL Lac objects 0735+178 and I Zw 187 indicate

sufficient UV and X-ray fluxes to ionize any gas. Comparison

of the X-ray measurements with the extrapolated optical-UV
continuum show a definite X-ray excess for I Zw 187 but none for

the other BL Lac object. •

INTRODUCTION

We present continuum data on four active nuclei of quasar-

like extragalactic objects, with frequency coverage from the

radio to the X-ray band. Such measurements are an essential

first step to the understandin_ of the mechanisms by which the

central energy source produces the emitted radiation. In

particular, the ability to measure the UV flux of these objects

with IUE supplies crucial data for defining the characteristics
of their continuous spectra. Some of the most interesting types

of active nuclei, e.g. the BL Lac objects, present particular

difficulties in that they vary on timescales as short as days or
weeks. Our observations were planned so that simultaneous

observations (within hours or days) could be made at all frequen-

cies in order to obtain definitive spectra for these objectives.

OBSERVATIONS

Table 1 presents the four extragalactic objects observed in
October 1979. The IUE observations were low dispersion, short

and long wavelength (except for I Zw 187) spectra, taken with

the large aperture. Near simultaneous observations were made at

radio frequencies by H. AIler of the Univ. of Mich. (8 and 14

GHz), and by W. Dent of the Univ. of Mass. (32 and 90 GHz); at

infrared wavelengths by R. Rudy of the Univ. of California at

San Diego (H,J,K, and L); and at X-ray frequencies with the
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Einstein Observatory by the Columbia Astrophysics Laboratory
(0.3 - 4 key). An estimate of the optical flux (V band) was also
obtained at the IU E immediately before each exposure. All the
measurements were made within two days of the IUE exposures,
except for those at 32 and 90 GHz, which were made within seven
days.

Table i. IUE Observations

Object V z D _ Camera Exp UV slope
(Type) (Mpc) (Min)

0735+178 15 ,0.424 >I020 SW 225 1.7
(BL Lac)

LW 130

I Zw 187 16 0.055 160 SW 285 1.65
(BL Lac)

NGC 3516 13# .0093 28 SW i00 2.3
(Seyfert)

LW 75

NGC 2782 13# .0084 25 SW 165 1.4
(Hotspot)

LW 105

* based on H=I00 km/s Mpc.
$ infrared-optical-ultraviolet slope
# extended underlying galaxy

The simultaneous multifrequency spectra are given in Figs
1-4. The ultraviolet data have been dereddened for the extinction

in the Galaxy using the measurements of gas and dust given by
Burstein and Heiles (1979), and the Seaton (1979) fit for the
selective extinction.

RESULTS

The continuum spectra cover 8 decades in frequency from the
radio region (9.9 GHz) to the key X-ray band (up to 10(+18) Hz).
Although the data are closely simultaneous, the two large gaps in
coverage (submillimeter to far infrared, and extreme UV to soft

X-ray) make suspect any attempt to draw a single continuum through
all the data. Nevertheless, we can see that the BL Lac object
0735+178 is consistent with one smooth continuum, and that the
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X-ray data can be fit reasonably well by an extrapolation of the
infrared-optical-UV data. This extrapolation is a power law
F_-_with _ =1.3. The total integrated flux at the earth is
i.i (-i0) ergs/cm2s, and the total luminosity is greater than
2.0 (+44) ergs/s, for q=i/2, and H=I00 km/s Mpc. The other BL
Lac object, I Zw 187, differs in several respects: (i) the total
integrated flux is 4.2 (-ii) ergs/cmas, and the total luminosity
is i.i (+43) ergs/s, at least 20 times fainter than 0735+178;
(2) the decrease from the radio to the optical is less, i.e. a
factor of i00 instead of 1000; (3) the extrapolated infrared-
optical-ultraviolet power law is steeper,_ 1.7; and (4) there
is evidence for an X-ray excess, i.e. the observed X-ray flux is
about i0 times greater than that extrapolated from lower frequen-
cies. The Seyfert I galaxy NGC 3516 continues this trend: (i)
the ratio of radio to optical flux is only about 10; (2)_ _ 2.3;
and the X-ray excess is about 50. NGC 2782 presents some inter-
esting contrasts which probably arise because it is not a quasar-
like object. There is almost no change in flux between the
radio and infrared region, and the X-ray flux is much less than
what is expected when the UV continuum is extrapolated into the
X-ray band.

DISCUSSION

Simultaneous UV and X-ray data allow the total flux of ionizing
photons to be estimated more accurately than is possible from op-
tical data alone. The BL Lac object 0735+178 is one of the few to
have a large enough red shift (z>0.424) to shift the Lyman limit to
the short wavelength band of the IUE. The fact that the continuum
shows no dip or change of slope below the Lyman limit places an
upper limit of about i0 (+18) cm on the amount of neutral hydrogen
along the line of sight to 0735+178.

It is interesting to compare the optical-UV continua of the
two BL Lacs reported here with the Red QSOs recently studied by
Rieke et al. (1979) and by Smith and Spinrad (1980). Although the
Red QSIs gave very steep spectra _ 3), They possess broad emis-
sion lines. The fact that the optical-UV continua of the two BL
Lac objects are considerably less steep than those of the Red QSOs
suggests that the 'lineless' property of BL Lac objects arises
from a lack of gas rather than a lack of ionizing flux.

The ability to reliably extrapolate the infrared-optical-UV
flux to higher frequencies is also important for an understanding
of the continuum emission mechanism. The clear detection of an X-
ray excess in I Zw 187 seems consistent with the inverse Compton
process, in which radio frequency photons are raised to X-ray en-
ergies by scattering from relativistic electrons. By use of the
model of Jones, O'Dell, and Stein (1974), the simultaneous data may
be used to estimate the size and magnetic field strength of the
emitting region. For I Zw 187 we estimate a magnetic field strength
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of about 16 G and a size of about 0.0085 pc (10 light days) - ap-

proximately the size deduced from temporal flux variations. The
data for 0735+178 yield a lower limit of 0.66 pc (2.2 light years)
for the size of the continuum emitting region, which is discrep-
ant with that determined from flux variations (i light week).

This disagreement suggests that some new ingredient must be added
to the canonical model of the inverse Compton process for the case
of 0735+178, such as relativistic flow (Blandford and Konigl, 1979).
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ABSTRACT

Repeated observations of the Seyfert i galaxies I Zw I and II Zw 136,

which have very strong Fe II emission lines in the optical region, were made

at low resolution with the IUE Satellite. The ultraviolet spectra are very

similar: both are variable and show broad emission features of Fe II (espe-

cially the UV multiplets I, 33, 60, 62 and 63) as well as the emission lines

usually strong in Seyferts and quasars e.g: Lye, Mg II, C 1111, C IV and N V.
The data strongly support the hypothesis that the optical Fe II emission lines

are primarily due to collisional excitation and that resonance fluorescence

makes only a minor contribution to the excitation of these lines.

INTRODUCTION

Fe II emission lines in the optical spectra of quasars and Seyfert gal-

axies were first discovered in 3C273 (ref. i) and I Zw I (ref. 2) and are

actually present in many objects (refs. 3, 4). Usually these lines are

thought to be excited by either resonance fluorescence or collisional excita-

tion (e.g. refs. I, 4, 9). Both mechanisms involve excitation of Fe+ atoms

from 4 even-parity levels, the ground state and 3 low-lying metastable levels,

to 6 odd levels at 5 to 6 eV, and subsequent cascade to even metastable levels

around 3 eV. In Fig. I we show an Fe+ energy level diagram with the strongest

observed optical and ultraviolet (this paper) multiplets indicated.

The excitation can be through either collisional excitation by thermal

electrons or absorption of UV continuum photons in the UV resonance lines,

but in both cases large optical depths in the resonance lines are required

for an efficient conversion of ultraviolet to visual photons. For the case

of collisional excitation we would expect both the optical and the ultraviolet

lines to be in emission. For resonance fluorescence the optical lines are in
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emission but the ultraviolet lines could be either in absorption or emission

depending on the geometrical situation. In principle, there are amply suf-

ficient ultraviolet continuum photons available for the fluorescence mechan-

ism; however the Fe II lines are formed in the broad line region which may

cover only a small part of the continuum source and the absorption lines th_

must be very broad in order to intercept sufficient ultraviolet photons, re-

quiring uncomfortably large turbulent velocities (ref. 5). Using better

atomic data and more extensive model atoms it has been recently shown (refs.

5, 8) that the collisional theory can explain the observed optical Fe II lines.

However attempts to observe the predicted Fe II ultraviolet emission lines

in Seyfert nuclei have so far only resulted in upper limits to either absorp-.

tion or emission lines (refs. i0, 12). In quasars, older work also resulted

only in upper limits (e.g. ref. 13) but recently better data for several

intermediate redshift objects show evidence for Fe II emission in the ultra-

violet in the form of broad, low-contrast emission features (refs. 14, 15).

In this paper we present ultraviolet observations for two Seyfert gal-
axies, with very strong optical Fe II emission lines, which have been exten-

sively studied in the optical. Optical studies of I Zw 1 show two redshift

systems at Z = 0.0608 for low ionization lines, (ref. 16). The broad line

component has relatively narrow features which greatly facilitate the study

of the Fe II emission lines (refs. 2, 3-6, 16, 17). II Zw 136 has broader

lines, FWHM about 2000 km sec -I for I Zw I, and a shallower spectral slope,

e = 0.49 compared with 1.33 for 1Zw 1 (ref. 3), but in general the optical

spectra of these two objects are similar (ref. 3, 4, 6). By studying these
three objects simultaneously we might be able to obtain insight into the

vexing problem of why some extragalactic objects show strong Fe II emission

and others virtually none (refs. 4, 18). It has been suggested that Fe II

emission line objects have a higher density and that the C III] 1908/C IV
1549 ratio might be lower than is normal (ref. 5). However, the available

material on differences between line ratios for objects with and without

Fe II optical emission is very uncertain and the separation for example of

optical depth and density effects is problematical (ref. 5).

In section 2 we discuss the observations and data reduction, in section

3 we present the results for I Zw 1 and II Zw 136 and in section 4 we discuss
and summarize the conclusions.

OBSERVATIONS AND DATA REDUCTION

All spectra were obtained using the IUE satellite in the low resolution

mode and with the large apertures. A summary of the observations is given

in Table I. For both I Zw 1 and II Zw 136 the exposure times were determined

by the strength of the strongest emission lines, Lye and Mg II, and in the

SWP images the continuum is rather faint. The last 2 SWP spectra of I Zw i

were obtained near the end of a shift and these exposures had to be curtailed,

so both are underexposed.
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The SWP images were originally processed with the faulty ITF, but after

subsequent correction of the ITF errors in the GPHOT image (ref. 19) we re-
extracted the spectra directly from GPHOT image using improved software (ref.

19). For the LWR spectra we only reprocessed the background in order to

remove particle events and image defects. An improved net spectrum was then

obtained from the standard gross spectrum and the new background signal.

Only a relative wavelength scale is given, as the position of the source

in the large aperture is unknown. Zero points for the absolute wavelength

scales were obtained from the Lye and Mg II emission lines in the ease of
I Zw i and II Zw 136.

Emission line strengths given in this preliminary report on these data
are based on estimated continua and simply integrating the observed flux

between suitable wavelength limits. The final results (ref. 20) will be based

on profile fitting techniques where possible. For I Zw I part of the profile

fitting has been done and we can accurately separate complex features like

the Si II, Si III, Lye, N V blend over 1180 < _ < 1250, and estimate the

strength of the individual components.

THE UV SPECTRA OF I ZW 1 AND II ZW 136

In Fig. 2 the mean long wavelength spectra of I Zw i and II Zw 136 are

shown. For I Zw I rest wavelengths were calculated assuming %o = %/(i+0.0608),

appropriate for the low ionization lines like Fe II and Mg II (ref. 7).

Comparison of the near UV spectra of Fe II Seyfert galaxies as shown in

Fig. 2 with those of other Seyferts and quasars (ref. 10-12) shows two
remarkable differences.

i) The Si 1113 _o 1892 intercombination line is greatly increased in

strength with respect to C III] 1o 1908. Normally Si III]/C III] is 0.i to
0.2, in I Zw i $i III]/CIIIJ = 0.5. Clavel (private communication) has
noticed the same effect in another Seyfert galaxy with strong optical and
ultraviolet Fe II emission lines.

ii) The strong "blue wing" of the Mg II line previously noticed in some

medium redshift quasars (ref. 21) is also present in I Zw I and II Zw 136 but

here clearly is not due to Mg II alone. In particular, for I Zw i, profile

fitting shows that most of the "Mg II line wing" cannot be due to Mg II at
all and that Fe II UV.multiplets 62 and 63 provide a good identification.

Comparison between I Zw 1 and II Zw 136 shows that the Fe II multiplets

are clearly stronger in I Zw I, as in the optical region. Only 3 multiplets

UV 33, UV 62 and UV 63 can be measured easily in both objects. Multiplets

_N 2, 3, 34, 35 and 36 are rather weak and blended with C II] _ _ 2326,

e IV] %o _ 2422 and [Ooll] _o 2470 (the Ne IV lines _fall virtually on top
of the fiducial at 2580 A but inspection of the original data shows that a

substantial emission line is present in both objects at %o _ 2422 . The red
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wing of multiplet UV 1 coincides with possible galactic Mg II k _ 2798,
absorption, and in II Zw 136 the blue half of the UV 1 emission feature is

absent. The latter could be a result of absorption in the object in the two

resonance lines which arise from the ground state, %% 2585 and 2600. From

theoretical calculations including both fluorescence and collisional processes
it appears that even in situations where collisional excitation is the domi-

nant process, in forming the Fe II lines, some resonance fluorescence should

take place (ref. 5). Some absorption could also be present in UV 2 and UV 3

and contribute to the apparent weakness of these multiplets,

In table 2 we list the observed emission line strength for both objects.

In general, the emission lines do not show evidence for variability and only
mean values are given; a possible exception are the weak, far UV lines of

II Zw 136 and for these we give values at the two epochs. In December 1978

the weak lines in the SWP region appear to be substantially stronger than in

May 1979. However the strong lines Lye, N V and C IV do not show this effect

and the "variability" could be due to errors in the estimated continuum level,
which is difficult to determine in all these spectra. Even in the long wave-
length spectra the results for the weak broad Fe II emission blends are

sensitive to small errors in the adopted continuum. In particular, the

results for UV 60 and UV 61, which in the observer's frame fall longward of
3000 X, where the IUE sensitivity decreases rapidly, are of very low accuracy.

At wavelengths lo < 2100 A there exist additional as yet unidentified broad

features. The C III], Si III] blend has very extended wings which could be

due to Fe III emission, and the 0 IV], Si IV feature, % _ 1400, has extra

emission in both the red and blue wings which appears present on all spectra.
Finally, there are extensive weak emission blends for 1560 _ < %a _< 1800 A

which cannot be explained by the presence of the He II %1640, O II_ %1666
and N lid _ %1750 lines. These could be due to Fe II emission from levels

above 7 eV, which are strong in solar spectra, RR Tel and Nova Cygni 1978
(ref. 22-24).

We include in table 2 the total optical Fe II emission line flux and the

strength of H_. For the strongest optical Fe II lines there is good agreement:

between the measurements of different observers (refs. 3, 4, 16, 17) but for
the total emission line strength the weaker features have to be included and

here substantial differences do exist. For I Zw I we used only the most

recent results (ref. 17); comparison between various H_ measurements (refs. 6,

17) shows that the older data (ref. 6) substantially overestimated the H8

line strength. For II Zw 136 the H8 flux (ref. 6) could also be up to 30% too

high. Comparison between recent measurements of Fe II lines in both objects

indicates that the most extensive set of data (ref. 6) probably still under-

estimates the total Fe II emission. After comparing all available data we
estimate

F (Fe II, optical)_ 10.3 × 10"13 erg cm-2 s-I

for II Zw 136. The optical multlplets I, 6 and 7, which arise from the meta-

stable a_P level, have been excluded from the total optical Fe II emission

strength. Their role is probably comparable to the Fe II ultraviolet multi-
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plets and they have been added to the total Fe II UV flux. Combining all

Fe II UV data and applying approximate corrections for blends, e.g. [O11]

1o 2470, or multiplets not measured (UV 60 and UV 61 for II Zw 136), we obtain
for the ratio of optical to ultraviolet Fe II photons: 2.8 for I Zw 1 and

2.1 for II Zw 136. The line strengths for II Zw 136 are in rough agreement
with recent collisional excitation models (ref. 5), which predict comparable

strength for HS, C III], Mg II and the ultraviolet Fe II total line strength,
but with at least a factor 2 uncertainty. The highest conversion efficiency

of ultraviolet to optical photons is obtained in I Zw i and in this object

the Fe II lines appear to be considerably stronger than so far predicted;

especially the optical lines. These conversion efficiencies are only rough

estimates and for individual levels th_ conversion efficiency can differ
substantially; for example for level z po the optical to UV photon ratio is

3.2 ±_'_ where the errors are based on the uncertainties in the UV flux alone.

Very high column densities are indicated by these ultravioletto optical

photon ratios (ref. 9).

Towards shorter wavelengths the continuum variability increases. The

December 1978 spectrum of II Zw 136 is shown in Fig. 3 and the 2 mean spectra

of I Zw 1 in Fig. 4. Just as in the optical, I Zw I has a steeper spectral

slope than II Zw 136. The C IV lines in I Zw 1 are very weak but as C III],

0 IV] + Si IV and N V are normal this cannot be explained by simply a lack
of ionizing UV photons. There is no evidence for an intrinsic 12200 extinction

feature in either of the two Seyfert galaxies, but a weak galactic extinction

feature could be present in I Zw 1 (E(B-V) < 0.03).

SUMMARY

We have observed 2 Seyfert i galaxies which emit strong Fe II emission

lines in the optical region. They have similar UV spectra, and only differ

from normal Seyferts and QSOs (refs. 10-12, 25) in the presence ofeasily

noticable Fe II UV emission lines. In both objects the conversion of UV to

optical Fe II photons seems to be comparable: for every detected UV photon

there are i to 3 optical photons, which implies very high optical depth in the

UV lines (refs. 5, 8, 9). The present data appear in good agreement with

theoretical predictions based on the collisional excitation theory(refs. 5,

8, 9). The apparent absence of UV Fe II emission in earlier work is possibly

due to the nature of the UV emission lines, consisting of broad blends of low

contrast against the continuum which can cover the whole region between

12300 and _2650 (Fig. i and ref. 14) and the region _ > 2700 _. Some expected
UV Fe II multiplets, e.g. UV 64 a _D to z_PO, are not discovered so far; these

have rest wavelengths around _3000 and the typical observed wavelengths at
_3200 in the minimum efficiency zone between the IUE and optical domains.

Again this points to the need for better observations and highlights the
inherent problems in measuring these often weak, broad features• So far only

one obvious difference between Fe II and normal Seyfert galaxies has been

discovered: the Si III] % 1892 line appears much stronger than is normal. I£
has been stressed that theoretical predictions for Fe II lines should give
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self-consistent results for other strong lines, and usually Lye, H_, C III_,

C IV and Mg II are mentioned in this respect (refs. 548). The present
results suggest that Si IIl] should be included and t_et a check on Fe III,

which has many strong lines in this wavelength region (ref. 26) in early typ_

stars, could be useful.
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TABLE 1

OBJECT DATE IUE EXPOSURE REMARKS

IMAGE NR. TIME (SEC)

I ZW I 2.08.78 LWR 1955 210

I ZW 1 5.08.78 SWP 2216 200

I ZW I 18.08.78 SWP 2333 155
II ZW 136 18.12.78 SWP 3637 120

II ZW 136 27.05.79 LWR 4610 180 -

II ZW 136 29.05.79 LWR 4628 180

II ZW 136 29.05.79 SWP 5389 i00

I ZW I 31.05.79 SWP 5411 60 underexposed
I ZW 1 2.06.79 LWR 4673 180

I ZW i 2.06.79 SWP 5427 60 underexposed
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TABLE 2 Emission Line Intensities

llne _o F(lO -13 erg cm-2s-l_ -I)

Z ZW 1 IZ Z;; 136

HB 4861 3.9 ± 0.3 (I) 5.6 + 0.5 (2)

Fe IT optical 26.3 (I) 10? (3)

8.7 (2)

Dec 78 May 79

Fe I1 UV 60 2.4 + 1.2

T 290 7.6 (4) I.I + 0.5 present

Fe Ii UV 61 1.4 ± 0.8

0 lII 2837 0.8 + 0.4

Mg 11 2798 6.0 + 1.5 4.2 ± 0.6

¥e II UV 62 I 3.2 t 1.6 1.o _ 0.4
UV 63 J

Fe I7 UV I 1.9 + t,O 0,9 _t 0,6 (5)

Fe I1 UV 33 1,6 ± 0,9 1,1 .t 0,3

_e II- UV 34 ] 1.2 ± 0.5 (6) 1.5 + 0.6 (6)

II] 2470 I

[Ne IV] present present
Fe TI UV 2

UV _ <3.1 ± 1.7 2.4 _ 1.0
Uv 35

UV 36

C I1] 2326

Fe II UV 6 1.0 ± 0.5 (7) (7)

C ITI 3 1908 (8)l 6.0 + 1.2 6.6 ± 0.7

Sl Ill] 1892 J
OZV 1549 ] 4.5 t 1.5 12.1 ± 2.0 13.5 + 2.5

Si _II 1531 J

OIV] 1402 ] 4,0 ± 1,0 4,8 + 1,0 2,9"_ 0,8
Si IV 1393 J
C 11 1335 0.3 ± 0.2 1.1 _ 0.4 0.30 ± O.15

0 _ 1304 0.7" :t 0.3 3.7 :t 1.2 1.2 :t 0.4

SJ. 1I 1263 1,5 • 1,0 1,1 _ 0,4 1,5 :t 0,3

NV 1240 6.0 ± 1.5 (9) 4.9 ± 2.0 3.4 * 1.5

Lya 1216 16.O -+ 4.0 (9) ] 32.1 ± 3.0 31.4 _ 3.0

Si II1 1206 3.1 ± 1.0 (9) /
Sl II 1192 1.5 ± 0.5 (9) J
notes to table 2:

(I) re±. 22, (2) re±. 7, (3) see text, (4) calculated rest wavelcngtb:co_parislon
between I ZN i and II ZW 136 suggests that this is a Io_ ionization feature (5) see text,
(6) [011] _o 2470 could contribute up to 307.of the total strength, (7) the reality of

multiplet 6 of re II is questionable, (8) could include Fe II_ emission, (9) this
four features have been separated u#ng i_c£11e fitting t_ethods.

764



_-I I I I f I I i [ [ ! I I -
• -Z

/ I Z Z/! b2 N

'.' .._'_'a-_ .,',/ " j ; t |o _ _ i_ _ :,b_b observedmult{pZetsin the optical

_2_ _._ '_ :/ _ , (--) and_v<--)resions,For.
I , _/ . ,,, L_ _ _ few nultipletsm_an rest wavelength

L _t_i_i._ _La (_) are sho%_nand the multipletnumbersI _ _/? /'h _'_ for mst-transitions are given.

" Fe', a0 I i i'_a! I l I I l I I I I_
+S +P'60 60"_F"_P 9e _O _0" '? +'F'"G 2H

Fig. 2 Mean long wavelength spectra for l ZW1
and ll ZW136.

765



! Zwl

i2 Si-I] N-V 0-[ Si-IV C-IV He-11 N-_ 10
I I I il I I I

Ly_- Si-lI C-I] O-IVl Si-II O_
10 I I I I I

._8 6

'

, k ,4 :I 31-_11-_-,9

0-

, ! I I t I _ I _ I _ I f I I f I
1300 1500 _l,_l 1700 1900

rl$* $ _au Ihort nvele_th 81_cc_ri £c_r
| Z_; I*

12 ll-Zw-136-

CzK O_I Six Hel
10 I I II l"

_.--. Si_ C'_ O_J Sin
_c II

I I I II

0 I t I I I ,, t I _ I
1200 1400 1600 1800 2000

1|$, A 0:_ Of tl_ t_ *holt _Jvelenlc h Ipectt*
for I! Z_ 136,

766



DISCUSSION - PART Vl

Wilson: IUE observations of 3C390.3 showed that the L_H 8 ratio for

the narrow-line component was consistent with recombination theory and

that it was the broad-line component which deviated. Is this a general

result applicable to all quasars and Seyferts?

R. Green: Unfortunately, the narrow-line component is seldom easily
separable from the broad-line one; 3C390.3 seems to be an extreme case.

In the one other good case of well differentiated components that I

know, 3C351, Green et al. found that the narrow component ratio of Ld/H_

was consistent withthe recombination value, while the broad-line ratio

was again quite low, around 3.5 observed. ,

Weistrop: What is reference for the final 3C273 viewgraph?

R. Green: Ulrich et al. paper combining all European data on 3C273.

Bregman: What are the physical parameters that one deduces for Mrk 501

using theoretical models, and are these parameters (e.g., size) consistent

with observation (e.g., size deduced from temporal flux variation).

R. Green: Kondo et al. derived the physical parameters from a synchro-

tron self-Compton model. They derive a magnetic field of 4 x 10-4G,

energy density in relativistic electrons of 10-2 erg cm-3, and a lifetime

for radiating particles of 7 years. There is no evidence for X-ray flux

variability since the Uhuru observation_ although there is evidence for

spectrum variability, for which the theoretical time-scale is about 4

years. The physical size measured from VLBI was used for the models.

R. Green: With an old stellar population as the best fit, is the synthe-

sis very sensitive to your assumed initial mass function?

Bruzual: No, the spectral energy distribution is independent of the
critical mass functions. This is because low mass stars of all masses

end up in the same region of the HR diagram where they become red giants.
The initial mass function determines the rate at which the giant branch

is populated, and hence, the rate of luminosity evolution, and also the
so call "evolutionary correction".

Mushotsky: Can you comment on the effect of the IUE data on the "K"

correction for distant slant elliptical galaxies and any implications

for qo"

Bruzual: The present data do not as yet sufficiently constrain evolution

such that limits on q_ can be placed. Work in progress may throw some

light into the subjec_ (see answer to previous question and reference I0).

Peimbert: What was the metal composition used for the stars and which

effects would you expect for different metallicities?

Bruzual: I have used solar metallicity only. Assuming a fraction of

metal-poor stars as part of the normal population of the galaxy would
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reduce the number of horizontal branch stars required to explain the UV

spectrum. However, these stars do not seem to contribute at optical

wavelengths.

Penston: I would imagine that your conclusions should be rather sensi-

tive to the exact value of the reddening you assume for the galaxies you

observe. Do you have any comment on this?

Bruzual: The only galaxies I have corrected for reddening were M31 and

M32, with E(B-V) = 0.I0. I assumed no reddening towards the other

galaxies. I agree with your statement that slight differences in reddening

will change (only slightly) our estimate for the number of horizontal
branch stars.

Kafatos: What are the estimated ejection velocities of the clouds?

-I
Wu: About 5,000 km s

Wallerstein: If the electron temperature is 12,000 K, why do we see [Fe

VIII?

Penston: The [Fe VII] comes from a different region than that in which

we derived the electron temperature.

Green, R.: Since Fe II and Mg II have nearly the same excitation poten-

tials and abundances, does the same amount of flux emerge in all the

iron multiplets taken together as in the Mg II resonance lines?

Penston: Basically, yes.

Steiner: Is Fe II in emission an evidence for the collisional excitation

hypothesis? Resonance fluorescence can allow UV emission lines, depending

onphysical conditions and geometry.

Penston: I think it's generally agreed now that the covering factor as
deduced from the paucity of cases where Lyman continuum absorption is

seen at the emission redshift shows that not enough photons can be

absorbed by the Fe II resonance lines to provide the observed level of
emission.
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VII. DATA REDUCTION





Washburn ExtractionandWidthof IUEPoint Spread.Function

Klaas S. de Boer, Jan Koornneef*, Marilyn R. Meade

Washburn Observatory of the University of Wisconsin
Madison, WI 53706, U.S.A.

*European Southern Observatory, CasiIla 16317, Santiago 9, CHILE

We review the Washburn Extraction Routine for low dispersion IUE spectra.

The shape of the point spread Function (PSF) in low dispersion spectra is

sufficiently well described by a gaussian function. The PSF is in large and

small aperture essentially identical and we present values of o. Several

advantages of the extraction routine are mentioned.

Introduction

The Washburn IUE extraction routine (Koornneef and de Boer ]979, hence-

forth KB) has been used up to now only to extract low dispersion spectra.

The routine basically fits an a priori known point spread Function (PSF) to

the intensity distribution perpendicular to the dispersion. In four iter-

ations the routine Finds the intensity I in the spectrum, the background B as

the baseline of the input data, and the position xo of the spectrum. We find

that the PSF can be represented sufficiently close by a gaussian, hence in

pixels at positions x, the intensities fit to

I(x) = B + _2 exp - _ (

where o is the dispersion of the gaussian function in units of 2V_--x(pixel

length). Crivellari and Morossl (]980) also find a gaussian but they suggest

that haloing in the camera can be accounted for by adding a 15% effect of a

Lorentz profile. Our extraction is per-

-'_--_-- -- -- Formed on a line of pixels diagonally
-_---- _ -- through the image, hence deviating from

__ perfect perpendicular by small angles,

'----_ ,, _------ 6° for SWP, 8° for LWR (see Figl). .

pixel grid,

,I_ ' set of pixels on one diagonal; dot-pixels:
_-- _,_ set for next diagonal in Washburn ex-

I _ _ traction.
i ,j
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Fig• 2: The actual inten-
06 _ ..... '- - sities of the pixels of each

fit are coadded, after proper
3 s0_0 alignment of the centroid

of the PSF, and normalization
O. _ ""

• • of the fitted PSF to unit

" • area; the PSF is gaussian for
w . point sources. This plot
- • shows the sum of 350 extracted

0.2 diagonals in SWP between ]58()

and 2000_, of a MV = 14 BHB

" " star in NGC 6397 (de Boer

" " 1980) The very minor de-• %% • • lie_ •• • i• •NoD.• e%j • • ••••u oleeemN •

viation from a gaussian in

the lower wings is caused byIltl-ll. lll 1111_.1.

O. 10. 20. 30. _. SO. 60. 70. 80. 90. 1_. the change of o from = ].l tO

P0SI_IOms0 _ 0.9 respectively (see fig.
4).

Based on a prescribed o, we have extracted many images since the devel-

opment of the routine. Coaddition of all the x-adjusted fits provides a

check on the actual PSF. In LWR, the PSF is always gaussian. In SWP images

reduced in 1979, the PSF turned out to be inexplicably asymmetric• We have

reduced the spectra from images of that period which had the flaw in the SWP

ITF, by redressing that error at the pixel level based on the data from Table

I of Holm (1979a). These rereduced spectra now produce also a gaussian PSF

in SWP.

Properties of the Point Spread Function (PSF)

In order to find what o is in the _pectra, we have carried out extrac-

tions with o also as a free parameter. In that case, of course, the result-

ing I is meaningless. From the free-o extraction we have calculated average

o's in 4OA and 50X wide bands in SWP and LWR respectively, representing 34

diagonals in SWP and 27 diagonals in LWR. In the calculation of that average,

o's larger than ].8 and smaller than 0.3 have been excluded, the large O's

because they cannot be real regarding the grand average of o = 0.98 _ 0.03

(2¢'2"-xpixel length);the small ones were excluded because they came from an

accidentally high central pixel with low wing-pixels on the input diagonal.

Before extracting, extreme-valued pixels get low weight (see KB). In

the provided geometric-photometric images all pixels have been offset by 2000

IUE flux numbers. Reseaux then have pixel-values < 1950 f.n.; these get low
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weight. High pixels (saturated, > 32500 IUE f.n.) also get low weight.

There is another set of pixels which gets low weight. KB showed that the

ITF's applied to the raw images truncated at a certain value. Hence, in

commissioning phase data in LWR no pixel had more than 20000 IUE f.n., re-

sulting in unflagged "semi-saturation" in spectra which had not yet DN near

255. The ITF's employed since May 1978 are better but still have truncation.

Holm (]979b) emphasized this more and gave actual DN's. The spectral ranges

where this is important are:

max f.n. per pixel max trustable standard

(Turnrose 1978) extracted intensity

1300 17740 _ 85000 IUE flux

2800 25220 _ 120000 IUE flux

where the maximum trustable intensities are adapted from KB allowing for

smaller o found presently. Such pixels als0 get 10w weight resulting in

positively improved intensities from the extraction fit (see KB sec 5).

Turnrose et al. (1980) described a numerical extrapolation to the ITF.

As reported by KB, the PSF was essentially equal for large and small

aperture spectra. For the presently discussed 12 images for each camera,

that ratio is close to unity indeed. Figure 3 shows how this ratio behaves

with respect to wavelength.

KB reported that the PSF in SWP had _ = 1.05 constant, and in LWR had o

= 1.3 at 2000A to o = 0.9 at 3000_. For later images, Koornneef derived that

in SWP o gradually decreased to shorter wavelengths, and that in LWR the

change of o along the spectrum was less pronounced. Figure 4 shows how, for

characteristic images, o changes along the spectrum. Apparently, the IUE

Fig. 3: Ratio Ola.ap/Osm.ap. fo[ a

I , I ' I gaussian Point Spread Function ot

SWP LWR

I.I 40_ bonds 50_bends _ IUE low dispersion point-sourcespectra in its relation to wavelength.

I i i mverag e f°r 12 images in each camera'

b_ with standard deviations given. In

_ several SWP images the signal had
vanished at ll8OA leading to a very

-- uncertain ratio in this figure.

b 0.9 e: Images were obtained between Sept.

j l I 1978 and Feb. 1980.
I000 2000 3000
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Fig. 4: Width o of gaussian PSF in relation to wavelength, for 4 images in
each camera. The thin lines are only meant to aid the eye. The point with
error bar in the corner gives the characteristic size of the dispersion.

optical system has been brought into an optimized condition after a few

months of operation. A plot of _ with image number (not shown) indicates

large o for early images, in time levelling off to values of o as given pres-

ently.

Most likely, there is a correlation between o, i.e. the ]eve] of _, and

the temperature in the satellite. Figure 5 shows for each camera the values

_ at specified wavelengths in relation with the read head temperature THDA

(Bohlin et al. 1980). No clear correlation is apparent.

LW--'_---_ --_'--I [ ] T-- --[-'- 1,2 -----_ .... I-----l---F--r [
x SWP

1.O • •Q
x • •

, x x
o_ Xo X X x x
-- XX 1.0 X

"B. o o • o "& o

_o.,j._.o,".°°..°.°•• o_-'; o.° ...o.oo ,o.o,,_.-_,,oo.• O.8F • • _ [ 1500oJ__l__L _ I I __ ____L_______i, , = I'P°LI
IO 12 )4 16 6 8 I0 12

THDA (°C) THOA (°C)

Fig. 5: For all 12 images, in each camera, we show how o behaves with

respect to the temperature THDA available on the scripts. No clear cor-

relation is indicated. The figure can be used to judge the dispersion of
the o's.
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Error Estimate

The Washburn routine fits a prescribed PSF to the data points on a line

of pixels diagonally through the image. The best fit is found at the minimum

of the sum of the deviations of all points. This minimum deviation is used

as a quality indicator of the fit. The procedure is set up such that the

final error is calculated from all_ the data points at full weight, hence

saturated data points or points from truncated ITF's get "flagged" in propor-

tion to their deviation from the adopted PSF. The error estimate is used as

weighting factor in combining data from small with large aperture (if avail-

able) and so bad data (reseaux, saturation, etc.) are effectively replaced by

good data, in addition to an overall improvement. The propagated errors are

most important after calculating the ratio of two different spectra (extinc-

tion studies; Koornneef and Code 1980) in order to obtain a fair judgement

of the limited spectral overlap between SWP and LWR spectra.

Spectral Resolution

The Washburn IUE extraction routine has a sampling rate twice as large

as in the standard IUE extraction. We therefore may expect somewhat better

spectral resolution. Often we resolve in low dispersion the strong inter-

stellar Mg II in the direction of the Magellanic Clouds, and the stellar Si IV

doublet.

Spatial Resolution

The main advantage of PSF fitting is that one may offer any spatial

function to give the best fit. A first step has been made by Koornneef and

Mathis (1980) who studied the spatial intensity distribution near 30 Doradus

in the LMC. With such procedures also the shape of the UV light distribution

of globular clusters in the LMC can be determined (de Boer 1980).

Bohlin, R.C., Holm, A.V., Savage, B.D., Snijders, M.A.J., Sparks, W.M. 1980,

A & Ap., in press.

Crivellari, L., Morossi, C. 1980, 2nd year of IUE, ESA, in press.

de Boer, K.S. 1980, This symposium.

Holm, A.V. 1979a, NASA IUE Newsletter 7, at p. 30.

Holm, A.V. 1979b, NASA IUE Newsletter 7, at p. 34.

Koornneef, J., Code, A.D. 1980, Ap.J., to be submitted.

Koornneef, J., de Boer, K.S. 1979, NASA IUE Newsletter 5; and SRC IUE News-

letter 4, p. 41. (KB)

Koornneef, J., MathiS,cJ.S. 1980, Ap.J.,submittedTurnrose, B., Harvel, ., Bohlin R.-_. 1980, NASA iUE Newsletter 8, p. 32.
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RESULTS OF BASIC IMPROVEMENTS TO THE EXTRACTION

OF SPECTRA FROM IUE IMAGES

Don. J. Lindler

Andrulis Research Corporation

and

Ralph C. Bohlin

Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

ABSTRACT

Now that IUE is a mature operational satellite, the in-flight performance

of the scientific instrument can be assessed. Since an additional S years

of operations seem likely, the data reduction system is being optimized to

realize the full capabilities of the observatory. Results of two methods of

extracting spectra from IUE images are compared. The first method, which is

presently implemented, performs a geometric correction of the image followed

by a photometric correction. The spectral data are then extracted using a

slit with an effective width and sampling interval of 2.4_ for the SWP csmera

and 3.7_ for the LWR camera in low dispersion. The second method performs

the photometric correction without doing a geometric correction. The spectral

data are then extracted from the photometrically corrected image by an

extraction slit, which follows the spectral orders in the non-geometrically

corrected space, with an effective width and sampling interval 1/2 that of

the present method. In the first method, the non-linear data are subjected to

resampling in the geometric correction procedure. Since the new method omits

this resampling, and uses an effective slit one half as wide, the photometric

integrity is preserved and the resolution is increased. For example, a pair

of emission lines separated by two slit widths are blended in the first method

but are clearly resolved in the second method. The noise in extracted spectra

is increased by about 1.4, as expected on the basis of slit widths. However,

the guest investigator will soon have the option of binning the data to reduce

noise or co-adding multiple exposures to obtain a significantly improved
resolution. The new magnetic tapes will remain essentially unchanged, except

for longer record lengths necessitated by the increased number of spectral

sample points.

PRESENT METHOD

The first processing step for each image is a geometric correction of the

raw image performed by means of bilinear interpolation within a square grid of

169 fiducial marks (reseaux). This correction involves a resampling of the

original image, resulting in some degradation of resolution. Since this

resampling is done in the (non-linear) DN space of the raw image, some photo-
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metric error is also introduced (ref. I). The photometric correction of the
image is effected by means of a pixel-by-pixel intensity transfer function.
The spectral data and background data are then extracted with slit widths of
1.4 pixels. The background is smoothed with a triangular filter before
subtraction to obtain the net spectrum.

NEW METHOD

In the new method the resampling of the raw image is avoided by perform-
ing the photometric correction without prior geometric correction. Using the
square grid of 169 reseaux the correct ITF can be associated with each pixel.
Normally the raw data pixel will have a position between four available ITF
curves. Each of these ITF's is applied to the pixel DN value, and bilinear
interpolation of the four values yields the flux value. To extract the
spectrum from the photometrically corrected image it is necessary to use
dispersion constants for a geometrically corrected image. This is done by
computing the position of the points, shown in Figure i, in "geomed" space
and then using the information from the reseaux grid to compute the position
in "ungeomed" space. The flux value assigned is the bilinear interpolation of
the flux values of the four pixels around the ungeomed position. Neighboring
points are added in the spatial direction giving a table of flux versus wave-
length and spatial position. The gross and the background spectra are then
obtained by summing the appropriate regions in the spatial direction (Figure 2).
In the new method, points within a reseau are not used for background deter-
minations. The background is then smoothed using a median filter (for
removal of noise spikes) followed by a triangular filter.

RESOLUTIONENHANCEMENT

The most pronounced improvement of the new method is the increase in
apparent resolution. Figure S shows a region of a platinum wavelength
calibration spectrum extracted with the old and new method. The pair of
spectral lines at about 2815_ is unresolved with the old method but is
clearly resolved with the new method. The increased resolution is due to not
resampling the image for geometrical correction and to using an extraction
slit with an effective width one half as wide.

BACKGROUND SMOOTHING

In Figure 4 the comparison of the two background smoothing techniques is
shown. Note that the reseau at about 1950X has already been removed before
smoothing in the new method. Remains of the reseau in the background of the
old method still show after smoothing. The newmethod of smoothing does a
much better job of removing blemishes and fine structure in the background
without harming the general curvature.
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NOISE

The noise levels for a point source and a trailed spectrum were
established using 60% flood images. To achieve approximately the same
flux as an astronomical source, a slit height of 2.5 lines (3.5 pixels) of
extracted data was used for a point source, and of I0 lines was used to simulate

a trailed spectrum. The noise statistics for the SWP and LWR images are
shown in Figure 5 and 6 as a function of wavelength.

REFERENCES

I. Turnrose, B. and Harvel, C., International Ultraviolet Explorer Image
Processing Information Manual.
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Figure 3 - Comparison of a portion of a LWR platinum lamp spectrum extracted
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extraction positions, i.e. data points that are on the guest
observer data tapes.
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SWP 60% FLAT FIELD

NOISE STATISTICS
10

Figure 5 - Noise statistics of artificial Spectra extracted from a SWP 60%
flat field with extraction slits equal to the FWHM of the widths
of trailed and point sources. The values of the i_ noise

statistics were the scatter among the individual 50 points of
bins of the signal.
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EXTRACTING SPATIAL INFORMATION FROM LARGE APERTURE EXPOSURES OF DIFFUSE SOURCES

J. T. Clarke and H. W. Moos

Physics Dept., Johns Hopkins University, Bait., MD 21218

ABSTRACT

The spatial properties of large aperture exposures of diffuse emission

can be used both to investigate spatial variations in the emission and to

filter out camera noise in exposures of weak emission sources. Spatial

imaging can be accomplished both parallel and perpendicular to dispersion with

a resolution of 5-6 arc sec, and a narrow median filter running perpendicular

to dispersion across a diffuse image selectively filters out point source

features, such as reseaux marks and fast particle hits. Spatial information

derived from observations of solar system objects will be presented.

INTRODUCTION

Since the IUE telescope has an image quality of 3 arc sec and a total

instrumental resolution of 5-6 arc sec, it is possible to accomplish spatial

imaging of diffuse sources within the I0 x 23 arc sec entrance aperture in a

single exposure. Spatial asymmetries have been observed in planetary spectra

in the directions both parallel and perpendicular to the dispersion line, and

a relative sensitivity calibration of the instrumental response along the

major axis of the aperture (perpendicular to dispersion) at H Ly_ (1216 _) has

been obtained from exposures of diffuse geocoronal emission. It is seen that

diffuse emission produces an image on the camera which is _ 20 arc sec full

width at half maximum (FWHM) in the direction perpendicular to dispersion;

by contrast, noise features such as radiation-induced spikes and reseaux marks

are generally not greater than 6 arc sec FWHM. Running a narrow median filter

across the data in this direction readily discriminates between these noise
features and the diffuse emission. Details of the data reduction procedures

which we have developed both for spatial imaging within the large aperture

and for noise filtering in images of diffuse emission will be presented here,

along with sample data showing:

i) spatial imaging in observations of geocoronal emission and Jovian
aurora, and

ii) noise filtering in spectra of weak emissions from the Io torus.

SPATIAL IMAGING

Spatial imaging in exposures using the large entrance _perture with the

SWP camera requires knowledge of the relative sensitivity of the instrument in

the exposed region of the camera face. This is most easily accomplished by

taking an exposure of a uniform diffuse source; at 1216 _ such a source exists

in the geocoronal H Ly _ emission. This section gives the result of adding 6

exposures of geocoronal Ly _ background to obtain the relative sensitivity of

the SWP camera along the major axis of the large aperture, i.e. perpendicular

to dispersion.
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This one-dimensional spatial imaging has been accomplished by integrating

the flux with respect to wavelength around 1216 _ in each of the line-by-line

spatially resolved spectra in the vicinity of the large aperture. The zero

flux level was determined by an average of the flux level on either side of

the Ly _ emission. The estimated position of these lines is shown on the

righthand side of Figure 1 (line 9 is the central dispersion line). The line
and order numbers increase toward the center of the camera face.

The circles plotted on the left-hand side of Fig. i represent the sum of

exposures SWP 4009-4014 (taken 24 January 1979), adding the wavelength-inte-
grated fluxes at 1216 _ individually for each llne number. These summed

fluxes are listed in Table 1 in units of IUE flux numbers, and in arbitrary

units which are normalized to one for the central dispersion line. Subsequent

images of diffuse emission may be divided line-by-line by these numbers to

correct for relative response in the aperture. A second sum of geocoronal
exposures taken on 12 March 1980 showed the same profile to within 5% for the

individual points, indicating no significant chamges in the relative response

of the camera over one year of operation. The X's plotted on the same graph

show the peak flux in each line near 1650 _ in a short exposure of a stellar

source, indicating an instrumental spatial FWHM of about 6 arc sec. For

comparison, Koorneef and de Boer (IUE Newsletter no. 5) obtained 5.1 arc sec

FWHM in a more accurate determination of the point source response. Given the

size of the large aperture (10.3 x 23.0 arc sec) three point sources could

be resolved in the length of the aperture, and some imaging is possible along
the dispersion direction.

It should be pointed out that thermal shifts in the spacecraft may move
the large aperture image slightly on the detector face, and the central

dispersion line may be moved from side to side in the IUE data reduction

procedure. Care should be taken to determine accurately which spatially-

resolved spectrum corresponds to the center of the large aperture image before

this calibration is applied. In addition, this calibration is strictly
accurate only at 1216 _.

As an example, Fig. 2 shows a 3-dimensional spectral-spatial image of

IUE exposure SWP 5309 of the north polar region of Jupiter, taken with the

large entrance aperture on 19 May 1979. The dispersion direction, along the

X-axis, is marked in _, the Y-axis represents flux, and the Z-axis gives

spatial imaging along a line which is roughly north-south. H Lyman band

emissions are visible from the north pole at around 1570 _ an_ at 1608 _, and
to a lesser extent around 1250 _.

NOISE FILTERING

In a series of long (7-8 ho_rs) exposures of the Io plasma torus taken

with the large aperture and the SWP camera, noise features were found to

be comparable in intensity to the weak observed emission lines. This section

describes three procedures employed in the reduction of these data to prefer-
entially filter out the noise features:

i) Limiting the width of the artificial slit used in the extraction

of the gross spectrum
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ii) Running a 7-point median filter on the data perpendicular to

dispersion

iii) Adding exposures

Methods (i) and (ii) capitalize on the fact that an emission line from

an extended source is much broader perpendicular to dispersion than the noise

features, which tend to appear as point sources above the pedestal level.

Noise spikes are produced randomly by fast particle hits on the detector

camera face; in addition, some noise features recur at the same position on

the camera, presumably caused by chemical imbalance in the camera phosphor.

At the curved edges of the large aperture the flux from a uniform diffuse

source decreases (see preceding article); including only the central portion

of the aperture in the gross spectrum thus improves the signal-to-noise ratio,

and also bypasses a couple of reseaux marks. This was accomplished by adding
the central 7 orders of the 55-1ine spatially resolved spectra (e.g. setting

H = 7), and then normalizing the background flux accordingly.

To compensate for throwing away the flux from the curved edges of the

aperture the fluxes are multiplied by the appropriate geometric factor (1.64):

this is accurate only if the diffuse source is uniform in intensity.

A narrow median filter passed over the data perpendicular to the disper-

sion line would have the effect of erasing only features which are narrow

compared to the size of the filter, i.e. a high-frequency filter. A 7-point
median filter (14-15 arc sec) was found to distinguish well between point

sources (FWHM of 5-6 arc sec) and diffuse emission (FWHM of 18-20 arc sec).

This filter was run using the spatially-resolved spectra, so that the separa-

tion of "points" perpendicular to dispersion was 2.1 arc sec. The flux in

a given order at a given wavelength was determined by the median of the

fluxes at the same wavelength of 7 spatial orders, centered on the given
order. The filter was thus a "running median". Fig. 3 shows the result of

a 7-point running median on a sample profile which combines diffuse emission

(taken from the geocoronal Lye profile from the preceding article) and a

point source noise spike (FWHM = 6 arc sec). The dashed line is the "before"

picture, the solid line "after" the filter. The filter completely wipes

out the noise spike, but may also truncate the diffuse emlssion by a few

percent.

The well-known technique of adding spectra to improve signal-to-noise

was applied to 3 spectra of comparable duration, after each of these spectra

had been compiled using the previous two techniques. This spectrum, labelled

"Sum", is shown in Fig. 4 along with one of the three separate spectra, as

compiled under the standard IUE extended-source reduction. Although these

techniques have been applied only to images of a diffuse source thus far,

they should work equally well on trailed spectra of point sources.
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TABLE 1

Line IUE FN (x 103) x _ Relative Sensitivity_

3 21 .04

4 175 .33

5 368 .69

6 465 .87

7 488 .91

8 516 .97

9 534 1.00

i0 547 1.02

II 574 1.07

12 .530 .99

13 438 .82

14 243 .45

15 94 .18
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IMPROVEMENTS TO THE ACCURACY OF THE IUE

WAVELENGTH SCALES IN HIGH DISPERSION*

Barry E. Turnrose, Christopher A. Harvel

Astronomy Department

Computer Sciences Corporation

Ralph C. Bohlin
NASA Goddard Space Flight Center

ABSTRACT

The data base of Pt-Ne emission lines used to calibrate the IUE high disper-

sion wavelength scales has been scrutinized to improve the internal consistency of the
adopted laboratory wavelength values and provide a homogeneous, documented line list,

which IUE Guest Observers mayuse to evaluate quantitatively those Pt-Ne spectra
taken to calibrate their data. After deletion of incorrect or inappropriate data in the

old data base (lines with incorrect wavelength assignments; lines which are too faint,

too bright, or blended; lines which fall near reseau marks, etc. ) and the addition of
several new entries, a total of 172 Pt-Ne lines for the SWP camera and 164 Pt-Ne
lines for the LWR camera are now used for routine wavelength calibration in the high

dispersion mode. The internal one sigma scatter of the assigned wavelelngths corre-
sponds to 0.32 pixels along the dispersion direction for SWP (2.5 km s -_ velocity
uncertainty) and 0.26 pixels along the dispersion direction for LWR (1.9 km s-- veloc-

ity uncertainty). Thermal effects, which can introduce large systematic image shifts,
are excluded from these uncertainties but are independently correctable, in principle.

In addition, new software has been written to calculate the wavelength correc-
tions needed to reduce the extracted IUE high dispersion wavelengths to a heliocentric

coordinate system. Two subroutines separately calculate the instantaneous velocity

components due to the satellite motion about the earth (accurate _0 + 0.25 km s--) and
the earth's orbital motion about the sun (accurate to + 0.01 km s ).- The velocity
corrections in the line of sight to the target will become part of the standard data
reduction procedures under the new software system to be implemented this year.

INTERNAL ACCURACY

IUE wavelength scales are determined by Pt-Ne spectra from onboard hollow

cathode lamps. A data base (or line library) of Pt-Ne emission lines and laboratory

wavelengths for each spectrograph and dispersion mode is used in conjunction with
measurements of the positions of the emission lines in the calibration images to define

polynomial fits (ref. 1), which functionally relate pixel location to wavelength and

*Work performed Under Contract NAS-5-24350.
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order number. These dispersion relations are subsequently used in the spectral

extraction process to assign wavelengths, and so the accuracy of the line libraries i_3

crucial to the accuracy of the IUE wavelength scales. Thermal effects, which can

introduce large systematic image shifts, are another factor in the accuracy of the lYE

wavelength scales. Such effects are in principle independently correctable and are
discussed elsewhere in this volume (ref. 2).

Although the IUE wavelength scales in high dispersion suffer no known serious

deficiencies, an analysis of the high dispersion line libraries for the LWR and SWP cam-

eras was undertaken for several reasons. First, it was observed that many lines were

chronically rejected from the solutions for the dispersion formulae; this was suggestive

of erroneous or inappropriate data in the line libraries. Second, spot checks showed
the data in the libraries to be inhomogeneous and largely undocumented. This, too,

suggested that inappropriate data might be included in the line libraries. The removal
of inappropriate data is important because of the danger that noise in the images could

otherwise occasionally be erroneously identified as a non-existent line. Third, it was
felt that the organization of the line libraries into a homogeneous, consistent, and

documented line list would be of value to IUE users by allowing them quantitatively to

evaluate those Pt-Ne spectra taken to evaluate the wavelength accuracy of their data. The

details of the line library analysis to be discussed here have been presented in the

NASA IUE Newsletter (ref. 3). In the remainder of this section, we briefly summarize

the steps and the conclusions of the analysis.

All entries in the original high dispersion line libraries (219 lines in LWR,

243 lines in SWP) were checked against available published references to verify the

laboratory wavelength assignments and document the ionic origin. Where necessary,
library entries were modified to agree with the published references according to a

hierarchical ordering of preferred references. Lines for which no published reference
could be found were deleted from the libraries.

All of the "chronically rejected" lines (i. e., lines rejected more than 50% of

the time in a sample of more than 20 separate solutions in each of the SWP and LWR

cameras) were examined on photowrite prints including some early annotated large

scale prints prepared by T. R. Gull of GSFC and on plots of spectra extracted from the

calibration images. There were 65 such lines in SWP, and 57 such lines in LWR.

Most could be understood as being inappropriate because they were too bright, too
faint, blended, near reseau marks, off of the tube face, or having apparently incorrect

wavelengths in the published references. In all such cases, the lines were deleted

from the libraries. Only a small number of the frequently rejected lines (4 lines in

SWP, 7 lines in LWR) could not be reasonably explained and were left in the libraries.

The current analysis did not make a systematic attempt to add new lines to the
edited libraries. In several instances, however, new entries were made and their

accuracy verified by testing on several different Pt-Ne images. In all, 5 new lines
were added to the library for each camera.
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Table I summarizes the evolution of the SWP and LWR high dispersion line
libraries. In the row marked "No. of Chronically Rejected Lines, " the numbers in

parentheses indicate the number of lines alw.___ay_srejected. Further details on the lines
deleted from the original libraries, as well as a complete and documented listing of

the new libraries, may be found in ref. 3. The new line libraries defined in accordance
with the changes summarized in Table I have been in use since 18 April 1980. Prior to

implementation in production processing, they were tested to insure their validity

and to determine whether any improvement in the overall scale or internal accuracy of

high dispersion wavelength calibrations results from their use. No change in the scale
or zero points of the dispersion relations obtained with the new libraries was observed
to an accuracy of one tenth of a pixel. This is not a surprising result since the major-

ity of the lines deleted in arriving at the new libraries were generally rejected from
the solutions using the old libraries.

The new libraries do, however, yield solutions with somewhat higher internal

accuracy as judged by the standard deviations of the emission line positions calculated
from the fitted dispersion formulae, compared to the exact emission line positions

found by a two dimensional cross-correlation search technique. These standard devi-

ations are measured separately in the line direction, a (L), and the sample direction,
a (S). Table II summarizes the behavior of wavelength solutions obtained using the old

and new libraries for several different Pt-Ne images in each camera. Note that the

dispersion relations using the new libraries consistently employ a large fraction of the
total number of available lines in the final solutions. This implies that the major

sources of systematic, error in the library entries have probably been eliminated,
lending further credence to the consistency of the final libraries. The typical one

sigma scatter in a given direction of 0.32 pixels for SWP andS. 26 pixels for LWR -1
corresponds to a one sigma velocity uncertainty of 2.5 km s in SWP and 1.9 km s
in LWR. These values are largely due to the imherent inaccuracies in the IUE geometric
correction and line-finding algorithms and should be close to the errors expected in an

arbitrary spectrum of an astronomical source obtained in the small aperture. Any
additional errors should be caused only by thermal shifts in the cameras and spectro-
graphs, which are being analyzed for a future discussion in the NASA IUE Newsletter.

CORRECTION TO HELIOCENTRIC WAVELENGTHS

The resolving power (R = k/FWHM) of the IUE spectrographs varies from 1.0
X 104 to 1.5 X 10-over the entire wavelengtblrange covered (ref. 1). Therefore the
iUE velocity resolution varies from 20 km s to 30 km s . If it is assumed that the

centroid of a line can be determined to approximately 10_ of its FWHM, then a meas-
ured radial velocity should be accurate to aboult 2 km s (best case). The orbital

velocity of the Earthlabout the Sun (~30 km s- ) and the velocity of the spacecraft about
the Earth (~4 km s at perigee) are both larger than the best possible velocity deter-
minations and their effect should be removed from the data.
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Two subprograms have been written for IUESIPS, the International Ultraviol_t
Explorer Spectral Image Processing System, to calculate orbital velocities. One of

these determines the velocity vector of the Earth at a given time using the orbital

elements of the Earth and the time derivatives of these elements as given in ref. 4.
The other program determines the velocity vector of the spacecraft about the Earth at

a given time using all the orbital elements of the spacecraft for Nov. 22, 1979 except
for the period, which is set to exactly one sidereal day. Since the orbit of the space-
craft is periodically adjusted to maintain a sidereal period and, moreover, an approx-

imately fixed ground path, it is not necessary to update t_e orbital elements used by
the program. This program is accurate to + 0.25 km s over the entire life of the

spacecraft (launch to present). Both of these subprograms will be added to IUESIPS

in the near future and a detaileddescription of them, including a FORTRAN listing,
will be published in the NASA IUE Newsletter.
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TABLE I. - CHARACTERIS;FICS OF NEW AND OLD LINE LIBRARIES

SWP LWR

No. Lines in Old Library 243 219

No. Chronically Rejected Lines 65 (29) 57 (15)

No. Lines Deleted 76 60

No. Lines Added 5 5

No. Lines in New Library 172 164

TABLE II. - CHARACTERISTICS OF SOLUTIONS USING
NEW AND OLD LINE LIBRARIES

New Line Library Old Line Library
Fraction Fraction

Image No. cr (L) cr(S) of lines _(L) _(S) of lines
px. px. used px. px. used

8WP5419 .35 .31 .93 .40 .36 .72

SWP6349 .34 .29 .93 .38 .37 .74

SWP6699 .34 .30 .90 .40 .36 .74

SWP8266 .36 .29 .91 .........

MEAN .35 .30 .39 .36

LWR4656 . 26 . 28 . 95 . 26 . 28 . 76

LWR5483 . 27 . 30 . 93 . 27 . 34 . 75

LWR5725 . 26 . 27 . 93 . 26 . 30 . 73

LWR7205 . 26 . 24 . 93 .........

MEAN .26 .27 .26 .31

/
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ANALYSISOF IUE SPECTRAUSING THE INTERACTIVEDATA LANGUAGE

CharlesL. Joseph
Laboratoryfor Atmosphericand Space Physics

Universityof Coloradoat Boulder

INTRODUCTION

In recent years, the use of interactivecomputer languages have made a
Major impacton data handling. Today, programswritten in interactivelan-
guages are widely used for analyzingspectra,for findinggraphicalsolutions,
and for color imaging. The ability to create complexprogramsto be executed
in an interactivemode, rather than relyingon individualsingle-linecommands,
has been the main cause of the increasedeffectivenessof these languages.

One languagein particular,the InteractiveData Language (IDL), has been
extensivelyused to analyzehigh-resolutionspectrafrom the IUE. IDL is the
third generation of interactive languages developed at the-l]-niversityof
Colorado. Like other interactivelanquages,IDL is designed for use by the
scientistrather than the professional_programmer,allowinghim to conceive of
his data as simple entities and to operate on this data with minimaldiffi-
culty. A comprehensivetreatmentof the capabilitiesof the InteractiveData
Language is beyond the scope of this paper. Instead,we shall confine our
attentionto a packageof programscreated to analyze interstellarabsorption
lines as an exampleof the graphicalpower of IDL.

AN APPLICAHON OF IDL

The package of interactiveprograms, created to analyze the IUE high-
resolutiondata on the interstellarmedium, can be divided into three basic
parts: identifyinginterstellarabsorptionlines, measuringtheir equivalent
widths, and fittingthe observeddata to a theoreticalcurve-of-growth.This
package has reduced the analysis time by at least an order of magnitudeover
traditionalmethods. While these programs lend speed and consistencyto the
analysis,all judgementsare made by the operatorthus preservinghis responsi-
bility in the reductionprocess. The power of this package of programs stems
from the unique marriage between the scientist and the computer provided by
the InteractiveData Language.

The first step in the reductionprocess is to identifyabsorptionlines.
Here, the operatoreasily selectsa featureof interestby settinga graphical
cross-hair(to be calledcursors)on it and then strikinga keyboardcharacter.
The cursors,which are internalto the computerterminal,are moved by rotating
a thumbwheel potentiometeri and their location is read whenever a keyboard
characteris struck. The computer identifiesthe speciesproducingthe absorp-
tion line by comparingthe observedwavelengthwith laboratorywavelengthsin
a finding table stored permanently in the computer. Once the operator is
satisfiedwith the computer'sselection,he can proceedto take the equivalent
width of the line.

i Many terminalsuse a differenttype of controlto move the cursors.
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Using only a single button command, the second step is initiated with
the region of the spectra containing the absorption line being automatically
expanded. The operator using the cursors selects two points through which he
thinks the continuum passes. Once the contlnuum is established, the computer
calculates the equivalent width and automatically stores this information
along with the wavelength, the species identification, and the oscillator
strength, all taken from the finding list in the computer. The first two
steps are repeated until all absorption lines to be analyzed are exhausted.

The ease and speed in using this package of programs is demonstrated in
the transition to the last stage. The data which was automatically stored in
the previous stage is also automatically retrieved in the final stage so that
users need not use precious time instructingthe computerto create or to read
data files,

The final step is to compare the observeddata with a theoreticalcurve-
of-growth selected from a library of curves stored in the computer. This is
a graphicaltechnique in which the observed data points are shifted, as a
group along the x-axis until the best fit to a theoreticalcurve is found.
The operator accomplishesthe shifting by again using cursors. He does this
by locatingone of the data points, recordingits position, and indicating
where that data point should be relocated. After severalshifts'thebest fit
is obtainedand the columndensitydetermined.

Several other capabilities,such as an error analysis,have been incor-
porated into this packageof programsfor_thepurposeof completenessand
versatility. The flexibilityto edit previous work done on the system has
been included as well. At each stage of the analysis,the operator is auto-
matically suppliedwith formattedoutput so that he has a detailedrecord of
the reduction process. Because of these and numerous other features,this
package of programs successfullykeeps the operator in total control of the
reductionprocesswhile relievinghim of most of the burden.

Single-buttoncommands play an integral part in these programs because
they help streamlinethe analysisand they help facilitatethe ease in learning
how to operate these programs. Input instructionsto the computerare normally
handled via five dlfferent single-buttoncommands,but the programs can also
be interruptedto enter extensive instructions. The programsare structured
to guide a beginnerthroughthe analysisso that he does not have to rely on a
clumsy manual. Having only five single-buttoncommands makes this possible.
Once the operator becomes sufficientlyfamiliar with these programs, the
extraneousprintingis suppressed,which furtherincreasesthe speed.

Finally,this packageof programshas a block structurewhich was created
to offer gross scale flexibilityfor currentand futureneeds. These programs,
for example, are designed for easy adaptation to accept spectra from future
observinginstrumentswith differentwavelengthcoverages.
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A FINAL COMMENT

As was stated earlier, the power of an interactivecomputer language
rests in its ability to support complex programming. The previous section
demonstratesan example where most of the instructionsto the computer have
been reduced to single button commands,where all necessaryreferencemate-
rials are stored permanentlyin the computer,and where all judgementsare
still reserved for the operator. This is the kindof programmingthat achieves
the speed and consistencyof automationwhile allowingthe scientistto remain
intimate with and in complete controlof the reductionprocess. It is truly
interactive.
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PROBLEMSAND PROGRAMMINGFOR
ANALYSISOF IUE HIGH RESOLUTIONDATA FOR VARIABILITY

C. A. Grady
LASP, Universityof Coloradoat Boulder

ASTRACT
Observationsof variabilityin stellarwinds providean importantprobe of
their dynamics. It is crucialhoweverto know that any variabilityseen in
a data set can be clearlyattributedto the star and not to instrumentalor
data processingeffects. In the course of analysisof IUE high resolution
data of e Cam and other O, B and Wolf-Rayet stars several effects were
found which cause spuriousvariabilityor spuriousspectral featuresin our
data. Programming has been developed to partiallycompensate for these
effectsusing the InteractiveData Language(IDL) on the LASP PDP 11/34 at
the Universityof Colorado. Use of an interactivelanguagesuch as IDL is
particularlysuited to analysis of variabilitydata as it permits use of
efficient programs coupled with the judgement of the scientistat each
stageof processing.

INTRODUCTION
In order to extractthe scientificallyinterestinginformationfrom a data
set, it is necessaryto be certain that any features in the data represent
the object under study,and not the instrumentstudyingthe object,or the
way in which the data has been reduced. This is applicableboth to single
observationsof an object,or to a series of observationswhose purpose is
to search for temporal variability. During analysisof IUE high-resolution
spectra of several O, B, and Wolf-Rayet stars a number of effects were
found which cause either spuriousvariabilityor spuriousspectral features
in the data. This can considerablycomplicateanalysisand interpretation
of spectra. Not all of these effects can be easily seen in a cursory
examinationof the dataprovidedbyVILSPA and GSFC.

SIGNATURESOF PROBLEMS
The problems we have uncovered at the University of Colorado (C.U.) are
more importantin the hot stars surveyedthan the ITF problem, or other "
problems addressedto date. Some can be identifiedquite quickly. These
includeimproperzero levelsin the centersof saturatedabsorptionfeatures,
such as interstellarlines or strong P Cygni profiles. (This is more of a
complicationfor analysis than a real stumblingblock, since the true zero
level is inferred directly.) A more serious problem is poor matching
between adjacent orders (see Fig. 1), which rules out immediateinterpre-
tationand analysisof extendedspectralfeaturessuchas P Cygni profiles.

More subtle effects may not be as obvious. These include distortionsof
line profiles,which in extremecases can cause a saturatedline to appear
unsaturated,for example. In other cases spectral featuresclearlypresent
in the gross spectrummay be masked in the net spectrum. Spuriousabsorption
featuresmay also be introducedintothe spectrum(see Fig. 2). Clearly,
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the absenceof real spectral features,and the presenceof spuriousfeatures
can leadto significantmisinterpretationof the data.

It is importantto note that these problems are not peculiar to either
VILSPA- or GSFC- processeddata. They also can occur in data that has been
processedwith the new ITF as well as old ITF data. Data from some observing
runs has up to 97% of the images affected. The problems are typically
worst at the short wavelength end of the images, where the orders of the
echellogramare most closely crowded together, but may affect the entire
image. In many cases 50% of an image is rendered useless,which is an
unfortunatewaste of valuableobservingtime. These effectsare not constant
from exposureto exposureand can thereforeintroduceconsiderab--l-espurious
variabilitywhich can totallyswamp any real variationspresent in a set of
observations(see Fig. 3).

A PROBABLECAUSE

Images having normal photowritesand gross spectrabut showing these data
problems have been found at C.U. to have backgroundrecordswhich contain
ghost spectralfeatures and which are an appreciablefractionof the ampli-
tude of the gross spectrum(up to 95%). This indicatesthat the gross and
background scan lines have been misplacedperpendicularto the dispersion
direction,with the backgroundscan apparentlyobtainedat a position very
close to or within the stellarspectrum.

It is necessaryto considerwhat physicallymight cause this misplacement.
The IUE Image Processing InformationManual (Version 1.0) (1) notes that
thermaleffects in the spectrographoptical train can cause shifts of up to
three pixels perpendicularto the dispersiondirectionin the geometrically
and photometricallycorrectedimage. The calibrationexposuresused in the
automaticregistrationprocedureare taken every two weeks normally,whereas
thermalshiftsare known to occur on time scalesof a few hours.

Thus, if data are processedusing the automaticregistrationprocedure,the
image may be incorrectlyscanned for the gross spectrum and background.
The gross appears to be less noticeablyaffectedthan the interorderscans,
probablybecause use of a larger slit makes placementof the scan line less
critical. Also, as the orders crowd together at short wavelengthsin the
echelle format, the problem becomes more severe. If the background scan
line is to be placed on or very near to an order, a net spectrum results
which bears very little resemblanceto the true spectrumwhenthe background
scan is subtractedfrom the gross spectrum.

A PARTIALSOLUTION
If any of these data problems appear in an image or set of images,it is
essential to check the data in several ways. First, if the photowrite
appearsto be abnormal it is probably impossibleto extract believabledata
from that image. If the photowrite seems normal, the problem may be
related to improper extraction procedures and the gross spectrum and
background record on the data tape shouldbe examinedorder by order. If
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the gross spectrum, when ripple-corrected,shows poor matching between
adjacent orders, or other distortions, reprocessingat VILSPA or GSFC is
recommended.

There are situations, however, in which data having some of the problems
described here can be salvaged without a need for reprocessing. Programs
have been developed for this purpose on the LASP PDP 11/34 at C.U. using
Interactive Data Language (IDL). Use of an interactive language such as
IDL is particularly suited to reprocessingwork or variability analysis as
it permits use of efficient programs coupled with the judgement of the
scientistat each stage of processing.

Our basic technique, following a suggestion by Heap (private communication)
has been to repeatedly smooth the background tracing provided by VILSPA or
GSFC with a running boxcar average until no spectral features remain. This
is then subtracted from the gross spectrum, and the resulting spectrum is
ripple corrected. This approach only works if the background is not too
badly behaved and if it is not comparableto the gross in amplitude. Using
these programs, we have been able to identify variability in several OB
starswith confidencethat the variabilityis stellar(2).

SUMMARY
The types of data-processing errors uncovered at C.U. in IUE high-
resolution data indicate that IUE data should be thoroughlyexamined before
analysis is attempted on any spectrum. Use of an interactivelanguage such
as IDL and programming similar to that developed at C.U. can make this a
routine and relatively painless process. By taking such precautionsmuch
greater confidence can be placed in the results of any analysis and interpre-
tation of IUE data whether from single images or as part of a search for
temporalvariability.

REFERENCES
1. InternationalUltravioletExplorerImage ProcessingInformationManual.

Version1.0,Jan. 1980.

2. Grady, C.A. and Snow, T.P. Jr.: IUE Observationsof Variabilityin
Winds from Hot Stars. The Universe in UltravioletWavelengths: The First
Two Years of IUE. NASA CP-2171, 1980: this compilation.
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EFFECTS OF TEMPERATURE FLUCTUATIONS ON IUE DATA QUALITY*

Randall W. Thompson and Barry E. Turnrose

Computer Sciences Corporation
Astronomy Department

Ralph C. Bohlin
Laboratory for Astronomy and Solar Physics

Goddard Space Flight Center

ABSTRACT

Analysis of IUE calibration lamp images has shown that variation in the
temperature of the scientific instrument causes shifts in the location of the spectral

format with respect to the reseau grid on the detector and in the location of the
reseaux themselves. In high dispersion, a camera head amplifier temperature
difference of 6C corresponds to a shift of 4 pixels in the spectral format for LWR
and 2 pixels for SWP along the dispersion direction. Shifts perpendicular to the
dispersion (for the same temperature difference) are less than one pixel for both
cameras. In low dispersion spectra, the shifts are similar but orthogonal to those
described above with the larger motion lying in the direction perpendicular to the
dispersion. In both dispersion modes, the observed shifts are apparently inde-
pendent of wavelength. In high dispersion, the constant pixel shift mimics a constant
velocity error.

Studies of reseau motion support earlier findings that decreases in tem-
perature lead to an overall expansion of the grid of reseaux. For example in SWP,
reseaux near the edge of the tube were found to move _1.5 pixels with a tem-
perature variation of 9 C.

Procedures are under development for utilizing these temperature corre-
lations to correct the dispersion-relation and reseau-position files to the tem-
perature of each target image and thereby achieve improved wavelength and
photometric accuracy in reduced IUE spectra.

INTRODUCTION

Dispersion relations and reseau positions for IUE images have historically
been determined and updated at approximately biweekly intervals from sets of
standard calibration images consisting of Pt-Ne exposures superposed on tungsten-

flood (TFLOOD) backgrounds. Since July 1978 reseau positions have been measured
exalusively on the low dispersion Pt-Ne-plus-TFLOOD images to avoid the occasional
contamination of reseaux caused by the presence of a high dispersion Pt-Ne spectrum.
Approximately forty sets of reseau positions and dispersion constants have so far
been accumulated in this manner for each camera and dispersion mode.

* Work performed under Contract NAS 5-24350
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Although it has been known that the dispersion relations and reseau position_3

determined from the biweekly calibrations exhibit significant variation, and that

this variation was suspected to be a direct consequence of thermal influences, there

has heretofore been no detailed study quantitatively relating the observed variation_

in spectral position to measurable temperatures. The current work presents the
first results of such an analysis: remarkable correlations of spectral position

with camera head amplifier temperatures (THDA). It also presents results wMch

confirm earlier studies suggesting that temperature changes induce a measurable
expansion/contraction of the grid of reseau positions. In the sections to follow we

discuss separately our studies of spectral format and reseau motion.

SPECTRAL FORMAT

The motion of IUE spectra with respect to the camera tube face has long

been observed {ref. 1), and the standard IUESIPS {IUE Spectral Image Processing

System) reduction procedures routinely incorporate a spectral registration step
for each image which compensates for the component of spectral motion perpen-

dicular to the dispersion direction. Because the component of spectral motion

parallel to the dispersion direction cannot presently be removed without recourse
to accurate spectral feature identification, there is no practicable means of

correcting for this motion in a routine way on all spectra at the time of processing.

In an attempt to better understand the nature of the spectral shifts in IUE images,

and with the hope that such an understanding would lead to the means of correcting

for the shifts, a study of the available calibration images acquired during the first
two years of operation of IUE was undertaken. In this study, the fitted dispersion

relations functionally relating pixel location to wavelength and order number (ref. 1)

for the low and high dispersion modes in both the SWP and LWR cameras were used
to trace the movement of particular wavelengths within the image line and sample

grid from one calibration to the next. Initially displayed as line and sample coor-

dinates vs time, these data illustrated that, for a given camera, changes in

spectral location were the same in either dispersion mode. Further investigation
showed that the spectral shifts appeared to correlate with several of the available

temperatures monitored in the scientific instrument. In particular, the camera

head amplifier temperature, THDA, was chosen as a convenient thermal parameter
because its value at the time of image exposure and/or read is available directly

from the Observatory Record sheets for many images, from printed listings of

hourly camera snapshots (maintained by the IUE OCC) for many other images, and

also from the science header on Guest Observer tapes for images acquired since
14 March 1979. Linear least squares regression analysis revealed remarkable
correlations of the observed spectral motions with THDA. These correlations

were remarkable not only because they revealed quantitative evidence for the

thermal nature of the observed shifts, but also because THDA is a direct measure-

ment of a camera temperature, and as such, is only an indirect measure of thermal

conditions within the spectrographs themselves. The significant correlation of
spectral motion with THDA indicates that THDA is in most instances a good measure

of the thermal conditions giving rise to the spectral shifts, which presumably

812



originate within the spectrograph portion of the scientific instrument. (A notable

exception to the correlation is discussed below). Since the reseau positions used to

geometrically correct the Pt-Ne images in this analysis were measured directly
on the low dispersion Pt-Ne-plus-TFLOOD images, and since no high dispersion

Pt-Ne images were considered if they were obtained more than 3 hours earlier or
later than the accompanying low dispersion image, none of the spectral shifts dis-

cussed here should be attributable to reseau motion.

The observed spectral shifts were transformed for each camera and dis-

persion mode into orthogonal components parallel and perpendicular to the
dispersion direction. Such a coordinate system is convenient in particular because

it reveals the magnitudes of the observed shifts along the direction for which

compensation is currently not made. Figures 1-4 display the relative shifts

parallel to the dispersion, plotted against THDA, for the four possible camera/
dispersion mode combinations. A positive shift is a shift in the direction of in-

creasing wavelength, and all shifts are shown relative to the mean of the displayed

points. The straight lines in Figures 1-4 are the linear correlations of the shift
and temperature calculated by least squares regression.

In Figures 1 and 2, the relative shifts and fitted straight lines for three dis-
tinct wavelengths are shown. Although there is a perceptible difference in the slope
of the three fitted relations in each of these figures, it appears that the differences

can be explained by the scatter of the data. We conclude that the thermal spectral

shifts are constant pixel shifts within the accuracy of measurements+ 0.3px. Such a
situation mimics a constant velocity shift in the extracted spectra of high dispersion

images and is the likely cause of the velocity-like wavelength errors recently re-

ported by Leckrone (ref. 2). In Figures 1 and 2 the fitted linear relation to the

plotted data for the first wavelength listed is given in equation form at the lower
right; in Figures 3 and 4 the equation pertains to the data plotted. In all four

figures the error bars shown correspond to the least square fitting errors in

pixels and to the quantization of the recorded temperature values.

Not shown here are the correlations of shifts perpendicular to the dis-

persion with THDA. As a point of interest, whereas the shifts parallel to the

dispersion are greater than those perpendicular to the dispersion in high dis-

persion, the reverse is true in low dispersion because of the orthogonality of the

low and high dispersion orders. Data on these shifts will be included in the
complete documentation of this work being prepared for distribution in the NASA
IUE NEWSLETTER.

It should be noted that the point in Figure 2 marked by an "X" was not
included in the correlation computation. This datum was obtained with the space-

craft pointed close to the anti-sun direction, and in a configuration in which the

spectrographs became hotter than the cameras. Such a condition apparently
represents a limitation to the degree to which THDA can be used to predict spectral

shifts. Although correlations with other available temperatures are being in-

vestigated, it is likely that extreme thermal configurations will always be
difficult to model.
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RESEAU MOTION

Independent of the motion of the spectral format on IUE images, the

measured positions of reseau marks are known to change from one calibration
image to the next due to a slight thermal sensitivity of the camera readout

electronics. A separate study of the behavior of reseau posRions as a function of
temperature has been initiated in light of the successful correlation of spectral

shifts with temperature described in the previous section. As with spectral shifts,

a better understanding of the nature of the observed behavior might allow for

corrections that could improve the quality of the reduced IUE data. In the case of

reseaux, an improved geometric correction resulting from improved reseau posi-

tions would yield an improved photometric correction as well as improved spectral
placement.

In analyzing the available body of data on reseau positions, it was denned
advantageous to utilize the available archives of UVFLOOD flat-field exposures

rather than the standard set of low dispersion Pt-Ne-plus-TFLOOD exposures.
This is because subtle complications in determining reseau positions can arise

from the presence of the low dispersion Pt-Ne spectra on the TFLOOD flat fields,

and such complications could mask the relatively subtle thermal effects under
study. As a result, for the present study new measurements of reseaux on some

16 LWR and 20 SWP 60% UVFLOOD .images acquired over the first two years of
IUE operation were analyzed. The new measurements employed a cross-

correlation template better matched to the large fiducial reseau, the addition of
three more reseau positions in each camera near the tube edges, and the

suppression of the standard smoothing of found reseau positions, which uses a

polynomial curve fitting technique. Further details of all the above considerations
are being prepared for the NASA IUE NEWSLETTER.

Figures 5 and 6 summarize the results of the temperature-dependence

studies of reseaux so far conducted on in-flight images. These figures represent
three separate sets of reseau measurements, each corresponding to a different

THDA value. The diamond symbols indicate the positions of a low-temperature

reseau set. From these positions, the displacements (magnified according to the

scale indicated on the figures) are drawn to the location of all corresponding reseaux

from two higher-temperature images. The actual THDA values are given in the

figure captions.

Notice that reseau positions near the tube edge for SWP shift as much as

"_ 1.5 pixels with a change in head amplifier temperature of 9 C. Both LWR and SWP
exhibit a general eccentric contraction of the overall reseau grid with increasing

temperature, in agreement with previous studies (ref. 3). Reseau studies are
continuing in order to refine the initial results presented here.

DISCUSSION

Motivating both the spectral format and reseau motion studies is the desire

to improve the quality of reduced IUE spectra. It is our intent to further codify
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the temperature dependence of reseau behavior and then ultimately develop in
IUESIPS the capability of utilizing mean dispersion constants and reseau positions
which can be temperature-corrected on the basis of THDA values or read directly
and decoded from the spacecraft snapshots of the image science headers. It is

anticipated that significant improvements in photometric and wavelength accuracy
over that currently achievable with biweekly calibrations and mean low resolution
dispersion constants (ref. 4) could be realized with temperature-corrected calibra-

tions. It should be noted in this regard, _owever, that ref. 3 states that the
ultimate effectiveness of temperature-correction schemes for reseau positions
depends on the magnitude of beam-pulling effects within the cameras (i. e., the
influence of the distribution of illumination within the image on the placement of
the camera read beam}.
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DISCUSSION - PART VII

Weaver: For large aperture exposures, will the artificial slit extraction

be along the major axis of the aperture as opposed to being along the

pixel diagonals as was formerly done or along the perpendicular to the
dispersion line?

Will this change be reflected in the line-by-line spectra also? In

other words, will "pseudo-pixels" of constant % actually represent data
of constant %? (Previously they did not.)

Lindler: The low dispersion extraction will be along the direction of

constant wavelength. For extended sources in the large aperture this

will be in the direction along the major axis of the aperture. This will
also be true for spatial line-by-line extractions. For trailed spectra,

a separate scheme will again extract data points at the correct wavelength,

but at the 90° trail angle instead of the actual slit angle applicable
to extended nebulae objects. In high dispersion the extraction will be

along diagonals.

Fischel: Do I understand that you use the space coordinate from the

dispersion relation to determine where the pixel was in the ungeometrically

corrected (low) image, and thus essentially use the nearest-nelghbor
approximation?

Lindler: The image position in a geometrically corrected image is
computed using the dispersion velatrons.

Fischel: Then you really do the resampling? You just don't output the
result separately?'

Lindler: Yes.

Bl_des: You mention that your internal velocity accuracy is a few km
s now that you are using the new wavelength table. Have you made any

external checks on the accuracy? For example, have you compared wavelengths
of the same interstellar lines obtained from the IUE and Copernicus?

Turnrose: No, but I belieye that other workers have looked at this and
quote errors of ± 5 km s

de Boer: In the Washburn Extraction Routine, the extracted intensities
have equal spacing in wavelength because the gaussian fit done on all

individual diagonals of the image gives the correct position of the---
spectrum.

Clarke: In the case of wavelength uncertainties, does the program give

the user a choice of possible identifications for a given line?

Joseph: Yes. Also, it should be stressed that he must approve of the

selection_ even in cases where there is not any uncertainty, in order to
proceed.
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Lien: The main point is that if such a regional data center is set up_

the programming should be set up such as to take into account the problems

specific to the IUE, such as the non-linear wavelength scale, and summing
or stacking data.

Holm: Does your system permit the user to reject the supplied programs

and to develop his own programs to analyze the spectra?

Joseph: Yes. The system was designed with that purpose in mind.

Turnrose: In response to the question of A. V. Holm about performing

spectral registration (perpendicular to dispersion) with the IUESIPS

program DSPCON: Such registration is successful if the geometri c correction

is good; however, temperature changes result in differential motion across

the image, thus making it impossible to exactly register all echelle
orders simultaneously with the present techniques. Effects of this type

may be responsible for some of the background-extraction problems which

Ms. Grady has pointed out.

Fischel: We have noted the same effects here at GSFC, and have reached

the same conclusions and used much the same techniques.

Leckrone: Have you had the opportunity to try out the new median filtering•
routine for background smoothing? If so, has this helped reduce the

artifacts due to poor sampling of the background that you described?

Grady: We have yet to try this routine but will try it as soon as

possible.

Fahey: Imagination is needed to create tests of true stellar variability

as opposed to numerically induced effects. Some of the things I have

done are: Correlate central depths with equivalent widths. Normalize

varying equivalent widths to 0 to I, measure deviations of the He I

3s-3p lines from their mean. Measure lines which appear on 2 orders

(e.g., He 1 2945A). Measure interstellar lines which had better not

vary. Measure "nightly" variations (e.g., 7 SWP's on one shift).

Grady: We also have data taken on single shifts. The star in which we

first identified the spacious variability was Cam which was observed

nearly continuously for 3 days by T. P. Snow, Jr. and Henny Lamers from

both VILSPA and GSFC. As a result we could see changes in the way the

data was handled every 35 minutes.

Lien: Two questions: How much does the temperature change as a function _

of time? How does this affect the background extraction?

Thompson: I) Depending on spacecraft orientation, temperature changes

can be either rapid or relatively slow. Significant changes can occur

on time scales of several hours; the range of TBDA values for the cali-
bration images used in this analysis is 5°C to 15°C (for S_4P and IO°C to

17°C for LWR). Data on spacecraft temperature is routinely maintained

by the IUE OCC, and excerpts from their tabulations will be included in

the detailed writings to appear in the NASA IUE Newsletter. 2) If you
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refer back to Figure 6 showing motion of SWP reseaux with temperature

changes, you can see that the motion is differential across the tube

face; i.e., up to 1.5 pixels at one portion of the tube and near zero at

other portions. Note also that the largest component of the motion is

roughly perpendicular to the SWP echelle orders in high dispersion.

Consequently, an image at an arbitrary temperature will have orders

which cannot necessarily be all registered with the dispersion relations

used to extract the gross and background spectra. This can cause in-

creased contamination of some background extractions. Furthermore, the
differential reseau motion can cause small scale curves and kinks in the

echelle orders, further affecting the spectral extraction.

Jenkins: Have you studied the dependence of the wavelength calibrations

on the rate of change of temperature, in addition to just the actual

temperatures?

Thompson: Unfortunately there is insufficient data to determine a

relationship between wavelength calibration and the time derivative of

camera temperature. However, we would expect that when temperatures are

changing rapidly with time the camera temperature would no longer neces-
sarily reflect conditions in the spectrograph and the correlation would

break down. Also, if the temperatures varied significantly during the

time of exposure the spectral features would probably be blurred to the

extent indicated in figures 1-4.

Head amplifier temperatures were monitored 2 hours before and after each

set of wavelength calibration exposures and in general the temperatures
varied less than 1.5 C over the 4-hour interval. The largest variation
observed was 6 C in 4 hours.
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